Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > meaiuninc3 | Structured version Visualization version GIF version |
Description: Measures are continuous from below: if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is the general case of Proposition 112C (e) of [Fremlin1] p. 16 . This theorem generalizes meaiuninc 43909 and meaiuninc2 43910 where the sequence is required to be bounded. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
Ref | Expression |
---|---|
meaiuninc3.p | ⊢ Ⅎ𝑛𝜑 |
meaiuninc3.f | ⊢ Ⅎ𝑛𝐸 |
meaiuninc3.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
meaiuninc3.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
meaiuninc3.z | ⊢ 𝑍 = (ℤ≥‘𝑁) |
meaiuninc3.e | ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) |
meaiuninc3.i | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) |
meaiuninc3.s | ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) |
Ref | Expression |
---|---|
meaiuninc3 | ⊢ (𝜑 → 𝑆~~>*(𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meaiuninc3.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
2 | meaiuninc3.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
3 | meaiuninc3.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑁) | |
4 | meaiuninc3.e | . . 3 ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) | |
5 | meaiuninc3.p | . . . . . 6 ⊢ Ⅎ𝑛𝜑 | |
6 | nfv 1918 | . . . . . 6 ⊢ Ⅎ𝑛 𝑘 ∈ 𝑍 | |
7 | 5, 6 | nfan 1903 | . . . . 5 ⊢ Ⅎ𝑛(𝜑 ∧ 𝑘 ∈ 𝑍) |
8 | meaiuninc3.f | . . . . . . 7 ⊢ Ⅎ𝑛𝐸 | |
9 | nfcv 2906 | . . . . . . 7 ⊢ Ⅎ𝑛𝑘 | |
10 | 8, 9 | nffv 6766 | . . . . . 6 ⊢ Ⅎ𝑛(𝐸‘𝑘) |
11 | nfcv 2906 | . . . . . . 7 ⊢ Ⅎ𝑛(𝑘 + 1) | |
12 | 8, 11 | nffv 6766 | . . . . . 6 ⊢ Ⅎ𝑛(𝐸‘(𝑘 + 1)) |
13 | 10, 12 | nfss 3909 | . . . . 5 ⊢ Ⅎ𝑛(𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1)) |
14 | 7, 13 | nfim 1900 | . . . 4 ⊢ Ⅎ𝑛((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1))) |
15 | eleq1w 2821 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝑛 ∈ 𝑍 ↔ 𝑘 ∈ 𝑍)) | |
16 | 15 | anbi2d 628 | . . . . 5 ⊢ (𝑛 = 𝑘 → ((𝜑 ∧ 𝑛 ∈ 𝑍) ↔ (𝜑 ∧ 𝑘 ∈ 𝑍))) |
17 | fveq2 6756 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝐸‘𝑛) = (𝐸‘𝑘)) | |
18 | fvoveq1 7278 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑘 + 1))) | |
19 | 17, 18 | sseq12d 3950 | . . . . 5 ⊢ (𝑛 = 𝑘 → ((𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1)) ↔ (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1)))) |
20 | 16, 19 | imbi12d 344 | . . . 4 ⊢ (𝑛 = 𝑘 → (((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) ↔ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1))))) |
21 | meaiuninc3.i | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) | |
22 | 14, 20, 21 | chvarfv 2236 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1))) |
23 | meaiuninc3.s | . . . 4 ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) | |
24 | nfcv 2906 | . . . . . 6 ⊢ Ⅎ𝑘𝑀 | |
25 | nfcv 2906 | . . . . . 6 ⊢ Ⅎ𝑘(𝐸‘𝑛) | |
26 | 24, 25 | nffv 6766 | . . . . 5 ⊢ Ⅎ𝑘(𝑀‘(𝐸‘𝑛)) |
27 | nfcv 2906 | . . . . . 6 ⊢ Ⅎ𝑛𝑀 | |
28 | 27, 10 | nffv 6766 | . . . . 5 ⊢ Ⅎ𝑛(𝑀‘(𝐸‘𝑘)) |
29 | 2fveq3 6761 | . . . . 5 ⊢ (𝑛 = 𝑘 → (𝑀‘(𝐸‘𝑛)) = (𝑀‘(𝐸‘𝑘))) | |
30 | 26, 28, 29 | cbvmpt 5181 | . . . 4 ⊢ (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) = (𝑘 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑘))) |
31 | 23, 30 | eqtri 2766 | . . 3 ⊢ 𝑆 = (𝑘 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑘))) |
32 | 1, 2, 3, 4, 22, 31 | meaiuninc3v 43912 | . 2 ⊢ (𝜑 → 𝑆~~>*(𝑀‘∪ 𝑘 ∈ 𝑍 (𝐸‘𝑘))) |
33 | fveq2 6756 | . . . 4 ⊢ (𝑘 = 𝑛 → (𝐸‘𝑘) = (𝐸‘𝑛)) | |
34 | 10, 25, 33 | cbviun 4962 | . . 3 ⊢ ∪ 𝑘 ∈ 𝑍 (𝐸‘𝑘) = ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) |
35 | 34 | fveq2i 6759 | . 2 ⊢ (𝑀‘∪ 𝑘 ∈ 𝑍 (𝐸‘𝑘)) = (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) |
36 | 32, 35 | breqtrdi 5111 | 1 ⊢ (𝜑 → 𝑆~~>*(𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 Ⅎwnfc 2886 ⊆ wss 3883 ∪ ciun 4921 class class class wbr 5070 ↦ cmpt 5153 dom cdm 5580 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 1c1 10803 + caddc 10805 ℤcz 12249 ℤ≥cuz 12511 ~~>*clsxlim 43249 Meascmea 43877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-omul 8272 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-rest 17050 df-topn 17051 df-topgen 17071 df-ordt 17129 df-ps 18199 df-tsr 18200 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-lm 22288 df-xms 23381 df-ms 23382 df-xlim 43250 df-salg 43740 df-sumge0 43791 df-mea 43878 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |