![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > meaiuninc3 | Structured version Visualization version GIF version |
Description: Measures are continuous from below: if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is the general case of Proposition 112C (e) of [Fremlin1] p. 16 . This theorem generalizes meaiuninc 42325 and meaiuninc2 42326 where the sequence is required to be bounded. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
Ref | Expression |
---|---|
meaiuninc3.p | ⊢ Ⅎ𝑛𝜑 |
meaiuninc3.f | ⊢ Ⅎ𝑛𝐸 |
meaiuninc3.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
meaiuninc3.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
meaiuninc3.z | ⊢ 𝑍 = (ℤ≥‘𝑁) |
meaiuninc3.e | ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) |
meaiuninc3.i | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) |
meaiuninc3.s | ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) |
Ref | Expression |
---|---|
meaiuninc3 | ⊢ (𝜑 → 𝑆~~>*(𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meaiuninc3.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
2 | meaiuninc3.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
3 | meaiuninc3.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑁) | |
4 | meaiuninc3.e | . . 3 ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) | |
5 | meaiuninc3.p | . . . . . 6 ⊢ Ⅎ𝑛𝜑 | |
6 | nfv 1892 | . . . . . 6 ⊢ Ⅎ𝑛 𝑘 ∈ 𝑍 | |
7 | 5, 6 | nfan 1881 | . . . . 5 ⊢ Ⅎ𝑛(𝜑 ∧ 𝑘 ∈ 𝑍) |
8 | meaiuninc3.f | . . . . . . 7 ⊢ Ⅎ𝑛𝐸 | |
9 | nfcv 2949 | . . . . . . 7 ⊢ Ⅎ𝑛𝑘 | |
10 | 8, 9 | nffv 6548 | . . . . . 6 ⊢ Ⅎ𝑛(𝐸‘𝑘) |
11 | nfcv 2949 | . . . . . . 7 ⊢ Ⅎ𝑛(𝑘 + 1) | |
12 | 8, 11 | nffv 6548 | . . . . . 6 ⊢ Ⅎ𝑛(𝐸‘(𝑘 + 1)) |
13 | 10, 12 | nfss 3882 | . . . . 5 ⊢ Ⅎ𝑛(𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1)) |
14 | 7, 13 | nfim 1878 | . . . 4 ⊢ Ⅎ𝑛((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1))) |
15 | eleq1w 2865 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝑛 ∈ 𝑍 ↔ 𝑘 ∈ 𝑍)) | |
16 | 15 | anbi2d 628 | . . . . 5 ⊢ (𝑛 = 𝑘 → ((𝜑 ∧ 𝑛 ∈ 𝑍) ↔ (𝜑 ∧ 𝑘 ∈ 𝑍))) |
17 | fveq2 6538 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝐸‘𝑛) = (𝐸‘𝑘)) | |
18 | fvoveq1 7039 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑘 + 1))) | |
19 | 17, 18 | sseq12d 3921 | . . . . 5 ⊢ (𝑛 = 𝑘 → ((𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1)) ↔ (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1)))) |
20 | 16, 19 | imbi12d 346 | . . . 4 ⊢ (𝑛 = 𝑘 → (((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) ↔ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1))))) |
21 | meaiuninc3.i | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) | |
22 | 14, 20, 21 | chvar 2369 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1))) |
23 | meaiuninc3.s | . . . 4 ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) | |
24 | nfcv 2949 | . . . . . 6 ⊢ Ⅎ𝑘𝑀 | |
25 | nfcv 2949 | . . . . . 6 ⊢ Ⅎ𝑘(𝐸‘𝑛) | |
26 | 24, 25 | nffv 6548 | . . . . 5 ⊢ Ⅎ𝑘(𝑀‘(𝐸‘𝑛)) |
27 | nfcv 2949 | . . . . . 6 ⊢ Ⅎ𝑛𝑀 | |
28 | 27, 10 | nffv 6548 | . . . . 5 ⊢ Ⅎ𝑛(𝑀‘(𝐸‘𝑘)) |
29 | 2fveq3 6543 | . . . . 5 ⊢ (𝑛 = 𝑘 → (𝑀‘(𝐸‘𝑛)) = (𝑀‘(𝐸‘𝑘))) | |
30 | 26, 28, 29 | cbvmpt 5060 | . . . 4 ⊢ (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) = (𝑘 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑘))) |
31 | 23, 30 | eqtri 2819 | . . 3 ⊢ 𝑆 = (𝑘 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑘))) |
32 | 1, 2, 3, 4, 22, 31 | meaiuninc3v 42328 | . 2 ⊢ (𝜑 → 𝑆~~>*(𝑀‘∪ 𝑘 ∈ 𝑍 (𝐸‘𝑘))) |
33 | fveq2 6538 | . . . 4 ⊢ (𝑘 = 𝑛 → (𝐸‘𝑘) = (𝐸‘𝑛)) | |
34 | 10, 25, 33 | cbviun 4864 | . . 3 ⊢ ∪ 𝑘 ∈ 𝑍 (𝐸‘𝑘) = ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) |
35 | 34 | fveq2i 6541 | . 2 ⊢ (𝑀‘∪ 𝑘 ∈ 𝑍 (𝐸‘𝑘)) = (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) |
36 | 32, 35 | syl6breq 5003 | 1 ⊢ (𝜑 → 𝑆~~>*(𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 Ⅎwnf 1765 ∈ wcel 2081 Ⅎwnfc 2933 ⊆ wss 3859 ∪ ciun 4825 class class class wbr 4962 ↦ cmpt 5041 dom cdm 5443 ⟶wf 6221 ‘cfv 6225 (class class class)co 7016 1c1 10384 + caddc 10386 ℤcz 11829 ℤ≥cuz 12093 ~~>*clsxlim 41660 Meascmea 42293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-inf2 8950 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 ax-pre-sup 10461 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-fal 1535 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-disj 4931 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-se 5403 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-isom 6234 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-oadd 7957 df-omul 7958 df-er 8139 df-map 8258 df-pm 8259 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-fi 8721 df-sup 8752 df-inf 8753 df-oi 8820 df-card 9214 df-acn 9217 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-div 11146 df-nn 11487 df-2 11548 df-3 11549 df-4 11550 df-5 11551 df-6 11552 df-7 11553 df-8 11554 df-9 11555 df-n0 11746 df-z 11830 df-dec 11948 df-uz 12094 df-q 12198 df-rp 12240 df-xneg 12357 df-xadd 12358 df-xmul 12359 df-ioo 12592 df-ioc 12593 df-ico 12594 df-icc 12595 df-fz 12743 df-fzo 12884 df-fl 13012 df-seq 13220 df-exp 13280 df-hash 13541 df-cj 14292 df-re 14293 df-im 14294 df-sqrt 14428 df-abs 14429 df-clim 14679 df-rlim 14680 df-sum 14877 df-struct 16314 df-ndx 16315 df-slot 16316 df-base 16318 df-plusg 16407 df-mulr 16408 df-starv 16409 df-tset 16413 df-ple 16414 df-ds 16416 df-unif 16417 df-rest 16525 df-topn 16526 df-topgen 16546 df-ordt 16603 df-ps 17639 df-tsr 17640 df-psmet 20219 df-xmet 20220 df-met 20221 df-bl 20222 df-mopn 20223 df-cnfld 20228 df-top 21186 df-topon 21203 df-topsp 21225 df-bases 21238 df-lm 21521 df-xms 22613 df-ms 22614 df-xlim 41661 df-salg 42156 df-sumge0 42207 df-mea 42294 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |