Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > meaiuninc3 | Structured version Visualization version GIF version |
Description: Measures are continuous from below: if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is the general case of Proposition 112C (e) of [Fremlin1] p. 16 . This theorem generalizes meaiuninc 44264 and meaiuninc2 44265 where the sequence is required to be bounded. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
Ref | Expression |
---|---|
meaiuninc3.p | ⊢ Ⅎ𝑛𝜑 |
meaiuninc3.f | ⊢ Ⅎ𝑛𝐸 |
meaiuninc3.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
meaiuninc3.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
meaiuninc3.z | ⊢ 𝑍 = (ℤ≥‘𝑁) |
meaiuninc3.e | ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) |
meaiuninc3.i | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) |
meaiuninc3.s | ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) |
Ref | Expression |
---|---|
meaiuninc3 | ⊢ (𝜑 → 𝑆~~>*(𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meaiuninc3.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
2 | meaiuninc3.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
3 | meaiuninc3.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑁) | |
4 | meaiuninc3.e | . . 3 ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) | |
5 | meaiuninc3.p | . . . . . 6 ⊢ Ⅎ𝑛𝜑 | |
6 | nfv 1916 | . . . . . 6 ⊢ Ⅎ𝑛 𝑘 ∈ 𝑍 | |
7 | 5, 6 | nfan 1901 | . . . . 5 ⊢ Ⅎ𝑛(𝜑 ∧ 𝑘 ∈ 𝑍) |
8 | meaiuninc3.f | . . . . . . 7 ⊢ Ⅎ𝑛𝐸 | |
9 | nfcv 2905 | . . . . . . 7 ⊢ Ⅎ𝑛𝑘 | |
10 | 8, 9 | nffv 6819 | . . . . . 6 ⊢ Ⅎ𝑛(𝐸‘𝑘) |
11 | nfcv 2905 | . . . . . . 7 ⊢ Ⅎ𝑛(𝑘 + 1) | |
12 | 8, 11 | nffv 6819 | . . . . . 6 ⊢ Ⅎ𝑛(𝐸‘(𝑘 + 1)) |
13 | 10, 12 | nfss 3922 | . . . . 5 ⊢ Ⅎ𝑛(𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1)) |
14 | 7, 13 | nfim 1898 | . . . 4 ⊢ Ⅎ𝑛((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1))) |
15 | eleq1w 2820 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝑛 ∈ 𝑍 ↔ 𝑘 ∈ 𝑍)) | |
16 | 15 | anbi2d 629 | . . . . 5 ⊢ (𝑛 = 𝑘 → ((𝜑 ∧ 𝑛 ∈ 𝑍) ↔ (𝜑 ∧ 𝑘 ∈ 𝑍))) |
17 | fveq2 6809 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝐸‘𝑛) = (𝐸‘𝑘)) | |
18 | fvoveq1 7336 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑘 + 1))) | |
19 | 17, 18 | sseq12d 3963 | . . . . 5 ⊢ (𝑛 = 𝑘 → ((𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1)) ↔ (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1)))) |
20 | 16, 19 | imbi12d 344 | . . . 4 ⊢ (𝑛 = 𝑘 → (((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) ↔ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1))))) |
21 | meaiuninc3.i | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) | |
22 | 14, 20, 21 | chvarfv 2232 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1))) |
23 | meaiuninc3.s | . . . 4 ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) | |
24 | nfcv 2905 | . . . . . 6 ⊢ Ⅎ𝑘𝑀 | |
25 | nfcv 2905 | . . . . . 6 ⊢ Ⅎ𝑘(𝐸‘𝑛) | |
26 | 24, 25 | nffv 6819 | . . . . 5 ⊢ Ⅎ𝑘(𝑀‘(𝐸‘𝑛)) |
27 | nfcv 2905 | . . . . . 6 ⊢ Ⅎ𝑛𝑀 | |
28 | 27, 10 | nffv 6819 | . . . . 5 ⊢ Ⅎ𝑛(𝑀‘(𝐸‘𝑘)) |
29 | 2fveq3 6814 | . . . . 5 ⊢ (𝑛 = 𝑘 → (𝑀‘(𝐸‘𝑛)) = (𝑀‘(𝐸‘𝑘))) | |
30 | 26, 28, 29 | cbvmpt 5196 | . . . 4 ⊢ (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) = (𝑘 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑘))) |
31 | 23, 30 | eqtri 2765 | . . 3 ⊢ 𝑆 = (𝑘 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑘))) |
32 | 1, 2, 3, 4, 22, 31 | meaiuninc3v 44267 | . 2 ⊢ (𝜑 → 𝑆~~>*(𝑀‘∪ 𝑘 ∈ 𝑍 (𝐸‘𝑘))) |
33 | fveq2 6809 | . . . 4 ⊢ (𝑘 = 𝑛 → (𝐸‘𝑘) = (𝐸‘𝑛)) | |
34 | 10, 25, 33 | cbviun 4977 | . . 3 ⊢ ∪ 𝑘 ∈ 𝑍 (𝐸‘𝑘) = ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) |
35 | 34 | fveq2i 6812 | . 2 ⊢ (𝑀‘∪ 𝑘 ∈ 𝑍 (𝐸‘𝑘)) = (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) |
36 | 32, 35 | breqtrdi 5126 | 1 ⊢ (𝜑 → 𝑆~~>*(𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 Ⅎwnfc 2885 ⊆ wss 3896 ∪ ciun 4935 class class class wbr 5085 ↦ cmpt 5168 dom cdm 5605 ⟶wf 6459 ‘cfv 6463 (class class class)co 7313 1c1 10942 + caddc 10944 ℤcz 12389 ℤ≥cuz 12652 ~~>*clsxlim 43603 Meascmea 44232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-inf2 9467 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 ax-pre-sup 11019 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-tp 4574 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-disj 5051 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-se 5561 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-isom 6472 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-oadd 8346 df-omul 8347 df-er 8544 df-map 8663 df-pm 8664 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-fi 9238 df-sup 9269 df-inf 9270 df-oi 9337 df-card 9765 df-acn 9768 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-div 11703 df-nn 12044 df-2 12106 df-3 12107 df-4 12108 df-5 12109 df-6 12110 df-7 12111 df-8 12112 df-9 12113 df-n0 12304 df-z 12390 df-dec 12508 df-uz 12653 df-q 12759 df-rp 12801 df-xneg 12918 df-xadd 12919 df-xmul 12920 df-ioo 13153 df-ioc 13154 df-ico 13155 df-icc 13156 df-fz 13310 df-fzo 13453 df-fl 13582 df-seq 13792 df-exp 13853 df-hash 14115 df-cj 14879 df-re 14880 df-im 14881 df-sqrt 15015 df-abs 15016 df-clim 15266 df-rlim 15267 df-sum 15467 df-struct 16915 df-slot 16950 df-ndx 16962 df-base 16980 df-plusg 17042 df-mulr 17043 df-starv 17044 df-tset 17048 df-ple 17049 df-ds 17051 df-unif 17052 df-rest 17200 df-topn 17201 df-topgen 17221 df-ordt 17279 df-ps 18351 df-tsr 18352 df-psmet 20660 df-xmet 20661 df-met 20662 df-bl 20663 df-mopn 20664 df-cnfld 20669 df-top 22114 df-topon 22131 df-topsp 22153 df-bases 22167 df-lm 22451 df-xms 23544 df-ms 23545 df-xlim 43604 df-salg 44094 df-sumge0 44146 df-mea 44233 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |