Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chocnul | Structured version Visualization version GIF version |
Description: Orthogonal complement of the empty set. (Contributed by NM, 31-Oct-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chocnul | ⊢ (⊥‘∅) = ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4449 | . . 3 ⊢ ∀𝑦 ∈ ∅ (𝑥 ·ih 𝑦) = 0 | |
2 | 0ss 4336 | . . . 4 ⊢ ∅ ⊆ ℋ | |
3 | ocel 29692 | . . . 4 ⊢ (∅ ⊆ ℋ → (𝑥 ∈ (⊥‘∅) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ∅ (𝑥 ·ih 𝑦) = 0))) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (𝑥 ∈ (⊥‘∅) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ∅ (𝑥 ·ih 𝑦) = 0)) |
5 | 1, 4 | mpbiran2 708 | . 2 ⊢ (𝑥 ∈ (⊥‘∅) ↔ 𝑥 ∈ ℋ) |
6 | 5 | eqriv 2733 | 1 ⊢ (⊥‘∅) = ℋ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∀wral 3061 ⊆ wss 3892 ∅c0 4262 ‘cfv 6458 (class class class)co 7307 0cc0 10921 ℋchba 29330 ·ih csp 29333 ⊥cort 29341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-hilex 29410 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-iota 6410 df-fun 6460 df-fv 6466 df-ov 7310 df-oc 29663 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |