Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chocnul | Structured version Visualization version GIF version |
Description: Orthogonal complement of the empty set. (Contributed by NM, 31-Oct-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chocnul | ⊢ (⊥‘∅) = ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4448 | . . 3 ⊢ ∀𝑦 ∈ ∅ (𝑥 ·ih 𝑦) = 0 | |
2 | 0ss 4335 | . . . 4 ⊢ ∅ ⊆ ℋ | |
3 | ocel 29622 | . . . 4 ⊢ (∅ ⊆ ℋ → (𝑥 ∈ (⊥‘∅) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ∅ (𝑥 ·ih 𝑦) = 0))) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (𝑥 ∈ (⊥‘∅) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ∅ (𝑥 ·ih 𝑦) = 0)) |
5 | 1, 4 | mpbiran2 706 | . 2 ⊢ (𝑥 ∈ (⊥‘∅) ↔ 𝑥 ∈ ℋ) |
6 | 5 | eqriv 2736 | 1 ⊢ (⊥‘∅) = ℋ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ⊆ wss 3891 ∅c0 4261 ‘cfv 6430 (class class class)co 7268 0cc0 10855 ℋchba 29260 ·ih csp 29263 ⊥cort 29271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-hilex 29340 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 df-oc 29593 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |