![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chocnul | Structured version Visualization version GIF version |
Description: Orthogonal complement of the empty set. (Contributed by NM, 31-Oct-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chocnul | ⊢ (⊥‘∅) = ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4270 | . . 3 ⊢ ∀𝑦 ∈ ∅ (𝑥 ·ih 𝑦) = 0 | |
2 | 0ss 4169 | . . . 4 ⊢ ∅ ⊆ ℋ | |
3 | ocel 28664 | . . . 4 ⊢ (∅ ⊆ ℋ → (𝑥 ∈ (⊥‘∅) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ∅ (𝑥 ·ih 𝑦) = 0))) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (𝑥 ∈ (⊥‘∅) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ∅ (𝑥 ·ih 𝑦) = 0)) |
5 | 1, 4 | mpbiran2 702 | . 2 ⊢ (𝑥 ∈ (⊥‘∅) ↔ 𝑥 ∈ ℋ) |
6 | 5 | eqriv 2797 | 1 ⊢ (⊥‘∅) = ℋ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3090 ⊆ wss 3770 ∅c0 4116 ‘cfv 6102 (class class class)co 6879 0cc0 10225 ℋchba 28300 ·ih csp 28303 ⊥cort 28311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pr 5098 ax-hilex 28380 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-iota 6065 df-fun 6104 df-fv 6110 df-ov 6882 df-oc 28633 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |