Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chocnul | Structured version Visualization version GIF version |
Description: Orthogonal complement of the empty set. (Contributed by NM, 31-Oct-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chocnul | ⊢ (⊥‘∅) = ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4445 | . . 3 ⊢ ∀𝑦 ∈ ∅ (𝑥 ·ih 𝑦) = 0 | |
2 | 0ss 4332 | . . . 4 ⊢ ∅ ⊆ ℋ | |
3 | ocel 29630 | . . . 4 ⊢ (∅ ⊆ ℋ → (𝑥 ∈ (⊥‘∅) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ∅ (𝑥 ·ih 𝑦) = 0))) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (𝑥 ∈ (⊥‘∅) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ∅ (𝑥 ·ih 𝑦) = 0)) |
5 | 1, 4 | mpbiran2 707 | . 2 ⊢ (𝑥 ∈ (⊥‘∅) ↔ 𝑥 ∈ ℋ) |
6 | 5 | eqriv 2735 | 1 ⊢ (⊥‘∅) = ℋ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3888 ∅c0 4258 ‘cfv 6428 (class class class)co 7269 0cc0 10860 ℋchba 29268 ·ih csp 29271 ⊥cort 29279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-hilex 29348 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3433 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5486 df-xp 5592 df-rel 5593 df-cnv 5594 df-co 5595 df-dm 5596 df-iota 6386 df-fun 6430 df-fv 6436 df-ov 7272 df-oc 29601 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |