| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chocnul | Structured version Visualization version GIF version | ||
| Description: Orthogonal complement of the empty set. (Contributed by NM, 31-Oct-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chocnul | ⊢ (⊥‘∅) = ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 4472 | . . 3 ⊢ ∀𝑦 ∈ ∅ (𝑥 ·ih 𝑦) = 0 | |
| 2 | 0ss 4359 | . . . 4 ⊢ ∅ ⊆ ℋ | |
| 3 | ocel 31260 | . . . 4 ⊢ (∅ ⊆ ℋ → (𝑥 ∈ (⊥‘∅) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ∅ (𝑥 ·ih 𝑦) = 0))) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (𝑥 ∈ (⊥‘∅) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ∅ (𝑥 ·ih 𝑦) = 0)) |
| 5 | 1, 4 | mpbiran2 710 | . 2 ⊢ (𝑥 ∈ (⊥‘∅) ↔ 𝑥 ∈ ℋ) |
| 6 | 5 | eqriv 2726 | 1 ⊢ (⊥‘∅) = ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3911 ∅c0 4292 ‘cfv 6499 (class class class)co 7369 0cc0 11044 ℋchba 30898 ·ih csp 30901 ⊥cort 30909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-hilex 30978 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oc 31231 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |