HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chocnul Structured version   Visualization version   GIF version

Theorem chocnul 31309
Description: Orthogonal complement of the empty set. (Contributed by NM, 31-Oct-2000.) (New usage is discouraged.)
Assertion
Ref Expression
chocnul (⊥‘∅) = ℋ

Proof of Theorem chocnul
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 4488 . . 3 𝑦 ∈ ∅ (𝑥 ·ih 𝑦) = 0
2 0ss 4375 . . . 4 ∅ ⊆ ℋ
3 ocel 31262 . . . 4 (∅ ⊆ ℋ → (𝑥 ∈ (⊥‘∅) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ∅ (𝑥 ·ih 𝑦) = 0)))
42, 3ax-mp 5 . . 3 (𝑥 ∈ (⊥‘∅) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ∅ (𝑥 ·ih 𝑦) = 0))
51, 4mpbiran2 710 . 2 (𝑥 ∈ (⊥‘∅) ↔ 𝑥 ∈ ℋ)
65eqriv 2732 1 (⊥‘∅) = ℋ
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wss 3926  c0 4308  cfv 6531  (class class class)co 7405  0cc0 11129  chba 30900   ·ih csp 30903  cort 30911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-hilex 30980
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oc 31233
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator