MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvf1o Structured version   Visualization version   GIF version

Theorem cnvf1o 8090
Description: Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
cnvf1o (Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem cnvf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 (𝑥𝐴 {𝑥}) = (𝑥𝐴 {𝑥})
2 vsnex 5389 . . . . 5 {𝑥} ∈ V
32cnvex 7901 . . . 4 {𝑥} ∈ V
43uniex 7717 . . 3 {𝑥} ∈ V
54a1i 11 . 2 ((Rel 𝐴𝑥𝐴) → {𝑥} ∈ V)
6 vsnex 5389 . . . . 5 {𝑦} ∈ V
76cnvex 7901 . . . 4 {𝑦} ∈ V
87uniex 7717 . . 3 {𝑦} ∈ V
98a1i 11 . 2 ((Rel 𝐴𝑦𝐴) → {𝑦} ∈ V)
10 cnvf1olem 8089 . . 3 ((Rel 𝐴 ∧ (𝑥𝐴𝑦 = {𝑥})) → (𝑦𝐴𝑥 = {𝑦}))
11 relcnv 6075 . . . . 5 Rel 𝐴
12 simpr 484 . . . . 5 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑦𝐴𝑥 = {𝑦}))
13 cnvf1olem 8089 . . . . 5 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑥𝐴𝑦 = {𝑥}))
1411, 12, 13sylancr 587 . . . 4 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑥𝐴𝑦 = {𝑥}))
15 dfrel2 6162 . . . . . . 7 (Rel 𝐴𝐴 = 𝐴)
16 eleq2 2817 . . . . . . 7 (𝐴 = 𝐴 → (𝑥𝐴𝑥𝐴))
1715, 16sylbi 217 . . . . . 6 (Rel 𝐴 → (𝑥𝐴𝑥𝐴))
1817anbi1d 631 . . . . 5 (Rel 𝐴 → ((𝑥𝐴𝑦 = {𝑥}) ↔ (𝑥𝐴𝑦 = {𝑥})))
1918adantr 480 . . . 4 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → ((𝑥𝐴𝑦 = {𝑥}) ↔ (𝑥𝐴𝑦 = {𝑥})))
2014, 19mpbid 232 . . 3 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑥𝐴𝑦 = {𝑥}))
2110, 20impbida 800 . 2 (Rel 𝐴 → ((𝑥𝐴𝑦 = {𝑥}) ↔ (𝑦𝐴𝑥 = {𝑦})))
221, 5, 9, 21f1od 7641 1 (Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589   cuni 4871  cmpt 5188  ccnv 5637  Rel wrel 5643  1-1-ontowf1o 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-1st 7968  df-2nd 7969
This theorem is referenced by:  tposf12  8230  cnven  9004  xpcomf1o  9030  fsumcnv  15739  fprodcnv  15949  gsumcom2  19905  tposres3  48869
  Copyright terms: Public domain W3C validator