![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvf1o | Structured version Visualization version GIF version |
Description: Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.) |
Ref | Expression |
---|---|
cnvf1o | ⊢ (Rel 𝐴 → (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}):𝐴–1-1-onto→◡𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}) = (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}) | |
2 | snex 5129 | . . . . 5 ⊢ {𝑥} ∈ V | |
3 | 2 | cnvex 7375 | . . . 4 ⊢ ◡{𝑥} ∈ V |
4 | 3 | uniex 7213 | . . 3 ⊢ ∪ ◡{𝑥} ∈ V |
5 | 4 | a1i 11 | . 2 ⊢ ((Rel 𝐴 ∧ 𝑥 ∈ 𝐴) → ∪ ◡{𝑥} ∈ V) |
6 | snex 5129 | . . . . 5 ⊢ {𝑦} ∈ V | |
7 | 6 | cnvex 7375 | . . . 4 ⊢ ◡{𝑦} ∈ V |
8 | 7 | uniex 7213 | . . 3 ⊢ ∪ ◡{𝑦} ∈ V |
9 | 8 | a1i 11 | . 2 ⊢ ((Rel 𝐴 ∧ 𝑦 ∈ ◡𝐴) → ∪ ◡{𝑦} ∈ V) |
10 | cnvf1olem 7539 | . . 3 ⊢ ((Rel 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡{𝑥})) → (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) | |
11 | relcnv 5744 | . . . . 5 ⊢ Rel ◡𝐴 | |
12 | simpr 479 | . . . . 5 ⊢ ((Rel 𝐴 ∧ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) → (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) | |
13 | cnvf1olem 7539 | . . . . 5 ⊢ ((Rel ◡𝐴 ∧ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) → (𝑥 ∈ ◡◡𝐴 ∧ 𝑦 = ∪ ◡{𝑥})) | |
14 | 11, 12, 13 | sylancr 581 | . . . 4 ⊢ ((Rel 𝐴 ∧ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) → (𝑥 ∈ ◡◡𝐴 ∧ 𝑦 = ∪ ◡{𝑥})) |
15 | dfrel2 5824 | . . . . . . 7 ⊢ (Rel 𝐴 ↔ ◡◡𝐴 = 𝐴) | |
16 | eleq2 2895 | . . . . . . 7 ⊢ (◡◡𝐴 = 𝐴 → (𝑥 ∈ ◡◡𝐴 ↔ 𝑥 ∈ 𝐴)) | |
17 | 15, 16 | sylbi 209 | . . . . . 6 ⊢ (Rel 𝐴 → (𝑥 ∈ ◡◡𝐴 ↔ 𝑥 ∈ 𝐴)) |
18 | 17 | anbi1d 623 | . . . . 5 ⊢ (Rel 𝐴 → ((𝑥 ∈ ◡◡𝐴 ∧ 𝑦 = ∪ ◡{𝑥}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡{𝑥}))) |
19 | 18 | adantr 474 | . . . 4 ⊢ ((Rel 𝐴 ∧ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) → ((𝑥 ∈ ◡◡𝐴 ∧ 𝑦 = ∪ ◡{𝑥}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡{𝑥}))) |
20 | 14, 19 | mpbid 224 | . . 3 ⊢ ((Rel 𝐴 ∧ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) → (𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡{𝑥})) |
21 | 10, 20 | impbida 835 | . 2 ⊢ (Rel 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡{𝑥}) ↔ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦}))) |
22 | 1, 5, 9, 21 | f1od 7145 | 1 ⊢ (Rel 𝐴 → (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}):𝐴–1-1-onto→◡𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 Vcvv 3414 {csn 4397 ∪ cuni 4658 ↦ cmpt 4952 ◡ccnv 5341 Rel wrel 5347 –1-1-onto→wf1o 6122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-1st 7428 df-2nd 7429 |
This theorem is referenced by: tposf12 7642 cnven 8298 xpcomf1o 8318 fsumcnv 14879 fprodcnv 15086 gsumcom2 18727 |
Copyright terms: Public domain | W3C validator |