MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvf1o Structured version   Visualization version   GIF version

Theorem cnvf1o 8044
Description: Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
cnvf1o (Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem cnvf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 (𝑥𝐴 {𝑥}) = (𝑥𝐴 {𝑥})
2 vsnex 5373 . . . . 5 {𝑥} ∈ V
32cnvex 7858 . . . 4 {𝑥} ∈ V
43uniex 7677 . . 3 {𝑥} ∈ V
54a1i 11 . 2 ((Rel 𝐴𝑥𝐴) → {𝑥} ∈ V)
6 vsnex 5373 . . . . 5 {𝑦} ∈ V
76cnvex 7858 . . . 4 {𝑦} ∈ V
87uniex 7677 . . 3 {𝑦} ∈ V
98a1i 11 . 2 ((Rel 𝐴𝑦𝐴) → {𝑦} ∈ V)
10 cnvf1olem 8043 . . 3 ((Rel 𝐴 ∧ (𝑥𝐴𝑦 = {𝑥})) → (𝑦𝐴𝑥 = {𝑦}))
11 relcnv 6055 . . . . 5 Rel 𝐴
12 simpr 484 . . . . 5 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑦𝐴𝑥 = {𝑦}))
13 cnvf1olem 8043 . . . . 5 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑥𝐴𝑦 = {𝑥}))
1411, 12, 13sylancr 587 . . . 4 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑥𝐴𝑦 = {𝑥}))
15 dfrel2 6138 . . . . . . 7 (Rel 𝐴𝐴 = 𝐴)
16 eleq2 2817 . . . . . . 7 (𝐴 = 𝐴 → (𝑥𝐴𝑥𝐴))
1715, 16sylbi 217 . . . . . 6 (Rel 𝐴 → (𝑥𝐴𝑥𝐴))
1817anbi1d 631 . . . . 5 (Rel 𝐴 → ((𝑥𝐴𝑦 = {𝑥}) ↔ (𝑥𝐴𝑦 = {𝑥})))
1918adantr 480 . . . 4 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → ((𝑥𝐴𝑦 = {𝑥}) ↔ (𝑥𝐴𝑦 = {𝑥})))
2014, 19mpbid 232 . . 3 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑥𝐴𝑦 = {𝑥}))
2110, 20impbida 800 . 2 (Rel 𝐴 → ((𝑥𝐴𝑦 = {𝑥}) ↔ (𝑦𝐴𝑥 = {𝑦})))
221, 5, 9, 21f1od 7601 1 (Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  {csn 4577   cuni 4858  cmpt 5173  ccnv 5618  Rel wrel 5624  1-1-ontowf1o 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-1st 7924  df-2nd 7925
This theorem is referenced by:  tposf12  8184  cnven  8958  xpcomf1o  8983  fsumcnv  15680  fprodcnv  15890  gsumcom2  19854  tposres3  48885
  Copyright terms: Public domain W3C validator