MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvf1o Structured version   Visualization version   GIF version

Theorem cnvf1o 8135
Description: Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
cnvf1o (Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem cnvf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . 2 (𝑥𝐴 {𝑥}) = (𝑥𝐴 {𝑥})
2 vsnex 5440 . . . . 5 {𝑥} ∈ V
32cnvex 7948 . . . 4 {𝑥} ∈ V
43uniex 7760 . . 3 {𝑥} ∈ V
54a1i 11 . 2 ((Rel 𝐴𝑥𝐴) → {𝑥} ∈ V)
6 vsnex 5440 . . . . 5 {𝑦} ∈ V
76cnvex 7948 . . . 4 {𝑦} ∈ V
87uniex 7760 . . 3 {𝑦} ∈ V
98a1i 11 . 2 ((Rel 𝐴𝑦𝐴) → {𝑦} ∈ V)
10 cnvf1olem 8134 . . 3 ((Rel 𝐴 ∧ (𝑥𝐴𝑦 = {𝑥})) → (𝑦𝐴𝑥 = {𝑦}))
11 relcnv 6125 . . . . 5 Rel 𝐴
12 simpr 484 . . . . 5 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑦𝐴𝑥 = {𝑦}))
13 cnvf1olem 8134 . . . . 5 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑥𝐴𝑦 = {𝑥}))
1411, 12, 13sylancr 587 . . . 4 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑥𝐴𝑦 = {𝑥}))
15 dfrel2 6211 . . . . . . 7 (Rel 𝐴𝐴 = 𝐴)
16 eleq2 2828 . . . . . . 7 (𝐴 = 𝐴 → (𝑥𝐴𝑥𝐴))
1715, 16sylbi 217 . . . . . 6 (Rel 𝐴 → (𝑥𝐴𝑥𝐴))
1817anbi1d 631 . . . . 5 (Rel 𝐴 → ((𝑥𝐴𝑦 = {𝑥}) ↔ (𝑥𝐴𝑦 = {𝑥})))
1918adantr 480 . . . 4 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → ((𝑥𝐴𝑦 = {𝑥}) ↔ (𝑥𝐴𝑦 = {𝑥})))
2014, 19mpbid 232 . . 3 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑥𝐴𝑦 = {𝑥}))
2110, 20impbida 801 . 2 (Rel 𝐴 → ((𝑥𝐴𝑦 = {𝑥}) ↔ (𝑦𝐴𝑥 = {𝑦})))
221, 5, 9, 21f1od 7685 1 (Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  {csn 4631   cuni 4912  cmpt 5231  ccnv 5688  Rel wrel 5694  1-1-ontowf1o 6562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-1st 8013  df-2nd 8014
This theorem is referenced by:  tposf12  8275  cnven  9072  xpcomf1o  9100  fsumcnv  15806  fprodcnv  16016  gsumcom2  20008
  Copyright terms: Public domain W3C validator