MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphipval2 Structured version   Visualization version   GIF version

Theorem cphipval2 24605
Description: Value of the inner product expressed by the norm defined by it. (Contributed by NM, 31-Jan-2007.) (Revised by AV, 18-Oct-2021.)
Hypotheses
Ref Expression
cphipfval.x 𝑋 = (Base‘𝑊)
cphipfval.p + = (+g𝑊)
cphipfval.s · = ( ·𝑠𝑊)
cphipfval.n 𝑁 = (norm‘𝑊)
cphipfval.i , = (·𝑖𝑊)
cphipval2.m = (-g𝑊)
cphipval2.f 𝐹 = (Scalar‘𝑊)
cphipval2.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cphipval2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) = (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)))) / 4))

Proof of Theorem cphipval2
StepHypRef Expression
1 simpl 483 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ ℂPreHil)
213ad2ant1 1133 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ ℂPreHil)
3 cphngp 24537 . . . . . . . . . . 11 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
43adantr 481 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ NrmGrp)
5 ngpgrp 23955 . . . . . . . . . 10 (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp)
64, 5syl 17 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ Grp)
7 cphipfval.x . . . . . . . . . 10 𝑋 = (Base‘𝑊)
8 cphipfval.p . . . . . . . . . 10 + = (+g𝑊)
97, 8grpcl 18756 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
106, 9syl3an1 1163 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
11 cphipfval.i . . . . . . . . 9 , = (·𝑖𝑊)
12 cphipfval.n . . . . . . . . 9 𝑁 = (norm‘𝑊)
137, 11, 12nmsq 24558 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + 𝐵) ∈ 𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
142, 10, 13syl2anc 584 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
15 simp2 1137 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
16 simp3 1138 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
1711, 7, 8, 2, 15, 16, 15, 16cph2di 24571 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
1814, 17eqtrd 2776 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
19 cphipval2.m . . . . . . . . . 10 = (-g𝑊)
207, 19grpsubcl 18827 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 𝐵) ∈ 𝑋)
216, 20syl3an1 1163 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 𝐵) ∈ 𝑋)
227, 11, 12nmsq 24558 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ (𝐴 𝐵) ∈ 𝑋) → ((𝑁‘(𝐴 𝐵))↑2) = ((𝐴 𝐵) , (𝐴 𝐵)))
232, 21, 22syl2anc 584 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 𝐵))↑2) = ((𝐴 𝐵) , (𝐴 𝐵)))
2411, 7, 19, 2, 15, 16, 15, 16cph2subdi 24574 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 𝐵) , (𝐴 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
2523, 24eqtrd 2776 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 𝐵))↑2) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
2618, 25oveq12d 7375 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) = ((((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) − (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴)))))
277, 11reipcl 24561 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑋) → (𝐴 , 𝐴) ∈ ℝ)
2827adantlr 713 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋) → (𝐴 , 𝐴) ∈ ℝ)
2928recnd 11183 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋) → (𝐴 , 𝐴) ∈ ℂ)
30293adant3 1132 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐴) ∈ ℂ)
317, 11reipcl 24561 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ 𝐵𝑋) → (𝐵 , 𝐵) ∈ ℝ)
3231adantlr 713 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → (𝐵 , 𝐵) ∈ ℝ)
3332recnd 11183 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → (𝐵 , 𝐵) ∈ ℂ)
34333adant2 1131 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐵 , 𝐵) ∈ ℂ)
3530, 34addcld 11174 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 , 𝐴) + (𝐵 , 𝐵)) ∈ ℂ)
367, 11cphipcl 24555 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) ∈ ℂ)
371, 36syl3an1 1163 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) ∈ ℂ)
387, 11cphipcl 24555 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ 𝐵𝑋𝐴𝑋) → (𝐵 , 𝐴) ∈ ℂ)
391, 38syl3an1 1163 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋𝐴𝑋) → (𝐵 , 𝐴) ∈ ℂ)
40393com23 1126 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐵 , 𝐴) ∈ ℂ)
4137, 40addcld 11174 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) ∈ ℂ)
4235, 41, 41pnncand 11551 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) − (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴)))) = (((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
4326, 42eqtrd 2776 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) = (((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
4463ad2ant1 1133 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ Grp)
45 cphlmod 24538 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
4645adantr 481 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ LMod)
4746adantr 481 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → 𝑊 ∈ LMod)
48 simplr 767 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → i ∈ 𝐾)
49 simpr 485 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → 𝐵𝑋)
50 cphipval2.f . . . . . . . . . . . . 13 𝐹 = (Scalar‘𝑊)
51 cphipfval.s . . . . . . . . . . . . 13 · = ( ·𝑠𝑊)
52 cphipval2.k . . . . . . . . . . . . 13 𝐾 = (Base‘𝐹)
537, 50, 51, 52lmodvscl 20339 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ i ∈ 𝐾𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
5447, 48, 49, 53syl3anc 1371 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
55543adant2 1131 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
567, 8grpcl 18756 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴 + (i · 𝐵)) ∈ 𝑋)
5744, 15, 55, 56syl3anc 1371 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (i · 𝐵)) ∈ 𝑋)
587, 11, 12nmsq 24558 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + (i · 𝐵)) ∈ 𝑋) → ((𝑁‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))))
592, 57, 58syl2anc 584 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))))
6011, 7, 8, 2, 15, 55, 15, 55cph2di 24571 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))) = (((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))))
6159, 60eqtrd 2776 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (i · 𝐵)))↑2) = (((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))))
627, 19grpsubcl 18827 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴 (i · 𝐵)) ∈ 𝑋)
6344, 15, 55, 62syl3anc 1371 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 (i · 𝐵)) ∈ 𝑋)
647, 11, 12nmsq 24558 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ (𝐴 (i · 𝐵)) ∈ 𝑋) → ((𝑁‘(𝐴 (i · 𝐵)))↑2) = ((𝐴 (i · 𝐵)) , (𝐴 (i · 𝐵))))
652, 63, 64syl2anc 584 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 (i · 𝐵)))↑2) = ((𝐴 (i · 𝐵)) , (𝐴 (i · 𝐵))))
6611, 7, 19, 2, 15, 55, 15, 55cph2subdi 24574 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 (i · 𝐵)) , (𝐴 (i · 𝐵))) = (((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) − ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))))
6765, 66eqtrd 2776 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 (i · 𝐵)))↑2) = (((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) − ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))))
6861, 67oveq12d 7375 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)) = ((((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))) − (((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) − ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)))))
6968oveq2d 7373 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2))) = (i · ((((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))) − (((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) − ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))))))
707, 11cphipcl 24555 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ (i · 𝐵) ∈ 𝑋 ∧ (i · 𝐵) ∈ 𝑋) → ((i · 𝐵) , (i · 𝐵)) ∈ ℂ)
712, 55, 55, 70syl3anc 1371 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · 𝐵) , (i · 𝐵)) ∈ ℂ)
7230, 71addcld 11174 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) ∈ ℂ)
737, 11cphipcl 24555 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴 , (i · 𝐵)) ∈ ℂ)
742, 15, 55, 73syl3anc 1371 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , (i · 𝐵)) ∈ ℂ)
757, 11cphipcl 24555 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ (i · 𝐵) ∈ 𝑋𝐴𝑋) → ((i · 𝐵) , 𝐴) ∈ ℂ)
762, 55, 15, 75syl3anc 1371 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · 𝐵) , 𝐴) ∈ ℂ)
7774, 76addcld 11174 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)) ∈ ℂ)
7872, 77, 77pnncand 11551 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))) − (((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) − ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)))) = (((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))))
7978oveq2d 7373 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · ((((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))) − (((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) − ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))))) = (i · (((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)))))
807, 51, 11, 50, 52cphassir 24579 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , (i · 𝐵)) = (-i · (𝐴 , 𝐵)))
817, 51, 11, 50, 52cphassi 24578 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · 𝐵) , 𝐴) = (i · (𝐵 , 𝐴)))
8280, 81oveq12d 7375 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)) = ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))))
8382, 82oveq12d 7375 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))) = (((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))) + ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴)))))
8483oveq2d 7373 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)))) = (i · (((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))) + ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))))))
85 ax-icn 11110 . . . . . . . 8 i ∈ ℂ
8685a1i 11 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → i ∈ ℂ)
87 negicn 11402 . . . . . . . . . 10 -i ∈ ℂ
8887a1i 11 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → -i ∈ ℂ)
8988, 37mulcld 11175 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (-i · (𝐴 , 𝐵)) ∈ ℂ)
9086, 40mulcld 11175 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (𝐵 , 𝐴)) ∈ ℂ)
9189, 90addcld 11174 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))) ∈ ℂ)
9286, 91, 91adddid 11179 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))) + ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))))) = ((i · ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴)))) + (i · ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))))))
9386, 89, 90adddid 11179 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴)))) = ((i · (-i · (𝐴 , 𝐵))) + (i · (i · (𝐵 , 𝐴)))))
9486, 88, 37mulassd 11178 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · -i) · (𝐴 , 𝐵)) = (i · (-i · (𝐴 , 𝐵))))
9585, 85mulneg2i 11602 . . . . . . . . . . . . 13 (i · -i) = -(i · i)
96 ixi 11784 . . . . . . . . . . . . . 14 (i · i) = -1
9796negeqi 11394 . . . . . . . . . . . . 13 -(i · i) = --1
98 negneg1e1 12271 . . . . . . . . . . . . 13 --1 = 1
9995, 97, 983eqtri 2768 . . . . . . . . . . . 12 (i · -i) = 1
10099oveq1i 7367 . . . . . . . . . . 11 ((i · -i) · (𝐴 , 𝐵)) = (1 · (𝐴 , 𝐵))
10194, 100eqtr3di 2791 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (-i · (𝐴 , 𝐵))) = (1 · (𝐴 , 𝐵)))
10286, 86, 40mulassd 11178 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · i) · (𝐵 , 𝐴)) = (i · (i · (𝐵 , 𝐴))))
10396oveq1i 7367 . . . . . . . . . . 11 ((i · i) · (𝐵 , 𝐴)) = (-1 · (𝐵 , 𝐴))
104102, 103eqtr3di 2791 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (i · (𝐵 , 𝐴))) = (-1 · (𝐵 , 𝐴)))
105101, 104oveq12d 7375 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · (-i · (𝐴 , 𝐵))) + (i · (i · (𝐵 , 𝐴)))) = ((1 · (𝐴 , 𝐵)) + (-1 · (𝐵 , 𝐴))))
10693, 105eqtrd 2776 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴)))) = ((1 · (𝐴 , 𝐵)) + (-1 · (𝐵 , 𝐴))))
107106, 106oveq12d 7375 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴)))) + (i · ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))))) = (((1 · (𝐴 , 𝐵)) + (-1 · (𝐵 , 𝐴))) + ((1 · (𝐴 , 𝐵)) + (-1 · (𝐵 , 𝐴)))))
10837mulid2d 11173 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 · (𝐴 , 𝐵)) = (𝐴 , 𝐵))
109108oveq1d 7372 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((1 · (𝐴 , 𝐵)) + (-1 · (𝐵 , 𝐴))) = ((𝐴 , 𝐵) + (-1 · (𝐵 , 𝐴))))
110 addneg1mul 11597 . . . . . . . . . 10 (((𝐴 , 𝐵) ∈ ℂ ∧ (𝐵 , 𝐴) ∈ ℂ) → ((𝐴 , 𝐵) + (-1 · (𝐵 , 𝐴))) = ((𝐴 , 𝐵) − (𝐵 , 𝐴)))
11137, 40, 110syl2anc 584 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 , 𝐵) + (-1 · (𝐵 , 𝐴))) = ((𝐴 , 𝐵) − (𝐵 , 𝐴)))
112109, 111eqtrd 2776 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((1 · (𝐴 , 𝐵)) + (-1 · (𝐵 , 𝐴))) = ((𝐴 , 𝐵) − (𝐵 , 𝐴)))
113112, 112oveq12d 7375 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((1 · (𝐴 , 𝐵)) + (-1 · (𝐵 , 𝐴))) + ((1 · (𝐴 , 𝐵)) + (-1 · (𝐵 , 𝐴)))) = (((𝐴 , 𝐵) − (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴))))
114107, 113eqtrd 2776 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴)))) + (i · ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))))) = (((𝐴 , 𝐵) − (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴))))
11584, 92, 1143eqtrd 2780 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)))) = (((𝐴 , 𝐵) − (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴))))
11669, 79, 1153eqtrd 2780 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2))) = (((𝐴 , 𝐵) − (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴))))
11743, 116oveq12d 7375 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)))) = ((((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) + (((𝐴 , 𝐵) − (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴)))))
118117oveq1d 7372 . 2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)))) / 4) = (((((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) + (((𝐴 , 𝐵) − (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴)))) / 4))
11937, 40subcld 11512 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 , 𝐵) − (𝐵 , 𝐴)) ∈ ℂ)
12041, 41, 119, 119add4d 11383 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) + (((𝐴 , 𝐵) − (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴)))) = ((((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴))) + (((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴)))))
12137, 40, 37ppncand 11552 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴))) = ((𝐴 , 𝐵) + (𝐴 , 𝐵)))
122121, 121oveq12d 7375 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴))) + (((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴)))) = (((𝐴 , 𝐵) + (𝐴 , 𝐵)) + ((𝐴 , 𝐵) + (𝐴 , 𝐵))))
123120, 122eqtrd 2776 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) + (((𝐴 , 𝐵) − (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴)))) = (((𝐴 , 𝐵) + (𝐴 , 𝐵)) + ((𝐴 , 𝐵) + (𝐴 , 𝐵))))
124123oveq1d 7372 . 2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) + (((𝐴 , 𝐵) − (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴)))) / 4) = ((((𝐴 , 𝐵) + (𝐴 , 𝐵)) + ((𝐴 , 𝐵) + (𝐴 , 𝐵))) / 4))
125372timesd 12396 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (2 · (𝐴 , 𝐵)) = ((𝐴 , 𝐵) + (𝐴 , 𝐵)))
126125eqcomd 2742 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 , 𝐵) + (𝐴 , 𝐵)) = (2 · (𝐴 , 𝐵)))
127126, 126oveq12d 7375 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝐴 , 𝐵) + (𝐴 , 𝐵)) + ((𝐴 , 𝐵) + (𝐴 , 𝐵))) = ((2 · (𝐴 , 𝐵)) + (2 · (𝐴 , 𝐵))))
128 2cnd 12231 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 2 ∈ ℂ)
129128, 128, 37adddird 11180 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((2 + 2) · (𝐴 , 𝐵)) = ((2 · (𝐴 , 𝐵)) + (2 · (𝐴 , 𝐵))))
130 2p2e4 12288 . . . . . . 7 (2 + 2) = 4
131130a1i 11 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (2 + 2) = 4)
132131oveq1d 7372 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((2 + 2) · (𝐴 , 𝐵)) = (4 · (𝐴 , 𝐵)))
133127, 129, 1323eqtr2d 2782 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝐴 , 𝐵) + (𝐴 , 𝐵)) + ((𝐴 , 𝐵) + (𝐴 , 𝐵))) = (4 · (𝐴 , 𝐵)))
134133oveq1d 7372 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝐴 , 𝐵) + (𝐴 , 𝐵)) + ((𝐴 , 𝐵) + (𝐴 , 𝐵))) / 4) = ((4 · (𝐴 , 𝐵)) / 4))
135 4cn 12238 . . . . 5 4 ∈ ℂ
136135a1i 11 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 4 ∈ ℂ)
137 4ne0 12261 . . . . 5 4 ≠ 0
138137a1i 11 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 4 ≠ 0)
13937, 136, 138divcan3d 11936 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((4 · (𝐴 , 𝐵)) / 4) = (𝐴 , 𝐵))
140134, 139eqtrd 2776 . 2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝐴 , 𝐵) + (𝐴 , 𝐵)) + ((𝐴 , 𝐵) + (𝐴 , 𝐵))) / 4) = (𝐴 , 𝐵))
141118, 124, 1403eqtrrd 2781 1 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) = (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)))) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052  ici 11053   + caddc 11054   · cmul 11056  cmin 11385  -cneg 11386   / cdiv 11812  2c2 12208  4c4 12210  cexp 13967  Basecbs 17083  +gcplusg 17133  Scalarcsca 17136   ·𝑠 cvsca 17137  ·𝑖cip 17138  Grpcgrp 18748  -gcsg 18750  LModclmod 20322  normcnm 23932  NrmGrpcngp 23933  ℂPreHilccph 24530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-0g 17323  df-topgen 17325  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-ghm 19006  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-rnghom 20146  df-drng 20187  df-subrg 20220  df-staf 20304  df-srng 20305  df-lmod 20324  df-lmhm 20483  df-lvec 20564  df-sra 20633  df-rgmod 20634  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-phl 21030  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-xms 23673  df-ms 23674  df-nm 23938  df-ngp 23939  df-nlm 23942  df-clm 24426  df-cph 24532
This theorem is referenced by:  4cphipval2  24606  cphipval  24607
  Copyright terms: Public domain W3C validator