MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphipval2 Structured version   Visualization version   GIF version

Theorem cphipval2 25198
Description: Value of the inner product expressed by the norm defined by it. (Contributed by NM, 31-Jan-2007.) (Revised by AV, 18-Oct-2021.)
Hypotheses
Ref Expression
cphipfval.x 𝑋 = (Base‘𝑊)
cphipfval.p + = (+g𝑊)
cphipfval.s · = ( ·𝑠𝑊)
cphipfval.n 𝑁 = (norm‘𝑊)
cphipfval.i , = (·𝑖𝑊)
cphipval2.m = (-g𝑊)
cphipval2.f 𝐹 = (Scalar‘𝑊)
cphipval2.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cphipval2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) = (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)))) / 4))

Proof of Theorem cphipval2
StepHypRef Expression
1 simpl 482 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ ℂPreHil)
213ad2ant1 1133 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ ℂPreHil)
3 cphngp 25130 . . . . . . . . . . 11 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
43adantr 480 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ NrmGrp)
5 ngpgrp 24543 . . . . . . . . . 10 (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp)
64, 5syl 17 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ Grp)
7 cphipfval.x . . . . . . . . . 10 𝑋 = (Base‘𝑊)
8 cphipfval.p . . . . . . . . . 10 + = (+g𝑊)
97, 8grpcl 18929 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
106, 9syl3an1 1163 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
11 cphipfval.i . . . . . . . . 9 , = (·𝑖𝑊)
12 cphipfval.n . . . . . . . . 9 𝑁 = (norm‘𝑊)
137, 11, 12nmsq 25151 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + 𝐵) ∈ 𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
142, 10, 13syl2anc 584 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
15 simp2 1137 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
16 simp3 1138 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
1711, 7, 8, 2, 15, 16, 15, 16cph2di 25164 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
1814, 17eqtrd 2771 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
19 cphipval2.m . . . . . . . . . 10 = (-g𝑊)
207, 19grpsubcl 19008 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 𝐵) ∈ 𝑋)
216, 20syl3an1 1163 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 𝐵) ∈ 𝑋)
227, 11, 12nmsq 25151 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ (𝐴 𝐵) ∈ 𝑋) → ((𝑁‘(𝐴 𝐵))↑2) = ((𝐴 𝐵) , (𝐴 𝐵)))
232, 21, 22syl2anc 584 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 𝐵))↑2) = ((𝐴 𝐵) , (𝐴 𝐵)))
2411, 7, 19, 2, 15, 16, 15, 16cph2subdi 25167 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 𝐵) , (𝐴 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
2523, 24eqtrd 2771 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 𝐵))↑2) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
2618, 25oveq12d 7428 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) = ((((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) − (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴)))))
277, 11reipcl 25154 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑋) → (𝐴 , 𝐴) ∈ ℝ)
2827adantlr 715 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋) → (𝐴 , 𝐴) ∈ ℝ)
2928recnd 11268 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋) → (𝐴 , 𝐴) ∈ ℂ)
30293adant3 1132 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐴) ∈ ℂ)
317, 11reipcl 25154 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ 𝐵𝑋) → (𝐵 , 𝐵) ∈ ℝ)
3231adantlr 715 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → (𝐵 , 𝐵) ∈ ℝ)
3332recnd 11268 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → (𝐵 , 𝐵) ∈ ℂ)
34333adant2 1131 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐵 , 𝐵) ∈ ℂ)
3530, 34addcld 11259 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 , 𝐴) + (𝐵 , 𝐵)) ∈ ℂ)
367, 11cphipcl 25148 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) ∈ ℂ)
371, 36syl3an1 1163 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) ∈ ℂ)
387, 11cphipcl 25148 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ 𝐵𝑋𝐴𝑋) → (𝐵 , 𝐴) ∈ ℂ)
391, 38syl3an1 1163 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋𝐴𝑋) → (𝐵 , 𝐴) ∈ ℂ)
40393com23 1126 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐵 , 𝐴) ∈ ℂ)
4137, 40addcld 11259 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) ∈ ℂ)
4235, 41, 41pnncand 11638 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) − (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴)))) = (((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
4326, 42eqtrd 2771 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) = (((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
4463ad2ant1 1133 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ Grp)
45 cphlmod 25131 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
4645adantr 480 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ LMod)
4746adantr 480 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → 𝑊 ∈ LMod)
48 simplr 768 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → i ∈ 𝐾)
49 simpr 484 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → 𝐵𝑋)
50 cphipval2.f . . . . . . . . . . . . 13 𝐹 = (Scalar‘𝑊)
51 cphipfval.s . . . . . . . . . . . . 13 · = ( ·𝑠𝑊)
52 cphipval2.k . . . . . . . . . . . . 13 𝐾 = (Base‘𝐹)
537, 50, 51, 52lmodvscl 20840 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ i ∈ 𝐾𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
5447, 48, 49, 53syl3anc 1373 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
55543adant2 1131 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
567, 8grpcl 18929 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴 + (i · 𝐵)) ∈ 𝑋)
5744, 15, 55, 56syl3anc 1373 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (i · 𝐵)) ∈ 𝑋)
587, 11, 12nmsq 25151 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + (i · 𝐵)) ∈ 𝑋) → ((𝑁‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))))
592, 57, 58syl2anc 584 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))))
6011, 7, 8, 2, 15, 55, 15, 55cph2di 25164 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))) = (((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))))
6159, 60eqtrd 2771 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (i · 𝐵)))↑2) = (((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))))
627, 19grpsubcl 19008 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴 (i · 𝐵)) ∈ 𝑋)
6344, 15, 55, 62syl3anc 1373 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 (i · 𝐵)) ∈ 𝑋)
647, 11, 12nmsq 25151 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ (𝐴 (i · 𝐵)) ∈ 𝑋) → ((𝑁‘(𝐴 (i · 𝐵)))↑2) = ((𝐴 (i · 𝐵)) , (𝐴 (i · 𝐵))))
652, 63, 64syl2anc 584 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 (i · 𝐵)))↑2) = ((𝐴 (i · 𝐵)) , (𝐴 (i · 𝐵))))
6611, 7, 19, 2, 15, 55, 15, 55cph2subdi 25167 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 (i · 𝐵)) , (𝐴 (i · 𝐵))) = (((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) − ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))))
6765, 66eqtrd 2771 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 (i · 𝐵)))↑2) = (((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) − ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))))
6861, 67oveq12d 7428 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)) = ((((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))) − (((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) − ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)))))
6968oveq2d 7426 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2))) = (i · ((((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))) − (((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) − ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))))))
707, 11cphipcl 25148 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ (i · 𝐵) ∈ 𝑋 ∧ (i · 𝐵) ∈ 𝑋) → ((i · 𝐵) , (i · 𝐵)) ∈ ℂ)
712, 55, 55, 70syl3anc 1373 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · 𝐵) , (i · 𝐵)) ∈ ℂ)
7230, 71addcld 11259 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) ∈ ℂ)
737, 11cphipcl 25148 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴 , (i · 𝐵)) ∈ ℂ)
742, 15, 55, 73syl3anc 1373 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , (i · 𝐵)) ∈ ℂ)
757, 11cphipcl 25148 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ (i · 𝐵) ∈ 𝑋𝐴𝑋) → ((i · 𝐵) , 𝐴) ∈ ℂ)
762, 55, 15, 75syl3anc 1373 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · 𝐵) , 𝐴) ∈ ℂ)
7774, 76addcld 11259 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)) ∈ ℂ)
7872, 77, 77pnncand 11638 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))) − (((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) − ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)))) = (((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))))
7978oveq2d 7426 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · ((((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))) − (((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) − ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))))) = (i · (((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)))))
807, 51, 11, 50, 52cphassir 25172 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , (i · 𝐵)) = (-i · (𝐴 , 𝐵)))
817, 51, 11, 50, 52cphassi 25171 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · 𝐵) , 𝐴) = (i · (𝐵 , 𝐴)))
8280, 81oveq12d 7428 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)) = ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))))
8382, 82oveq12d 7428 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))) = (((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))) + ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴)))))
8483oveq2d 7426 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)))) = (i · (((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))) + ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))))))
85 ax-icn 11193 . . . . . . . 8 i ∈ ℂ
8685a1i 11 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → i ∈ ℂ)
87 negicn 11488 . . . . . . . . . 10 -i ∈ ℂ
8887a1i 11 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → -i ∈ ℂ)
8988, 37mulcld 11260 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (-i · (𝐴 , 𝐵)) ∈ ℂ)
9086, 40mulcld 11260 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (𝐵 , 𝐴)) ∈ ℂ)
9189, 90addcld 11259 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))) ∈ ℂ)
9286, 91, 91adddid 11264 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))) + ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))))) = ((i · ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴)))) + (i · ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))))))
9386, 89, 90adddid 11264 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴)))) = ((i · (-i · (𝐴 , 𝐵))) + (i · (i · (𝐵 , 𝐴)))))
9486, 88, 37mulassd 11263 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · -i) · (𝐴 , 𝐵)) = (i · (-i · (𝐴 , 𝐵))))
9585, 85mulneg2i 11689 . . . . . . . . . . . . 13 (i · -i) = -(i · i)
96 ixi 11871 . . . . . . . . . . . . . 14 (i · i) = -1
9796negeqi 11480 . . . . . . . . . . . . 13 -(i · i) = --1
98 negneg1e1 12363 . . . . . . . . . . . . 13 --1 = 1
9995, 97, 983eqtri 2763 . . . . . . . . . . . 12 (i · -i) = 1
10099oveq1i 7420 . . . . . . . . . . 11 ((i · -i) · (𝐴 , 𝐵)) = (1 · (𝐴 , 𝐵))
10194, 100eqtr3di 2786 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (-i · (𝐴 , 𝐵))) = (1 · (𝐴 , 𝐵)))
10286, 86, 40mulassd 11263 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · i) · (𝐵 , 𝐴)) = (i · (i · (𝐵 , 𝐴))))
10396oveq1i 7420 . . . . . . . . . . 11 ((i · i) · (𝐵 , 𝐴)) = (-1 · (𝐵 , 𝐴))
104102, 103eqtr3di 2786 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (i · (𝐵 , 𝐴))) = (-1 · (𝐵 , 𝐴)))
105101, 104oveq12d 7428 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · (-i · (𝐴 , 𝐵))) + (i · (i · (𝐵 , 𝐴)))) = ((1 · (𝐴 , 𝐵)) + (-1 · (𝐵 , 𝐴))))
10693, 105eqtrd 2771 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴)))) = ((1 · (𝐴 , 𝐵)) + (-1 · (𝐵 , 𝐴))))
107106, 106oveq12d 7428 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴)))) + (i · ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))))) = (((1 · (𝐴 , 𝐵)) + (-1 · (𝐵 , 𝐴))) + ((1 · (𝐴 , 𝐵)) + (-1 · (𝐵 , 𝐴)))))
10837mullidd 11258 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 · (𝐴 , 𝐵)) = (𝐴 , 𝐵))
109108oveq1d 7425 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((1 · (𝐴 , 𝐵)) + (-1 · (𝐵 , 𝐴))) = ((𝐴 , 𝐵) + (-1 · (𝐵 , 𝐴))))
110 addneg1mul 11684 . . . . . . . . . 10 (((𝐴 , 𝐵) ∈ ℂ ∧ (𝐵 , 𝐴) ∈ ℂ) → ((𝐴 , 𝐵) + (-1 · (𝐵 , 𝐴))) = ((𝐴 , 𝐵) − (𝐵 , 𝐴)))
11137, 40, 110syl2anc 584 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 , 𝐵) + (-1 · (𝐵 , 𝐴))) = ((𝐴 , 𝐵) − (𝐵 , 𝐴)))
112109, 111eqtrd 2771 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((1 · (𝐴 , 𝐵)) + (-1 · (𝐵 , 𝐴))) = ((𝐴 , 𝐵) − (𝐵 , 𝐴)))
113112, 112oveq12d 7428 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((1 · (𝐴 , 𝐵)) + (-1 · (𝐵 , 𝐴))) + ((1 · (𝐴 , 𝐵)) + (-1 · (𝐵 , 𝐴)))) = (((𝐴 , 𝐵) − (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴))))
114107, 113eqtrd 2771 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴)))) + (i · ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))))) = (((𝐴 , 𝐵) − (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴))))
11584, 92, 1143eqtrd 2775 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)))) = (((𝐴 , 𝐵) − (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴))))
11669, 79, 1153eqtrd 2775 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2))) = (((𝐴 , 𝐵) − (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴))))
11743, 116oveq12d 7428 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)))) = ((((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) + (((𝐴 , 𝐵) − (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴)))))
118117oveq1d 7425 . 2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)))) / 4) = (((((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) + (((𝐴 , 𝐵) − (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴)))) / 4))
11937, 40subcld 11599 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 , 𝐵) − (𝐵 , 𝐴)) ∈ ℂ)
12041, 41, 119, 119add4d 11469 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) + (((𝐴 , 𝐵) − (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴)))) = ((((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴))) + (((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴)))))
12137, 40, 37ppncand 11639 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴))) = ((𝐴 , 𝐵) + (𝐴 , 𝐵)))
122121, 121oveq12d 7428 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴))) + (((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴)))) = (((𝐴 , 𝐵) + (𝐴 , 𝐵)) + ((𝐴 , 𝐵) + (𝐴 , 𝐵))))
123120, 122eqtrd 2771 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) + (((𝐴 , 𝐵) − (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴)))) = (((𝐴 , 𝐵) + (𝐴 , 𝐵)) + ((𝐴 , 𝐵) + (𝐴 , 𝐵))))
124123oveq1d 7425 . 2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) + (((𝐴 , 𝐵) − (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴)))) / 4) = ((((𝐴 , 𝐵) + (𝐴 , 𝐵)) + ((𝐴 , 𝐵) + (𝐴 , 𝐵))) / 4))
125372timesd 12489 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (2 · (𝐴 , 𝐵)) = ((𝐴 , 𝐵) + (𝐴 , 𝐵)))
126125eqcomd 2742 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 , 𝐵) + (𝐴 , 𝐵)) = (2 · (𝐴 , 𝐵)))
127126, 126oveq12d 7428 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝐴 , 𝐵) + (𝐴 , 𝐵)) + ((𝐴 , 𝐵) + (𝐴 , 𝐵))) = ((2 · (𝐴 , 𝐵)) + (2 · (𝐴 , 𝐵))))
128 2cnd 12323 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 2 ∈ ℂ)
129128, 128, 37adddird 11265 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((2 + 2) · (𝐴 , 𝐵)) = ((2 · (𝐴 , 𝐵)) + (2 · (𝐴 , 𝐵))))
130 2p2e4 12380 . . . . . . 7 (2 + 2) = 4
131130a1i 11 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (2 + 2) = 4)
132131oveq1d 7425 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((2 + 2) · (𝐴 , 𝐵)) = (4 · (𝐴 , 𝐵)))
133127, 129, 1323eqtr2d 2777 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝐴 , 𝐵) + (𝐴 , 𝐵)) + ((𝐴 , 𝐵) + (𝐴 , 𝐵))) = (4 · (𝐴 , 𝐵)))
134133oveq1d 7425 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝐴 , 𝐵) + (𝐴 , 𝐵)) + ((𝐴 , 𝐵) + (𝐴 , 𝐵))) / 4) = ((4 · (𝐴 , 𝐵)) / 4))
135 4cn 12330 . . . . 5 4 ∈ ℂ
136135a1i 11 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 4 ∈ ℂ)
137 4ne0 12353 . . . . 5 4 ≠ 0
138137a1i 11 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 4 ≠ 0)
13937, 136, 138divcan3d 12027 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((4 · (𝐴 , 𝐵)) / 4) = (𝐴 , 𝐵))
140134, 139eqtrd 2771 . 2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝐴 , 𝐵) + (𝐴 , 𝐵)) + ((𝐴 , 𝐵) + (𝐴 , 𝐵))) / 4) = (𝐴 , 𝐵))
141118, 124, 1403eqtrrd 2776 1 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) = (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)))) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135  ici 11136   + caddc 11137   · cmul 11139  cmin 11471  -cneg 11472   / cdiv 11899  2c2 12300  4c4 12302  cexp 14084  Basecbs 17233  +gcplusg 17276  Scalarcsca 17279   ·𝑠 cvsca 17280  ·𝑖cip 17281  Grpcgrp 18921  -gcsg 18923  LModclmod 20822  normcnm 24520  NrmGrpcngp 24521  ℂPreHilccph 25123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-0g 17460  df-topgen 17462  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-ghm 19201  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-rhm 20437  df-subrg 20535  df-drng 20696  df-staf 20804  df-srng 20805  df-lmod 20824  df-lmhm 20985  df-lvec 21066  df-sra 21136  df-rgmod 21137  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-cnfld 21321  df-phl 21591  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-xms 24264  df-ms 24265  df-nm 24526  df-ngp 24527  df-nlm 24530  df-clm 25019  df-cph 25125
This theorem is referenced by:  4cphipval2  25199  cphipval  25200
  Copyright terms: Public domain W3C validator