MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4cphipval2 Structured version   Visualization version   GIF version

Theorem 4cphipval2 25199
Description: Four times the inner product value cphipval2 25198. (Contributed by NM, 1-Feb-2008.) (Revised by AV, 18-Oct-2021.)
Hypotheses
Ref Expression
cphipfval.x 𝑋 = (Base‘𝑊)
cphipfval.p + = (+g𝑊)
cphipfval.s · = ( ·𝑠𝑊)
cphipfval.n 𝑁 = (norm‘𝑊)
cphipfval.i , = (·𝑖𝑊)
cphipval2.m = (-g𝑊)
cphipval2.f 𝐹 = (Scalar‘𝑊)
cphipval2.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
4cphipval2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (4 · (𝐴 , 𝐵)) = ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)))))

Proof of Theorem 4cphipval2
StepHypRef Expression
1 cphipfval.x . . . 4 𝑋 = (Base‘𝑊)
2 cphipfval.p . . . 4 + = (+g𝑊)
3 cphipfval.s . . . 4 · = ( ·𝑠𝑊)
4 cphipfval.n . . . 4 𝑁 = (norm‘𝑊)
5 cphipfval.i . . . 4 , = (·𝑖𝑊)
6 cphipval2.m . . . 4 = (-g𝑊)
7 cphipval2.f . . . 4 𝐹 = (Scalar‘𝑊)
8 cphipval2.k . . . 4 𝐾 = (Base‘𝐹)
91, 2, 3, 4, 5, 6, 7, 8cphipval2 25198 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) = (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)))) / 4))
109oveq2d 7426 . 2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (4 · (𝐴 , 𝐵)) = (4 · (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)))) / 4)))
117, 8cphsubrg 25137 . . . . . . . . . 10 (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld))
12 cnfldbas 21324 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
1312subrgss 20537 . . . . . . . . . 10 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ)
1411, 13syl 17 . . . . . . . . 9 (𝑊 ∈ ℂPreHil → 𝐾 ⊆ ℂ)
1514adantr 480 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝐾 ⊆ ℂ)
16153ad2ant1 1133 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝐾 ⊆ ℂ)
17 simp1l 1198 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ ℂPreHil)
18 cphngp 25130 . . . . . . . . . . 11 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
19 ngpgrp 24543 . . . . . . . . . . 11 (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp)
2018, 19syl 17 . . . . . . . . . 10 (𝑊 ∈ ℂPreHil → 𝑊 ∈ Grp)
2120adantr 480 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ Grp)
221, 2grpcl 18929 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
2321, 22syl3an1 1163 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
241, 5, 4, 7, 8cphnmcl 25153 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + 𝐵) ∈ 𝑋) → (𝑁‘(𝐴 + 𝐵)) ∈ 𝐾)
2517, 23, 24syl2anc 584 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 + 𝐵)) ∈ 𝐾)
2616, 25sseldd 3964 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 + 𝐵)) ∈ ℂ)
2726sqcld 14167 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) ∈ ℂ)
281, 6grpsubcl 19008 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 𝐵) ∈ 𝑋)
2921, 28syl3an1 1163 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 𝐵) ∈ 𝑋)
301, 5, 4, 7, 8cphnmcl 25153 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ (𝐴 𝐵) ∈ 𝑋) → (𝑁‘(𝐴 𝐵)) ∈ 𝐾)
3117, 29, 30syl2anc 584 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 𝐵)) ∈ 𝐾)
3216, 31sseldd 3964 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 𝐵)) ∈ ℂ)
3332sqcld 14167 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 𝐵))↑2) ∈ ℂ)
3427, 33subcld 11599 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) ∈ ℂ)
35 ax-icn 11193 . . . . . 6 i ∈ ℂ
3635a1i 11 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → i ∈ ℂ)
3717, 20syl 17 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ Grp)
38 simp2 1137 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
39 cphlmod 25131 . . . . . . . . . . . . 13 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
4039adantr 480 . . . . . . . . . . . 12 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ LMod)
41403ad2ant1 1133 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ LMod)
42 simp1r 1199 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → i ∈ 𝐾)
43 simp3 1138 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
441, 7, 3, 8lmodvscl 20840 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ i ∈ 𝐾𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
4541, 42, 43, 44syl3anc 1373 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
461, 2grpcl 18929 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴 + (i · 𝐵)) ∈ 𝑋)
4737, 38, 45, 46syl3anc 1373 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (i · 𝐵)) ∈ 𝑋)
481, 5, 4, 7, 8cphnmcl 25153 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + (i · 𝐵)) ∈ 𝑋) → (𝑁‘(𝐴 + (i · 𝐵))) ∈ 𝐾)
4917, 47, 48syl2anc 584 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 + (i · 𝐵))) ∈ 𝐾)
5016, 49sseldd 3964 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 + (i · 𝐵))) ∈ ℂ)
5150sqcld 14167 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (i · 𝐵)))↑2) ∈ ℂ)
521, 6grpsubcl 19008 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴 (i · 𝐵)) ∈ 𝑋)
5337, 38, 45, 52syl3anc 1373 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 (i · 𝐵)) ∈ 𝑋)
541, 5, 4, 7, 8cphnmcl 25153 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ (𝐴 (i · 𝐵)) ∈ 𝑋) → (𝑁‘(𝐴 (i · 𝐵))) ∈ 𝐾)
5517, 53, 54syl2anc 584 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 (i · 𝐵))) ∈ 𝐾)
5616, 55sseldd 3964 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 (i · 𝐵))) ∈ ℂ)
5756sqcld 14167 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 (i · 𝐵)))↑2) ∈ ℂ)
5851, 57subcld 11599 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)) ∈ ℂ)
5936, 58mulcld 11260 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2))) ∈ ℂ)
6034, 59addcld 11259 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)))) ∈ ℂ)
61 4cn 12330 . . . 4 4 ∈ ℂ
6261a1i 11 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 4 ∈ ℂ)
63 4ne0 12353 . . . 4 4 ≠ 0
6463a1i 11 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 4 ≠ 0)
6560, 62, 64divcan2d 12024 . 2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (4 · (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)))) / 4)) = ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)))))
6610, 65eqtrd 2771 1 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (4 · (𝐴 , 𝐵)) = ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wss 3931  cfv 6536  (class class class)co 7410  cc 11132  0cc0 11134  ici 11136   + caddc 11137   · cmul 11139  cmin 11471   / cdiv 11899  2c2 12300  4c4 12302  cexp 14084  Basecbs 17233  +gcplusg 17276  Scalarcsca 17279   ·𝑠 cvsca 17280  ·𝑖cip 17281  Grpcgrp 18921  -gcsg 18923  SubRingcsubrg 20534  LModclmod 20822  fldccnfld 21320  normcnm 24520  NrmGrpcngp 24521  ℂPreHilccph 25123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ico 13373  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-0g 17460  df-topgen 17462  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-ghm 19201  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-rhm 20437  df-subrg 20535  df-drng 20696  df-staf 20804  df-srng 20805  df-lmod 20824  df-lmhm 20985  df-lvec 21066  df-sra 21136  df-rgmod 21137  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-cnfld 21321  df-phl 21591  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-xms 24264  df-ms 24265  df-nm 24526  df-ngp 24527  df-nlm 24530  df-clm 25019  df-cph 25125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator