Proof of Theorem 4cphipval2
| Step | Hyp | Ref
| Expression |
| 1 | | cphipfval.x |
. . . 4
⊢ 𝑋 = (Base‘𝑊) |
| 2 | | cphipfval.p |
. . . 4
⊢ + =
(+g‘𝑊) |
| 3 | | cphipfval.s |
. . . 4
⊢ · = (
·𝑠 ‘𝑊) |
| 4 | | cphipfval.n |
. . . 4
⊢ 𝑁 = (norm‘𝑊) |
| 5 | | cphipfval.i |
. . . 4
⊢ , =
(·𝑖‘𝑊) |
| 6 | | cphipval2.m |
. . . 4
⊢ − =
(-g‘𝑊) |
| 7 | | cphipval2.f |
. . . 4
⊢ 𝐹 = (Scalar‘𝑊) |
| 8 | | cphipval2.k |
. . . 4
⊢ 𝐾 = (Base‘𝐹) |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | cphipval2 25198 |
. . 3
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 , 𝐵) = (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 − 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 − (i · 𝐵)))↑2)))) /
4)) |
| 10 | 9 | oveq2d 7426 |
. 2
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (4 · (𝐴 , 𝐵)) = (4 · (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 − 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 − (i · 𝐵)))↑2)))) /
4))) |
| 11 | 7, 8 | cphsubrg 25137 |
. . . . . . . . . 10
⊢ (𝑊 ∈ ℂPreHil →
𝐾 ∈
(SubRing‘ℂfld)) |
| 12 | | cnfldbas 21324 |
. . . . . . . . . . 11
⊢ ℂ =
(Base‘ℂfld) |
| 13 | 12 | subrgss 20537 |
. . . . . . . . . 10
⊢ (𝐾 ∈
(SubRing‘ℂfld) → 𝐾 ⊆ ℂ) |
| 14 | 11, 13 | syl 17 |
. . . . . . . . 9
⊢ (𝑊 ∈ ℂPreHil →
𝐾 ⊆
ℂ) |
| 15 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) → 𝐾 ⊆
ℂ) |
| 16 | 15 | 3ad2ant1 1133 |
. . . . . . 7
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐾 ⊆ ℂ) |
| 17 | | simp1l 1198 |
. . . . . . . 8
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑊 ∈ ℂPreHil) |
| 18 | | cphngp 25130 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ ℂPreHil →
𝑊 ∈
NrmGrp) |
| 19 | | ngpgrp 24543 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp) |
| 20 | 18, 19 | syl 17 |
. . . . . . . . . 10
⊢ (𝑊 ∈ ℂPreHil →
𝑊 ∈
Grp) |
| 21 | 20 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) → 𝑊 ∈ Grp) |
| 22 | 1, 2 | grpcl 18929 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 + 𝐵) ∈ 𝑋) |
| 23 | 21, 22 | syl3an1 1163 |
. . . . . . . 8
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 + 𝐵) ∈ 𝑋) |
| 24 | 1, 5, 4, 7, 8 | cphnmcl 25153 |
. . . . . . . 8
⊢ ((𝑊 ∈ ℂPreHil ∧
(𝐴 + 𝐵) ∈ 𝑋) → (𝑁‘(𝐴 + 𝐵)) ∈ 𝐾) |
| 25 | 17, 23, 24 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴 + 𝐵)) ∈ 𝐾) |
| 26 | 16, 25 | sseldd 3964 |
. . . . . 6
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴 + 𝐵)) ∈ ℂ) |
| 27 | 26 | sqcld 14167 |
. . . . 5
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) ∈ ℂ) |
| 28 | 1, 6 | grpsubcl 19008 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 − 𝐵) ∈ 𝑋) |
| 29 | 21, 28 | syl3an1 1163 |
. . . . . . . 8
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 − 𝐵) ∈ 𝑋) |
| 30 | 1, 5, 4, 7, 8 | cphnmcl 25153 |
. . . . . . . 8
⊢ ((𝑊 ∈ ℂPreHil ∧
(𝐴 − 𝐵) ∈ 𝑋) → (𝑁‘(𝐴 − 𝐵)) ∈ 𝐾) |
| 31 | 17, 29, 30 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴 − 𝐵)) ∈ 𝐾) |
| 32 | 16, 31 | sseldd 3964 |
. . . . . 6
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴 − 𝐵)) ∈ ℂ) |
| 33 | 32 | sqcld 14167 |
. . . . 5
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘(𝐴 − 𝐵))↑2) ∈ ℂ) |
| 34 | 27, 33 | subcld 11599 |
. . . 4
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 − 𝐵))↑2)) ∈ ℂ) |
| 35 | | ax-icn 11193 |
. . . . . 6
⊢ i ∈
ℂ |
| 36 | 35 | a1i 11 |
. . . . 5
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → i ∈ ℂ) |
| 37 | 17, 20 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑊 ∈ Grp) |
| 38 | | simp2 1137 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) |
| 39 | | cphlmod 25131 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ ℂPreHil →
𝑊 ∈
LMod) |
| 40 | 39 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) → 𝑊 ∈ LMod) |
| 41 | 40 | 3ad2ant1 1133 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑊 ∈ LMod) |
| 42 | | simp1r 1199 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → i ∈ 𝐾) |
| 43 | | simp3 1138 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) |
| 44 | 1, 7, 3, 8 | lmodvscl 20840 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ LMod ∧ i ∈
𝐾 ∧ 𝐵 ∈ 𝑋) → (i · 𝐵) ∈ 𝑋) |
| 45 | 41, 42, 43, 44 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (i · 𝐵) ∈ 𝑋) |
| 46 | 1, 2 | grpcl 18929 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴 + (i · 𝐵)) ∈ 𝑋) |
| 47 | 37, 38, 45, 46 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 + (i · 𝐵)) ∈ 𝑋) |
| 48 | 1, 5, 4, 7, 8 | cphnmcl 25153 |
. . . . . . . . 9
⊢ ((𝑊 ∈ ℂPreHil ∧
(𝐴 + (i · 𝐵)) ∈ 𝑋) → (𝑁‘(𝐴 + (i · 𝐵))) ∈ 𝐾) |
| 49 | 17, 47, 48 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴 + (i · 𝐵))) ∈ 𝐾) |
| 50 | 16, 49 | sseldd 3964 |
. . . . . . 7
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴 + (i · 𝐵))) ∈ ℂ) |
| 51 | 50 | sqcld 14167 |
. . . . . 6
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘(𝐴 + (i · 𝐵)))↑2) ∈ ℂ) |
| 52 | 1, 6 | grpsubcl 19008 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴 − (i · 𝐵)) ∈ 𝑋) |
| 53 | 37, 38, 45, 52 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 − (i · 𝐵)) ∈ 𝑋) |
| 54 | 1, 5, 4, 7, 8 | cphnmcl 25153 |
. . . . . . . . 9
⊢ ((𝑊 ∈ ℂPreHil ∧
(𝐴 − (i · 𝐵)) ∈ 𝑋) → (𝑁‘(𝐴 − (i · 𝐵))) ∈ 𝐾) |
| 55 | 17, 53, 54 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴 − (i · 𝐵))) ∈ 𝐾) |
| 56 | 16, 55 | sseldd 3964 |
. . . . . . 7
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴 − (i · 𝐵))) ∈
ℂ) |
| 57 | 56 | sqcld 14167 |
. . . . . 6
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘(𝐴 − (i · 𝐵)))↑2) ∈
ℂ) |
| 58 | 51, 57 | subcld 11599 |
. . . . 5
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 − (i · 𝐵)))↑2)) ∈
ℂ) |
| 59 | 36, 58 | mulcld 11260 |
. . . 4
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 − (i · 𝐵)))↑2))) ∈
ℂ) |
| 60 | 34, 59 | addcld 11259 |
. . 3
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 − 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 − (i · 𝐵)))↑2)))) ∈
ℂ) |
| 61 | | 4cn 12330 |
. . . 4
⊢ 4 ∈
ℂ |
| 62 | 61 | a1i 11 |
. . 3
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 4 ∈ ℂ) |
| 63 | | 4ne0 12353 |
. . . 4
⊢ 4 ≠
0 |
| 64 | 63 | a1i 11 |
. . 3
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 4 ≠ 0) |
| 65 | 60, 62, 64 | divcan2d 12024 |
. 2
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (4 · (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 − 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 − (i · 𝐵)))↑2)))) / 4)) = ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 − 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 − (i · 𝐵)))↑2))))) |
| 66 | 10, 65 | eqtrd 2771 |
1
⊢ (((𝑊 ∈ ℂPreHil ∧ i
∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (4 · (𝐴 , 𝐵)) = ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 − 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 − (i · 𝐵)))↑2))))) |