MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem6 Structured version   Visualization version   GIF version

Theorem minveclem6 23603
Description: Lemma for minvec 23605. Any minimal point is less than 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
minveclem6 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦))))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐴,𝑦   𝑥,𝐽,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦

Proof of Theorem minveclem6
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 minvec.d . . . . . . . 8 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
21oveqi 6919 . . . . . . 7 (𝐴𝐷𝑥) = (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝑥)
3 minvec.a . . . . . . . . 9 (𝜑𝐴𝑋)
43adantr 474 . . . . . . . 8 ((𝜑𝑥𝑌) → 𝐴𝑋)
5 minvec.y . . . . . . . . . 10 (𝜑𝑌 ∈ (LSubSp‘𝑈))
6 minvec.x . . . . . . . . . . 11 𝑋 = (Base‘𝑈)
7 eqid 2826 . . . . . . . . . . 11 (LSubSp‘𝑈) = (LSubSp‘𝑈)
86, 7lssss 19294 . . . . . . . . . 10 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
95, 8syl 17 . . . . . . . . 9 (𝜑𝑌𝑋)
109sselda 3828 . . . . . . . 8 ((𝜑𝑥𝑌) → 𝑥𝑋)
114, 10ovresd 7062 . . . . . . 7 ((𝜑𝑥𝑌) → (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝑥) = (𝐴(dist‘𝑈)𝑥))
122, 11syl5eq 2874 . . . . . 6 ((𝜑𝑥𝑌) → (𝐴𝐷𝑥) = (𝐴(dist‘𝑈)𝑥))
13 minvec.u . . . . . . . . 9 (𝜑𝑈 ∈ ℂPreHil)
14 cphngp 23343 . . . . . . . . 9 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
1513, 14syl 17 . . . . . . . 8 (𝜑𝑈 ∈ NrmGrp)
1615adantr 474 . . . . . . 7 ((𝜑𝑥𝑌) → 𝑈 ∈ NrmGrp)
17 minvec.n . . . . . . . 8 𝑁 = (norm‘𝑈)
18 minvec.m . . . . . . . 8 = (-g𝑈)
19 eqid 2826 . . . . . . . 8 (dist‘𝑈) = (dist‘𝑈)
2017, 6, 18, 19ngpds 22779 . . . . . . 7 ((𝑈 ∈ NrmGrp ∧ 𝐴𝑋𝑥𝑋) → (𝐴(dist‘𝑈)𝑥) = (𝑁‘(𝐴 𝑥)))
2116, 4, 10, 20syl3anc 1496 . . . . . 6 ((𝜑𝑥𝑌) → (𝐴(dist‘𝑈)𝑥) = (𝑁‘(𝐴 𝑥)))
2212, 21eqtrd 2862 . . . . 5 ((𝜑𝑥𝑌) → (𝐴𝐷𝑥) = (𝑁‘(𝐴 𝑥)))
2322oveq1d 6921 . . . 4 ((𝜑𝑥𝑌) → ((𝐴𝐷𝑥)↑2) = ((𝑁‘(𝐴 𝑥))↑2))
24 minvec.s . . . . . . . 8 𝑆 = inf(𝑅, ℝ, < )
25 minvec.w . . . . . . . . . . . 12 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
26 minvec.j . . . . . . . . . . . 12 𝐽 = (TopOpen‘𝑈)
27 minvec.r . . . . . . . . . . . 12 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
286, 18, 17, 13, 5, 25, 3, 26, 27minveclem1 23593 . . . . . . . . . . 11 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
2928adantr 474 . . . . . . . . . 10 ((𝜑𝑥𝑌) → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
3029simp1d 1178 . . . . . . . . 9 ((𝜑𝑥𝑌) → 𝑅 ⊆ ℝ)
3129simp2d 1179 . . . . . . . . 9 ((𝜑𝑥𝑌) → 𝑅 ≠ ∅)
32 0red 10361 . . . . . . . . . 10 ((𝜑𝑥𝑌) → 0 ∈ ℝ)
3329simp3d 1180 . . . . . . . . . 10 ((𝜑𝑥𝑌) → ∀𝑤𝑅 0 ≤ 𝑤)
34 breq1 4877 . . . . . . . . . . . 12 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
3534ralbidv 3196 . . . . . . . . . . 11 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
3635rspcev 3527 . . . . . . . . . 10 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
3732, 33, 36syl2anc 581 . . . . . . . . 9 ((𝜑𝑥𝑌) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
38 infrecl 11336 . . . . . . . . 9 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
3930, 31, 37, 38syl3anc 1496 . . . . . . . 8 ((𝜑𝑥𝑌) → inf(𝑅, ℝ, < ) ∈ ℝ)
4024, 39syl5eqel 2911 . . . . . . 7 ((𝜑𝑥𝑌) → 𝑆 ∈ ℝ)
4140resqcld 13332 . . . . . 6 ((𝜑𝑥𝑌) → (𝑆↑2) ∈ ℝ)
4241recnd 10386 . . . . 5 ((𝜑𝑥𝑌) → (𝑆↑2) ∈ ℂ)
4342addid1d 10556 . . . 4 ((𝜑𝑥𝑌) → ((𝑆↑2) + 0) = (𝑆↑2))
4423, 43breq12d 4887 . . 3 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ((𝑁‘(𝐴 𝑥))↑2) ≤ (𝑆↑2)))
45 cphlmod 23344 . . . . . . . 8 (𝑈 ∈ ℂPreHil → 𝑈 ∈ LMod)
4613, 45syl 17 . . . . . . 7 (𝜑𝑈 ∈ LMod)
4746adantr 474 . . . . . 6 ((𝜑𝑥𝑌) → 𝑈 ∈ LMod)
486, 18lmodvsubcl 19265 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝐴𝑋𝑥𝑋) → (𝐴 𝑥) ∈ 𝑋)
4947, 4, 10, 48syl3anc 1496 . . . . 5 ((𝜑𝑥𝑌) → (𝐴 𝑥) ∈ 𝑋)
506, 17nmcl 22791 . . . . 5 ((𝑈 ∈ NrmGrp ∧ (𝐴 𝑥) ∈ 𝑋) → (𝑁‘(𝐴 𝑥)) ∈ ℝ)
5116, 49, 50syl2anc 581 . . . 4 ((𝜑𝑥𝑌) → (𝑁‘(𝐴 𝑥)) ∈ ℝ)
526, 17nmge0 22792 . . . . 5 ((𝑈 ∈ NrmGrp ∧ (𝐴 𝑥) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴 𝑥)))
5316, 49, 52syl2anc 581 . . . 4 ((𝜑𝑥𝑌) → 0 ≤ (𝑁‘(𝐴 𝑥)))
54 infregelb 11338 . . . . . . 7 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
5530, 31, 37, 32, 54syl31anc 1498 . . . . . 6 ((𝜑𝑥𝑌) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
5633, 55mpbird 249 . . . . 5 ((𝜑𝑥𝑌) → 0 ≤ inf(𝑅, ℝ, < ))
5756, 24syl6breqr 4916 . . . 4 ((𝜑𝑥𝑌) → 0 ≤ 𝑆)
5851, 40, 53, 57le2sqd 13341 . . 3 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴 𝑥)) ≤ 𝑆 ↔ ((𝑁‘(𝐴 𝑥))↑2) ≤ (𝑆↑2)))
5924breq2i 4882 . . . 4 ((𝑁‘(𝐴 𝑥)) ≤ 𝑆 ↔ (𝑁‘(𝐴 𝑥)) ≤ inf(𝑅, ℝ, < ))
60 infregelb 11338 . . . . 5 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ (𝑁‘(𝐴 𝑥)) ∈ ℝ) → ((𝑁‘(𝐴 𝑥)) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤))
6130, 31, 37, 51, 60syl31anc 1498 . . . 4 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴 𝑥)) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤))
6259, 61syl5bb 275 . . 3 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴 𝑥)) ≤ 𝑆 ↔ ∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤))
6344, 58, 623bitr2d 299 . 2 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤))
6427raleqi 3355 . . 3 (∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))(𝑁‘(𝐴 𝑥)) ≤ 𝑤)
65 fvex 6447 . . . . 5 (𝑁‘(𝐴 𝑦)) ∈ V
6665rgenw 3134 . . . 4 𝑦𝑌 (𝑁‘(𝐴 𝑦)) ∈ V
67 eqid 2826 . . . . 5 (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
68 breq2 4878 . . . . 5 (𝑤 = (𝑁‘(𝐴 𝑦)) → ((𝑁‘(𝐴 𝑥)) ≤ 𝑤 ↔ (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦))))
6967, 68ralrnmpt 6618 . . . 4 (∀𝑦𝑌 (𝑁‘(𝐴 𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))(𝑁‘(𝐴 𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦))))
7066, 69ax-mp 5 . . 3 (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))(𝑁‘(𝐴 𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
7164, 70bitri 267 . 2 (∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
7263, 71syl6bb 279 1 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  wne 3000  wral 3118  wrex 3119  Vcvv 3415  wss 3799  c0 4145   class class class wbr 4874  cmpt 4953   × cxp 5341  ran crn 5344  cres 5345  cfv 6124  (class class class)co 6906  infcinf 8617  cr 10252  0cc0 10253   + caddc 10256   < clt 10392  cle 10393  2c2 11407  cexp 13155  Basecbs 16223  s cress 16224  distcds 16315  TopOpenctopn 16436  -gcsg 17779  LModclmod 19220  LSubSpclss 19289  normcnm 22752  NrmGrpcngp 22753  ℂPreHilccph 23336  CMetSpccms 23501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330  ax-pre-sup 10331
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-er 8010  df-map 8125  df-en 8224  df-dom 8225  df-sdom 8226  df-sup 8618  df-inf 8619  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-div 11011  df-nn 11352  df-2 11415  df-n0 11620  df-z 11706  df-uz 11970  df-q 12073  df-rp 12114  df-xneg 12233  df-xadd 12234  df-xmul 12235  df-seq 13097  df-exp 13156  df-0g 16456  df-topgen 16458  df-mgm 17596  df-sgrp 17638  df-mnd 17649  df-grp 17780  df-minusg 17781  df-sbg 17782  df-lmod 19222  df-lss 19290  df-psmet 20099  df-xmet 20100  df-met 20101  df-bl 20102  df-mopn 20103  df-top 21070  df-topon 21087  df-topsp 21109  df-bases 21122  df-xms 22496  df-ms 22497  df-nm 22758  df-ngp 22759  df-nlm 22762  df-cph 23338
This theorem is referenced by:  minveclem7  23604
  Copyright terms: Public domain W3C validator