| Step | Hyp | Ref
| Expression |
| 1 | | minvec.d |
. . . . . . . 8
⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) |
| 2 | 1 | oveqi 7423 |
. . . . . . 7
⊢ (𝐴𝐷𝑥) = (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝑥) |
| 3 | | minvec.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 4 | 3 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝐴 ∈ 𝑋) |
| 5 | | minvec.y |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
| 6 | | minvec.x |
. . . . . . . . . . 11
⊢ 𝑋 = (Base‘𝑈) |
| 7 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
| 8 | 6, 7 | lssss 20898 |
. . . . . . . . . 10
⊢ (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ⊆ 𝑋) |
| 9 | 5, 8 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 10 | 9 | sselda 3963 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ 𝑋) |
| 11 | 4, 10 | ovresd 7579 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝑥) = (𝐴(dist‘𝑈)𝑥)) |
| 12 | 2, 11 | eqtrid 2783 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐴𝐷𝑥) = (𝐴(dist‘𝑈)𝑥)) |
| 13 | | minvec.u |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
| 14 | | cphngp 25130 |
. . . . . . . . 9
⊢ (𝑈 ∈ ℂPreHil →
𝑈 ∈
NrmGrp) |
| 15 | 13, 14 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ NrmGrp) |
| 16 | 15 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑈 ∈ NrmGrp) |
| 17 | | minvec.n |
. . . . . . . 8
⊢ 𝑁 = (norm‘𝑈) |
| 18 | | minvec.m |
. . . . . . . 8
⊢ − =
(-g‘𝑈) |
| 19 | | eqid 2736 |
. . . . . . . 8
⊢
(dist‘𝑈) =
(dist‘𝑈) |
| 20 | 17, 6, 18, 19 | ngpds 24548 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝐴(dist‘𝑈)𝑥) = (𝑁‘(𝐴 − 𝑥))) |
| 21 | 16, 4, 10, 20 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐴(dist‘𝑈)𝑥) = (𝑁‘(𝐴 − 𝑥))) |
| 22 | 12, 21 | eqtrd 2771 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐴𝐷𝑥) = (𝑁‘(𝐴 − 𝑥))) |
| 23 | 22 | oveq1d 7425 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝐴𝐷𝑥)↑2) = ((𝑁‘(𝐴 − 𝑥))↑2)) |
| 24 | | minvec.s |
. . . . . . . 8
⊢ 𝑆 = inf(𝑅, ℝ, < ) |
| 25 | | minvec.w |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
| 26 | | minvec.j |
. . . . . . . . . . . 12
⊢ 𝐽 = (TopOpen‘𝑈) |
| 27 | | minvec.r |
. . . . . . . . . . . 12
⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
| 28 | 6, 18, 17, 13, 5, 25, 3, 26, 27 | minveclem1 25381 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
| 29 | 28 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
| 30 | 29 | simp1d 1142 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑅 ⊆ ℝ) |
| 31 | 29 | simp2d 1143 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑅 ≠ ∅) |
| 32 | | 0red 11243 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 0 ∈ ℝ) |
| 33 | 29 | simp3d 1144 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) |
| 34 | | breq1 5127 |
. . . . . . . . . . . 12
⊢ (𝑥 = 0 → (𝑥 ≤ 𝑤 ↔ 0 ≤ 𝑤)) |
| 35 | 34 | ralbidv 3164 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → (∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ↔ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
| 36 | 35 | rspcev 3606 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) |
| 37 | 32, 33, 36 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) |
| 38 | | infrecl 12229 |
. . . . . . . . 9
⊢ ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) → inf(𝑅, ℝ, < ) ∈
ℝ) |
| 39 | 30, 31, 37, 38 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → inf(𝑅, ℝ, < ) ∈
ℝ) |
| 40 | 24, 39 | eqeltrid 2839 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑆 ∈ ℝ) |
| 41 | 40 | resqcld 14148 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝑆↑2) ∈ ℝ) |
| 42 | 41 | recnd 11268 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝑆↑2) ∈ ℂ) |
| 43 | 42 | addridd 11440 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝑆↑2) + 0) = (𝑆↑2)) |
| 44 | 23, 43 | breq12d 5137 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ((𝑁‘(𝐴 − 𝑥))↑2) ≤ (𝑆↑2))) |
| 45 | | cphlmod 25131 |
. . . . . . . 8
⊢ (𝑈 ∈ ℂPreHil →
𝑈 ∈
LMod) |
| 46 | 13, 45 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ LMod) |
| 47 | 46 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑈 ∈ LMod) |
| 48 | 6, 18 | lmodvsubcl 20869 |
. . . . . 6
⊢ ((𝑈 ∈ LMod ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝐴 − 𝑥) ∈ 𝑋) |
| 49 | 47, 4, 10, 48 | syl3anc 1373 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐴 − 𝑥) ∈ 𝑋) |
| 50 | 6, 17 | nmcl 24560 |
. . . . 5
⊢ ((𝑈 ∈ NrmGrp ∧ (𝐴 − 𝑥) ∈ 𝑋) → (𝑁‘(𝐴 − 𝑥)) ∈ ℝ) |
| 51 | 16, 49, 50 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝑁‘(𝐴 − 𝑥)) ∈ ℝ) |
| 52 | 6, 17 | nmge0 24561 |
. . . . 5
⊢ ((𝑈 ∈ NrmGrp ∧ (𝐴 − 𝑥) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴 − 𝑥))) |
| 53 | 16, 49, 52 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 0 ≤ (𝑁‘(𝐴 − 𝑥))) |
| 54 | | infregelb 12231 |
. . . . . . 7
⊢ (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) ∧ 0 ∈ ℝ) → (0 ≤
inf(𝑅, ℝ, < )
↔ ∀𝑤 ∈
𝑅 0 ≤ 𝑤)) |
| 55 | 30, 31, 37, 32, 54 | syl31anc 1375 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
| 56 | 33, 55 | mpbird 257 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 0 ≤ inf(𝑅, ℝ, < )) |
| 57 | 56, 24 | breqtrrdi 5166 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 0 ≤ 𝑆) |
| 58 | 51, 40, 53, 57 | le2sqd 14280 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝑁‘(𝐴 − 𝑥)) ≤ 𝑆 ↔ ((𝑁‘(𝐴 − 𝑥))↑2) ≤ (𝑆↑2))) |
| 59 | 24 | breq2i 5132 |
. . . 4
⊢ ((𝑁‘(𝐴 − 𝑥)) ≤ 𝑆 ↔ (𝑁‘(𝐴 − 𝑥)) ≤ inf(𝑅, ℝ, < )) |
| 60 | | infregelb 12231 |
. . . . 5
⊢ (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) ∧ (𝑁‘(𝐴 − 𝑥)) ∈ ℝ) → ((𝑁‘(𝐴 − 𝑥)) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤 ∈ 𝑅 (𝑁‘(𝐴 − 𝑥)) ≤ 𝑤)) |
| 61 | 30, 31, 37, 51, 60 | syl31anc 1375 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝑁‘(𝐴 − 𝑥)) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤 ∈ 𝑅 (𝑁‘(𝐴 − 𝑥)) ≤ 𝑤)) |
| 62 | 59, 61 | bitrid 283 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝑁‘(𝐴 − 𝑥)) ≤ 𝑆 ↔ ∀𝑤 ∈ 𝑅 (𝑁‘(𝐴 − 𝑥)) ≤ 𝑤)) |
| 63 | 44, 58, 62 | 3bitr2d 307 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑤 ∈ 𝑅 (𝑁‘(𝐴 − 𝑥)) ≤ 𝑤)) |
| 64 | 27 | raleqi 3307 |
. . 3
⊢
(∀𝑤 ∈
𝑅 (𝑁‘(𝐴 − 𝑥)) ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))(𝑁‘(𝐴 − 𝑥)) ≤ 𝑤) |
| 65 | | fvex 6894 |
. . . . 5
⊢ (𝑁‘(𝐴 − 𝑦)) ∈ V |
| 66 | 65 | rgenw 3056 |
. . . 4
⊢
∀𝑦 ∈
𝑌 (𝑁‘(𝐴 − 𝑦)) ∈ V |
| 67 | | eqid 2736 |
. . . . 5
⊢ (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
| 68 | | breq2 5128 |
. . . . 5
⊢ (𝑤 = (𝑁‘(𝐴 − 𝑦)) → ((𝑁‘(𝐴 − 𝑥)) ≤ 𝑤 ↔ (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦)))) |
| 69 | 67, 68 | ralrnmptw 7089 |
. . . 4
⊢
(∀𝑦 ∈
𝑌 (𝑁‘(𝐴 − 𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))(𝑁‘(𝐴 − 𝑥)) ≤ 𝑤 ↔ ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦)))) |
| 70 | 66, 69 | ax-mp 5 |
. . 3
⊢
(∀𝑤 ∈
ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))(𝑁‘(𝐴 − 𝑥)) ≤ 𝑤 ↔ ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦))) |
| 71 | 64, 70 | bitri 275 |
. 2
⊢
(∀𝑤 ∈
𝑅 (𝑁‘(𝐴 − 𝑥)) ≤ 𝑤 ↔ ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦))) |
| 72 | 63, 71 | bitrdi 287 |
1
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦)))) |