MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem6 Structured version   Visualization version   GIF version

Theorem minveclem6 23609
Description: Lemma for minvec 23611. Any minimal point is less than 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
minveclem6 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦))))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐴,𝑦   𝑥,𝐽,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦

Proof of Theorem minveclem6
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 minvec.d . . . . . . . 8 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
21oveqi 6923 . . . . . . 7 (𝐴𝐷𝑥) = (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝑥)
3 minvec.a . . . . . . . . 9 (𝜑𝐴𝑋)
43adantr 474 . . . . . . . 8 ((𝜑𝑥𝑌) → 𝐴𝑋)
5 minvec.y . . . . . . . . . 10 (𝜑𝑌 ∈ (LSubSp‘𝑈))
6 minvec.x . . . . . . . . . . 11 𝑋 = (Base‘𝑈)
7 eqid 2825 . . . . . . . . . . 11 (LSubSp‘𝑈) = (LSubSp‘𝑈)
86, 7lssss 19300 . . . . . . . . . 10 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
95, 8syl 17 . . . . . . . . 9 (𝜑𝑌𝑋)
109sselda 3827 . . . . . . . 8 ((𝜑𝑥𝑌) → 𝑥𝑋)
114, 10ovresd 7066 . . . . . . 7 ((𝜑𝑥𝑌) → (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝑥) = (𝐴(dist‘𝑈)𝑥))
122, 11syl5eq 2873 . . . . . 6 ((𝜑𝑥𝑌) → (𝐴𝐷𝑥) = (𝐴(dist‘𝑈)𝑥))
13 minvec.u . . . . . . . . 9 (𝜑𝑈 ∈ ℂPreHil)
14 cphngp 23349 . . . . . . . . 9 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
1513, 14syl 17 . . . . . . . 8 (𝜑𝑈 ∈ NrmGrp)
1615adantr 474 . . . . . . 7 ((𝜑𝑥𝑌) → 𝑈 ∈ NrmGrp)
17 minvec.n . . . . . . . 8 𝑁 = (norm‘𝑈)
18 minvec.m . . . . . . . 8 = (-g𝑈)
19 eqid 2825 . . . . . . . 8 (dist‘𝑈) = (dist‘𝑈)
2017, 6, 18, 19ngpds 22785 . . . . . . 7 ((𝑈 ∈ NrmGrp ∧ 𝐴𝑋𝑥𝑋) → (𝐴(dist‘𝑈)𝑥) = (𝑁‘(𝐴 𝑥)))
2116, 4, 10, 20syl3anc 1494 . . . . . 6 ((𝜑𝑥𝑌) → (𝐴(dist‘𝑈)𝑥) = (𝑁‘(𝐴 𝑥)))
2212, 21eqtrd 2861 . . . . 5 ((𝜑𝑥𝑌) → (𝐴𝐷𝑥) = (𝑁‘(𝐴 𝑥)))
2322oveq1d 6925 . . . 4 ((𝜑𝑥𝑌) → ((𝐴𝐷𝑥)↑2) = ((𝑁‘(𝐴 𝑥))↑2))
24 minvec.s . . . . . . . 8 𝑆 = inf(𝑅, ℝ, < )
25 minvec.w . . . . . . . . . . . 12 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
26 minvec.j . . . . . . . . . . . 12 𝐽 = (TopOpen‘𝑈)
27 minvec.r . . . . . . . . . . . 12 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
286, 18, 17, 13, 5, 25, 3, 26, 27minveclem1 23599 . . . . . . . . . . 11 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
2928adantr 474 . . . . . . . . . 10 ((𝜑𝑥𝑌) → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
3029simp1d 1176 . . . . . . . . 9 ((𝜑𝑥𝑌) → 𝑅 ⊆ ℝ)
3129simp2d 1177 . . . . . . . . 9 ((𝜑𝑥𝑌) → 𝑅 ≠ ∅)
32 0red 10367 . . . . . . . . . 10 ((𝜑𝑥𝑌) → 0 ∈ ℝ)
3329simp3d 1178 . . . . . . . . . 10 ((𝜑𝑥𝑌) → ∀𝑤𝑅 0 ≤ 𝑤)
34 breq1 4878 . . . . . . . . . . . 12 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
3534ralbidv 3195 . . . . . . . . . . 11 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
3635rspcev 3526 . . . . . . . . . 10 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
3732, 33, 36syl2anc 579 . . . . . . . . 9 ((𝜑𝑥𝑌) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
38 infrecl 11342 . . . . . . . . 9 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
3930, 31, 37, 38syl3anc 1494 . . . . . . . 8 ((𝜑𝑥𝑌) → inf(𝑅, ℝ, < ) ∈ ℝ)
4024, 39syl5eqel 2910 . . . . . . 7 ((𝜑𝑥𝑌) → 𝑆 ∈ ℝ)
4140resqcld 13338 . . . . . 6 ((𝜑𝑥𝑌) → (𝑆↑2) ∈ ℝ)
4241recnd 10392 . . . . 5 ((𝜑𝑥𝑌) → (𝑆↑2) ∈ ℂ)
4342addid1d 10562 . . . 4 ((𝜑𝑥𝑌) → ((𝑆↑2) + 0) = (𝑆↑2))
4423, 43breq12d 4888 . . 3 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ((𝑁‘(𝐴 𝑥))↑2) ≤ (𝑆↑2)))
45 cphlmod 23350 . . . . . . . 8 (𝑈 ∈ ℂPreHil → 𝑈 ∈ LMod)
4613, 45syl 17 . . . . . . 7 (𝜑𝑈 ∈ LMod)
4746adantr 474 . . . . . 6 ((𝜑𝑥𝑌) → 𝑈 ∈ LMod)
486, 18lmodvsubcl 19271 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝐴𝑋𝑥𝑋) → (𝐴 𝑥) ∈ 𝑋)
4947, 4, 10, 48syl3anc 1494 . . . . 5 ((𝜑𝑥𝑌) → (𝐴 𝑥) ∈ 𝑋)
506, 17nmcl 22797 . . . . 5 ((𝑈 ∈ NrmGrp ∧ (𝐴 𝑥) ∈ 𝑋) → (𝑁‘(𝐴 𝑥)) ∈ ℝ)
5116, 49, 50syl2anc 579 . . . 4 ((𝜑𝑥𝑌) → (𝑁‘(𝐴 𝑥)) ∈ ℝ)
526, 17nmge0 22798 . . . . 5 ((𝑈 ∈ NrmGrp ∧ (𝐴 𝑥) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴 𝑥)))
5316, 49, 52syl2anc 579 . . . 4 ((𝜑𝑥𝑌) → 0 ≤ (𝑁‘(𝐴 𝑥)))
54 infregelb 11344 . . . . . . 7 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
5530, 31, 37, 32, 54syl31anc 1496 . . . . . 6 ((𝜑𝑥𝑌) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
5633, 55mpbird 249 . . . . 5 ((𝜑𝑥𝑌) → 0 ≤ inf(𝑅, ℝ, < ))
5756, 24syl6breqr 4917 . . . 4 ((𝜑𝑥𝑌) → 0 ≤ 𝑆)
5851, 40, 53, 57le2sqd 13347 . . 3 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴 𝑥)) ≤ 𝑆 ↔ ((𝑁‘(𝐴 𝑥))↑2) ≤ (𝑆↑2)))
5924breq2i 4883 . . . 4 ((𝑁‘(𝐴 𝑥)) ≤ 𝑆 ↔ (𝑁‘(𝐴 𝑥)) ≤ inf(𝑅, ℝ, < ))
60 infregelb 11344 . . . . 5 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ (𝑁‘(𝐴 𝑥)) ∈ ℝ) → ((𝑁‘(𝐴 𝑥)) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤))
6130, 31, 37, 51, 60syl31anc 1496 . . . 4 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴 𝑥)) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤))
6259, 61syl5bb 275 . . 3 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴 𝑥)) ≤ 𝑆 ↔ ∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤))
6344, 58, 623bitr2d 299 . 2 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤))
6427raleqi 3354 . . 3 (∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))(𝑁‘(𝐴 𝑥)) ≤ 𝑤)
65 fvex 6450 . . . . 5 (𝑁‘(𝐴 𝑦)) ∈ V
6665rgenw 3133 . . . 4 𝑦𝑌 (𝑁‘(𝐴 𝑦)) ∈ V
67 eqid 2825 . . . . 5 (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
68 breq2 4879 . . . . 5 (𝑤 = (𝑁‘(𝐴 𝑦)) → ((𝑁‘(𝐴 𝑥)) ≤ 𝑤 ↔ (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦))))
6967, 68ralrnmpt 6622 . . . 4 (∀𝑦𝑌 (𝑁‘(𝐴 𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))(𝑁‘(𝐴 𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦))))
7066, 69ax-mp 5 . . 3 (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))(𝑁‘(𝐴 𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
7164, 70bitri 267 . 2 (∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
7263, 71syl6bb 279 1 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  wne 2999  wral 3117  wrex 3118  Vcvv 3414  wss 3798  c0 4146   class class class wbr 4875  cmpt 4954   × cxp 5344  ran crn 5347  cres 5348  cfv 6127  (class class class)co 6910  infcinf 8622  cr 10258  0cc0 10259   + caddc 10262   < clt 10398  cle 10399  2c2 11413  cexp 13161  Basecbs 16229  s cress 16230  distcds 16321  TopOpenctopn 16442  -gcsg 17785  LModclmod 19226  LSubSpclss 19295  normcnm 22758  NrmGrpcngp 22759  ℂPreHilccph 23342  CMetSpccms 23507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-sup 8623  df-inf 8624  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-n0 11626  df-z 11712  df-uz 11976  df-q 12079  df-rp 12120  df-xneg 12239  df-xadd 12240  df-xmul 12241  df-seq 13103  df-exp 13162  df-0g 16462  df-topgen 16464  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-grp 17786  df-minusg 17787  df-sbg 17788  df-lmod 19228  df-lss 19296  df-psmet 20105  df-xmet 20106  df-met 20107  df-bl 20108  df-mopn 20109  df-top 21076  df-topon 21093  df-topsp 21115  df-bases 21128  df-xms 22502  df-ms 22503  df-nm 22764  df-ngp 22765  df-nlm 22768  df-cph 23344
This theorem is referenced by:  minveclem7  23610
  Copyright terms: Public domain W3C validator