Step | Hyp | Ref
| Expression |
1 | | minvec.d |
. . . . . . . 8
⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) |
2 | 1 | oveqi 7288 |
. . . . . . 7
⊢ (𝐴𝐷𝑥) = (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝑥) |
3 | | minvec.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
4 | 3 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝐴 ∈ 𝑋) |
5 | | minvec.y |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
6 | | minvec.x |
. . . . . . . . . . 11
⊢ 𝑋 = (Base‘𝑈) |
7 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
8 | 6, 7 | lssss 20198 |
. . . . . . . . . 10
⊢ (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ⊆ 𝑋) |
9 | 5, 8 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
10 | 9 | sselda 3921 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ 𝑋) |
11 | 4, 10 | ovresd 7439 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝑥) = (𝐴(dist‘𝑈)𝑥)) |
12 | 2, 11 | eqtrid 2790 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐴𝐷𝑥) = (𝐴(dist‘𝑈)𝑥)) |
13 | | minvec.u |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
14 | | cphngp 24337 |
. . . . . . . . 9
⊢ (𝑈 ∈ ℂPreHil →
𝑈 ∈
NrmGrp) |
15 | 13, 14 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ NrmGrp) |
16 | 15 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑈 ∈ NrmGrp) |
17 | | minvec.n |
. . . . . . . 8
⊢ 𝑁 = (norm‘𝑈) |
18 | | minvec.m |
. . . . . . . 8
⊢ − =
(-g‘𝑈) |
19 | | eqid 2738 |
. . . . . . . 8
⊢
(dist‘𝑈) =
(dist‘𝑈) |
20 | 17, 6, 18, 19 | ngpds 23760 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝐴(dist‘𝑈)𝑥) = (𝑁‘(𝐴 − 𝑥))) |
21 | 16, 4, 10, 20 | syl3anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐴(dist‘𝑈)𝑥) = (𝑁‘(𝐴 − 𝑥))) |
22 | 12, 21 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐴𝐷𝑥) = (𝑁‘(𝐴 − 𝑥))) |
23 | 22 | oveq1d 7290 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝐴𝐷𝑥)↑2) = ((𝑁‘(𝐴 − 𝑥))↑2)) |
24 | | minvec.s |
. . . . . . . 8
⊢ 𝑆 = inf(𝑅, ℝ, < ) |
25 | | minvec.w |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
26 | | minvec.j |
. . . . . . . . . . . 12
⊢ 𝐽 = (TopOpen‘𝑈) |
27 | | minvec.r |
. . . . . . . . . . . 12
⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
28 | 6, 18, 17, 13, 5, 25, 3, 26, 27 | minveclem1 24588 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
29 | 28 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
30 | 29 | simp1d 1141 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑅 ⊆ ℝ) |
31 | 29 | simp2d 1142 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑅 ≠ ∅) |
32 | | 0red 10978 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 0 ∈ ℝ) |
33 | 29 | simp3d 1143 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) |
34 | | breq1 5077 |
. . . . . . . . . . . 12
⊢ (𝑥 = 0 → (𝑥 ≤ 𝑤 ↔ 0 ≤ 𝑤)) |
35 | 34 | ralbidv 3112 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → (∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ↔ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
36 | 35 | rspcev 3561 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) |
37 | 32, 33, 36 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) |
38 | | infrecl 11957 |
. . . . . . . . 9
⊢ ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) → inf(𝑅, ℝ, < ) ∈
ℝ) |
39 | 30, 31, 37, 38 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → inf(𝑅, ℝ, < ) ∈
ℝ) |
40 | 24, 39 | eqeltrid 2843 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑆 ∈ ℝ) |
41 | 40 | resqcld 13965 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝑆↑2) ∈ ℝ) |
42 | 41 | recnd 11003 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝑆↑2) ∈ ℂ) |
43 | 42 | addid1d 11175 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝑆↑2) + 0) = (𝑆↑2)) |
44 | 23, 43 | breq12d 5087 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ((𝑁‘(𝐴 − 𝑥))↑2) ≤ (𝑆↑2))) |
45 | | cphlmod 24338 |
. . . . . . . 8
⊢ (𝑈 ∈ ℂPreHil →
𝑈 ∈
LMod) |
46 | 13, 45 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ LMod) |
47 | 46 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑈 ∈ LMod) |
48 | 6, 18 | lmodvsubcl 20168 |
. . . . . 6
⊢ ((𝑈 ∈ LMod ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝐴 − 𝑥) ∈ 𝑋) |
49 | 47, 4, 10, 48 | syl3anc 1370 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐴 − 𝑥) ∈ 𝑋) |
50 | 6, 17 | nmcl 23772 |
. . . . 5
⊢ ((𝑈 ∈ NrmGrp ∧ (𝐴 − 𝑥) ∈ 𝑋) → (𝑁‘(𝐴 − 𝑥)) ∈ ℝ) |
51 | 16, 49, 50 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝑁‘(𝐴 − 𝑥)) ∈ ℝ) |
52 | 6, 17 | nmge0 23773 |
. . . . 5
⊢ ((𝑈 ∈ NrmGrp ∧ (𝐴 − 𝑥) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴 − 𝑥))) |
53 | 16, 49, 52 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 0 ≤ (𝑁‘(𝐴 − 𝑥))) |
54 | | infregelb 11959 |
. . . . . . 7
⊢ (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) ∧ 0 ∈ ℝ) → (0 ≤
inf(𝑅, ℝ, < )
↔ ∀𝑤 ∈
𝑅 0 ≤ 𝑤)) |
55 | 30, 31, 37, 32, 54 | syl31anc 1372 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
56 | 33, 55 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 0 ≤ inf(𝑅, ℝ, < )) |
57 | 56, 24 | breqtrrdi 5116 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 0 ≤ 𝑆) |
58 | 51, 40, 53, 57 | le2sqd 13974 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝑁‘(𝐴 − 𝑥)) ≤ 𝑆 ↔ ((𝑁‘(𝐴 − 𝑥))↑2) ≤ (𝑆↑2))) |
59 | 24 | breq2i 5082 |
. . . 4
⊢ ((𝑁‘(𝐴 − 𝑥)) ≤ 𝑆 ↔ (𝑁‘(𝐴 − 𝑥)) ≤ inf(𝑅, ℝ, < )) |
60 | | infregelb 11959 |
. . . . 5
⊢ (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) ∧ (𝑁‘(𝐴 − 𝑥)) ∈ ℝ) → ((𝑁‘(𝐴 − 𝑥)) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤 ∈ 𝑅 (𝑁‘(𝐴 − 𝑥)) ≤ 𝑤)) |
61 | 30, 31, 37, 51, 60 | syl31anc 1372 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝑁‘(𝐴 − 𝑥)) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤 ∈ 𝑅 (𝑁‘(𝐴 − 𝑥)) ≤ 𝑤)) |
62 | 59, 61 | bitrid 282 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝑁‘(𝐴 − 𝑥)) ≤ 𝑆 ↔ ∀𝑤 ∈ 𝑅 (𝑁‘(𝐴 − 𝑥)) ≤ 𝑤)) |
63 | 44, 58, 62 | 3bitr2d 307 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑤 ∈ 𝑅 (𝑁‘(𝐴 − 𝑥)) ≤ 𝑤)) |
64 | 27 | raleqi 3346 |
. . 3
⊢
(∀𝑤 ∈
𝑅 (𝑁‘(𝐴 − 𝑥)) ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))(𝑁‘(𝐴 − 𝑥)) ≤ 𝑤) |
65 | | fvex 6787 |
. . . . 5
⊢ (𝑁‘(𝐴 − 𝑦)) ∈ V |
66 | 65 | rgenw 3076 |
. . . 4
⊢
∀𝑦 ∈
𝑌 (𝑁‘(𝐴 − 𝑦)) ∈ V |
67 | | eqid 2738 |
. . . . 5
⊢ (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
68 | | breq2 5078 |
. . . . 5
⊢ (𝑤 = (𝑁‘(𝐴 − 𝑦)) → ((𝑁‘(𝐴 − 𝑥)) ≤ 𝑤 ↔ (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦)))) |
69 | 67, 68 | ralrnmptw 6970 |
. . . 4
⊢
(∀𝑦 ∈
𝑌 (𝑁‘(𝐴 − 𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))(𝑁‘(𝐴 − 𝑥)) ≤ 𝑤 ↔ ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦)))) |
70 | 66, 69 | ax-mp 5 |
. . 3
⊢
(∀𝑤 ∈
ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))(𝑁‘(𝐴 − 𝑥)) ≤ 𝑤 ↔ ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦))) |
71 | 64, 70 | bitri 274 |
. 2
⊢
(∀𝑤 ∈
𝑅 (𝑁‘(𝐴 − 𝑥)) ≤ 𝑤 ↔ ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦))) |
72 | 63, 71 | bitrdi 287 |
1
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦)))) |