MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem6 Structured version   Visualization version   GIF version

Theorem minveclem6 25341
Description: Lemma for minvec 25343. Any minimal point is less than 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
minveclem6 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦))))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐴,𝑦   𝑥,𝐽,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦

Proof of Theorem minveclem6
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 minvec.d . . . . . . . 8 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
21oveqi 7403 . . . . . . 7 (𝐴𝐷𝑥) = (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝑥)
3 minvec.a . . . . . . . . 9 (𝜑𝐴𝑋)
43adantr 480 . . . . . . . 8 ((𝜑𝑥𝑌) → 𝐴𝑋)
5 minvec.y . . . . . . . . . 10 (𝜑𝑌 ∈ (LSubSp‘𝑈))
6 minvec.x . . . . . . . . . . 11 𝑋 = (Base‘𝑈)
7 eqid 2730 . . . . . . . . . . 11 (LSubSp‘𝑈) = (LSubSp‘𝑈)
86, 7lssss 20849 . . . . . . . . . 10 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
95, 8syl 17 . . . . . . . . 9 (𝜑𝑌𝑋)
109sselda 3949 . . . . . . . 8 ((𝜑𝑥𝑌) → 𝑥𝑋)
114, 10ovresd 7559 . . . . . . 7 ((𝜑𝑥𝑌) → (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝑥) = (𝐴(dist‘𝑈)𝑥))
122, 11eqtrid 2777 . . . . . 6 ((𝜑𝑥𝑌) → (𝐴𝐷𝑥) = (𝐴(dist‘𝑈)𝑥))
13 minvec.u . . . . . . . . 9 (𝜑𝑈 ∈ ℂPreHil)
14 cphngp 25080 . . . . . . . . 9 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
1513, 14syl 17 . . . . . . . 8 (𝜑𝑈 ∈ NrmGrp)
1615adantr 480 . . . . . . 7 ((𝜑𝑥𝑌) → 𝑈 ∈ NrmGrp)
17 minvec.n . . . . . . . 8 𝑁 = (norm‘𝑈)
18 minvec.m . . . . . . . 8 = (-g𝑈)
19 eqid 2730 . . . . . . . 8 (dist‘𝑈) = (dist‘𝑈)
2017, 6, 18, 19ngpds 24499 . . . . . . 7 ((𝑈 ∈ NrmGrp ∧ 𝐴𝑋𝑥𝑋) → (𝐴(dist‘𝑈)𝑥) = (𝑁‘(𝐴 𝑥)))
2116, 4, 10, 20syl3anc 1373 . . . . . 6 ((𝜑𝑥𝑌) → (𝐴(dist‘𝑈)𝑥) = (𝑁‘(𝐴 𝑥)))
2212, 21eqtrd 2765 . . . . 5 ((𝜑𝑥𝑌) → (𝐴𝐷𝑥) = (𝑁‘(𝐴 𝑥)))
2322oveq1d 7405 . . . 4 ((𝜑𝑥𝑌) → ((𝐴𝐷𝑥)↑2) = ((𝑁‘(𝐴 𝑥))↑2))
24 minvec.s . . . . . . . 8 𝑆 = inf(𝑅, ℝ, < )
25 minvec.w . . . . . . . . . . . 12 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
26 minvec.j . . . . . . . . . . . 12 𝐽 = (TopOpen‘𝑈)
27 minvec.r . . . . . . . . . . . 12 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
286, 18, 17, 13, 5, 25, 3, 26, 27minveclem1 25331 . . . . . . . . . . 11 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
2928adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑌) → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
3029simp1d 1142 . . . . . . . . 9 ((𝜑𝑥𝑌) → 𝑅 ⊆ ℝ)
3129simp2d 1143 . . . . . . . . 9 ((𝜑𝑥𝑌) → 𝑅 ≠ ∅)
32 0red 11184 . . . . . . . . . 10 ((𝜑𝑥𝑌) → 0 ∈ ℝ)
3329simp3d 1144 . . . . . . . . . 10 ((𝜑𝑥𝑌) → ∀𝑤𝑅 0 ≤ 𝑤)
34 breq1 5113 . . . . . . . . . . . 12 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
3534ralbidv 3157 . . . . . . . . . . 11 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
3635rspcev 3591 . . . . . . . . . 10 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
3732, 33, 36syl2anc 584 . . . . . . . . 9 ((𝜑𝑥𝑌) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
38 infrecl 12172 . . . . . . . . 9 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
3930, 31, 37, 38syl3anc 1373 . . . . . . . 8 ((𝜑𝑥𝑌) → inf(𝑅, ℝ, < ) ∈ ℝ)
4024, 39eqeltrid 2833 . . . . . . 7 ((𝜑𝑥𝑌) → 𝑆 ∈ ℝ)
4140resqcld 14097 . . . . . 6 ((𝜑𝑥𝑌) → (𝑆↑2) ∈ ℝ)
4241recnd 11209 . . . . 5 ((𝜑𝑥𝑌) → (𝑆↑2) ∈ ℂ)
4342addridd 11381 . . . 4 ((𝜑𝑥𝑌) → ((𝑆↑2) + 0) = (𝑆↑2))
4423, 43breq12d 5123 . . 3 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ((𝑁‘(𝐴 𝑥))↑2) ≤ (𝑆↑2)))
45 cphlmod 25081 . . . . . . . 8 (𝑈 ∈ ℂPreHil → 𝑈 ∈ LMod)
4613, 45syl 17 . . . . . . 7 (𝜑𝑈 ∈ LMod)
4746adantr 480 . . . . . 6 ((𝜑𝑥𝑌) → 𝑈 ∈ LMod)
486, 18lmodvsubcl 20820 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝐴𝑋𝑥𝑋) → (𝐴 𝑥) ∈ 𝑋)
4947, 4, 10, 48syl3anc 1373 . . . . 5 ((𝜑𝑥𝑌) → (𝐴 𝑥) ∈ 𝑋)
506, 17nmcl 24511 . . . . 5 ((𝑈 ∈ NrmGrp ∧ (𝐴 𝑥) ∈ 𝑋) → (𝑁‘(𝐴 𝑥)) ∈ ℝ)
5116, 49, 50syl2anc 584 . . . 4 ((𝜑𝑥𝑌) → (𝑁‘(𝐴 𝑥)) ∈ ℝ)
526, 17nmge0 24512 . . . . 5 ((𝑈 ∈ NrmGrp ∧ (𝐴 𝑥) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴 𝑥)))
5316, 49, 52syl2anc 584 . . . 4 ((𝜑𝑥𝑌) → 0 ≤ (𝑁‘(𝐴 𝑥)))
54 infregelb 12174 . . . . . . 7 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
5530, 31, 37, 32, 54syl31anc 1375 . . . . . 6 ((𝜑𝑥𝑌) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
5633, 55mpbird 257 . . . . 5 ((𝜑𝑥𝑌) → 0 ≤ inf(𝑅, ℝ, < ))
5756, 24breqtrrdi 5152 . . . 4 ((𝜑𝑥𝑌) → 0 ≤ 𝑆)
5851, 40, 53, 57le2sqd 14229 . . 3 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴 𝑥)) ≤ 𝑆 ↔ ((𝑁‘(𝐴 𝑥))↑2) ≤ (𝑆↑2)))
5924breq2i 5118 . . . 4 ((𝑁‘(𝐴 𝑥)) ≤ 𝑆 ↔ (𝑁‘(𝐴 𝑥)) ≤ inf(𝑅, ℝ, < ))
60 infregelb 12174 . . . . 5 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ (𝑁‘(𝐴 𝑥)) ∈ ℝ) → ((𝑁‘(𝐴 𝑥)) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤))
6130, 31, 37, 51, 60syl31anc 1375 . . . 4 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴 𝑥)) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤))
6259, 61bitrid 283 . . 3 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴 𝑥)) ≤ 𝑆 ↔ ∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤))
6344, 58, 623bitr2d 307 . 2 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤))
6427raleqi 3299 . . 3 (∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))(𝑁‘(𝐴 𝑥)) ≤ 𝑤)
65 fvex 6874 . . . . 5 (𝑁‘(𝐴 𝑦)) ∈ V
6665rgenw 3049 . . . 4 𝑦𝑌 (𝑁‘(𝐴 𝑦)) ∈ V
67 eqid 2730 . . . . 5 (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
68 breq2 5114 . . . . 5 (𝑤 = (𝑁‘(𝐴 𝑦)) → ((𝑁‘(𝐴 𝑥)) ≤ 𝑤 ↔ (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦))))
6967, 68ralrnmptw 7069 . . . 4 (∀𝑦𝑌 (𝑁‘(𝐴 𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))(𝑁‘(𝐴 𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦))))
7066, 69ax-mp 5 . . 3 (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))(𝑁‘(𝐴 𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
7164, 70bitri 275 . 2 (∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
7263, 71bitrdi 287 1 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  wss 3917  c0 4299   class class class wbr 5110  cmpt 5191   × cxp 5639  ran crn 5642  cres 5643  cfv 6514  (class class class)co 7390  infcinf 9399  cr 11074  0cc0 11075   + caddc 11078   < clt 11215  cle 11216  2c2 12248  cexp 14033  Basecbs 17186  s cress 17207  distcds 17236  TopOpenctopn 17391  -gcsg 18874  LModclmod 20773  LSubSpclss 20844  normcnm 24471  NrmGrpcngp 24472  ℂPreHilccph 25073  CMetSpccms 25239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-seq 13974  df-exp 14034  df-0g 17411  df-topgen 17413  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-lmod 20775  df-lss 20845  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-xms 24215  df-ms 24216  df-nm 24477  df-ngp 24478  df-nlm 24481  df-cph 25075
This theorem is referenced by:  minveclem7  25342
  Copyright terms: Public domain W3C validator