MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem1 Structured version   Visualization version   GIF version

Theorem minveclem1 25300
Description: Lemma for minvec 25312. The set of all distances from points of 𝑌 to 𝐴 are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
Assertion
Ref Expression
minveclem1 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
Distinct variable groups:   𝑦,𝑤,   𝑤,𝐴,𝑦   𝑤,𝐽,𝑦   𝑤,𝑁,𝑦   𝜑,𝑤,𝑦   𝑤,𝑅,𝑦   𝑤,𝑈,𝑦   𝑤,𝑋,𝑦   𝑤,𝑌,𝑦

Proof of Theorem minveclem1
StepHypRef Expression
1 minvec.r . . 3 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
2 minvec.u . . . . . . 7 (𝜑𝑈 ∈ ℂPreHil)
3 cphngp 25049 . . . . . . 7 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
42, 3syl 17 . . . . . 6 (𝜑𝑈 ∈ NrmGrp)
5 cphlmod 25050 . . . . . . . . 9 (𝑈 ∈ ℂPreHil → 𝑈 ∈ LMod)
62, 5syl 17 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
76adantr 480 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑈 ∈ LMod)
8 minvec.a . . . . . . . 8 (𝜑𝐴𝑋)
98adantr 480 . . . . . . 7 ((𝜑𝑦𝑌) → 𝐴𝑋)
10 minvec.y . . . . . . . . 9 (𝜑𝑌 ∈ (LSubSp‘𝑈))
11 minvec.x . . . . . . . . . 10 𝑋 = (Base‘𝑈)
12 eqid 2729 . . . . . . . . . 10 (LSubSp‘𝑈) = (LSubSp‘𝑈)
1311, 12lssss 20818 . . . . . . . . 9 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
1410, 13syl 17 . . . . . . . 8 (𝜑𝑌𝑋)
1514sselda 3943 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑦𝑋)
16 minvec.m . . . . . . . 8 = (-g𝑈)
1711, 16lmodvsubcl 20789 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝐴𝑋𝑦𝑋) → (𝐴 𝑦) ∈ 𝑋)
187, 9, 15, 17syl3anc 1373 . . . . . 6 ((𝜑𝑦𝑌) → (𝐴 𝑦) ∈ 𝑋)
19 minvec.n . . . . . . 7 𝑁 = (norm‘𝑈)
2011, 19nmcl 24480 . . . . . 6 ((𝑈 ∈ NrmGrp ∧ (𝐴 𝑦) ∈ 𝑋) → (𝑁‘(𝐴 𝑦)) ∈ ℝ)
214, 18, 20syl2an2r 685 . . . . 5 ((𝜑𝑦𝑌) → (𝑁‘(𝐴 𝑦)) ∈ ℝ)
2221fmpttd 7069 . . . 4 (𝜑 → (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))):𝑌⟶ℝ)
2322frnd 6678 . . 3 (𝜑 → ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) ⊆ ℝ)
241, 23eqsstrid 3982 . 2 (𝜑𝑅 ⊆ ℝ)
2512lssn0 20822 . . . 4 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ≠ ∅)
2610, 25syl 17 . . 3 (𝜑𝑌 ≠ ∅)
271eqeq1i 2734 . . . . 5 (𝑅 = ∅ ↔ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = ∅)
28 dm0rn0 5878 . . . . 5 (dom (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = ∅ ↔ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = ∅)
29 fvex 6853 . . . . . . 7 (𝑁‘(𝐴 𝑦)) ∈ V
30 eqid 2729 . . . . . . 7 (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
3129, 30dmmpti 6644 . . . . . 6 dom (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = 𝑌
3231eqeq1i 2734 . . . . 5 (dom (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = ∅ ↔ 𝑌 = ∅)
3327, 28, 323bitr2i 299 . . . 4 (𝑅 = ∅ ↔ 𝑌 = ∅)
3433necon3bii 2977 . . 3 (𝑅 ≠ ∅ ↔ 𝑌 ≠ ∅)
3526, 34sylibr 234 . 2 (𝜑𝑅 ≠ ∅)
3611, 19nmge0 24481 . . . . . 6 ((𝑈 ∈ NrmGrp ∧ (𝐴 𝑦) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴 𝑦)))
374, 18, 36syl2an2r 685 . . . . 5 ((𝜑𝑦𝑌) → 0 ≤ (𝑁‘(𝐴 𝑦)))
3837ralrimiva 3125 . . . 4 (𝜑 → ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴 𝑦)))
3929rgenw 3048 . . . . 5 𝑦𝑌 (𝑁‘(𝐴 𝑦)) ∈ V
40 breq2 5106 . . . . . 6 (𝑤 = (𝑁‘(𝐴 𝑦)) → (0 ≤ 𝑤 ↔ 0 ≤ (𝑁‘(𝐴 𝑦))))
4130, 40ralrnmptw 7048 . . . . 5 (∀𝑦𝑌 (𝑁‘(𝐴 𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))0 ≤ 𝑤 ↔ ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴 𝑦))))
4239, 41ax-mp 5 . . . 4 (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))0 ≤ 𝑤 ↔ ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴 𝑦)))
4338, 42sylibr 234 . . 3 (𝜑 → ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))0 ≤ 𝑤)
441raleqi 3294 . . 3 (∀𝑤𝑅 0 ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))0 ≤ 𝑤)
4543, 44sylibr 234 . 2 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
4624, 35, 453jca 1128 1 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3444  wss 3911  c0 4292   class class class wbr 5102  cmpt 5183  dom cdm 5631  ran crn 5632  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  cle 11185  Basecbs 17155  s cress 17176  TopOpenctopn 17360  -gcsg 18843  LModclmod 20742  LSubSpclss 20813  normcnm 24440  NrmGrpcngp 24441  ℂPreHilccph 25042  CMetSpccms 25208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-0g 17380  df-topgen 17382  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-lmod 20744  df-lss 20814  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-xms 24184  df-ms 24185  df-nm 24446  df-ngp 24447  df-nlm 24450  df-cph 25044
This theorem is referenced by:  minveclem4c  25301  minveclem2  25302  minveclem3b  25304  minveclem4  25308  minveclem6  25310
  Copyright terms: Public domain W3C validator