MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem1 Structured version   Visualization version   GIF version

Theorem minveclem1 25472
Description: Lemma for minvec 25484. The set of all distances from points of 𝑌 to 𝐴 are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
Assertion
Ref Expression
minveclem1 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
Distinct variable groups:   𝑦,𝑤,   𝑤,𝐴,𝑦   𝑤,𝐽,𝑦   𝑤,𝑁,𝑦   𝜑,𝑤,𝑦   𝑤,𝑅,𝑦   𝑤,𝑈,𝑦   𝑤,𝑋,𝑦   𝑤,𝑌,𝑦

Proof of Theorem minveclem1
StepHypRef Expression
1 minvec.r . . 3 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
2 minvec.u . . . . . . 7 (𝜑𝑈 ∈ ℂPreHil)
3 cphngp 25221 . . . . . . 7 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
42, 3syl 17 . . . . . 6 (𝜑𝑈 ∈ NrmGrp)
5 cphlmod 25222 . . . . . . . . 9 (𝑈 ∈ ℂPreHil → 𝑈 ∈ LMod)
62, 5syl 17 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
76adantr 480 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑈 ∈ LMod)
8 minvec.a . . . . . . . 8 (𝜑𝐴𝑋)
98adantr 480 . . . . . . 7 ((𝜑𝑦𝑌) → 𝐴𝑋)
10 minvec.y . . . . . . . . 9 (𝜑𝑌 ∈ (LSubSp‘𝑈))
11 minvec.x . . . . . . . . . 10 𝑋 = (Base‘𝑈)
12 eqid 2735 . . . . . . . . . 10 (LSubSp‘𝑈) = (LSubSp‘𝑈)
1311, 12lssss 20952 . . . . . . . . 9 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
1410, 13syl 17 . . . . . . . 8 (𝜑𝑌𝑋)
1514sselda 3995 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑦𝑋)
16 minvec.m . . . . . . . 8 = (-g𝑈)
1711, 16lmodvsubcl 20922 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝐴𝑋𝑦𝑋) → (𝐴 𝑦) ∈ 𝑋)
187, 9, 15, 17syl3anc 1370 . . . . . 6 ((𝜑𝑦𝑌) → (𝐴 𝑦) ∈ 𝑋)
19 minvec.n . . . . . . 7 𝑁 = (norm‘𝑈)
2011, 19nmcl 24645 . . . . . 6 ((𝑈 ∈ NrmGrp ∧ (𝐴 𝑦) ∈ 𝑋) → (𝑁‘(𝐴 𝑦)) ∈ ℝ)
214, 18, 20syl2an2r 685 . . . . 5 ((𝜑𝑦𝑌) → (𝑁‘(𝐴 𝑦)) ∈ ℝ)
2221fmpttd 7135 . . . 4 (𝜑 → (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))):𝑌⟶ℝ)
2322frnd 6745 . . 3 (𝜑 → ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) ⊆ ℝ)
241, 23eqsstrid 4044 . 2 (𝜑𝑅 ⊆ ℝ)
2512lssn0 20956 . . . 4 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ≠ ∅)
2610, 25syl 17 . . 3 (𝜑𝑌 ≠ ∅)
271eqeq1i 2740 . . . . 5 (𝑅 = ∅ ↔ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = ∅)
28 dm0rn0 5938 . . . . 5 (dom (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = ∅ ↔ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = ∅)
29 fvex 6920 . . . . . . 7 (𝑁‘(𝐴 𝑦)) ∈ V
30 eqid 2735 . . . . . . 7 (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
3129, 30dmmpti 6713 . . . . . 6 dom (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = 𝑌
3231eqeq1i 2740 . . . . 5 (dom (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = ∅ ↔ 𝑌 = ∅)
3327, 28, 323bitr2i 299 . . . 4 (𝑅 = ∅ ↔ 𝑌 = ∅)
3433necon3bii 2991 . . 3 (𝑅 ≠ ∅ ↔ 𝑌 ≠ ∅)
3526, 34sylibr 234 . 2 (𝜑𝑅 ≠ ∅)
3611, 19nmge0 24646 . . . . . 6 ((𝑈 ∈ NrmGrp ∧ (𝐴 𝑦) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴 𝑦)))
374, 18, 36syl2an2r 685 . . . . 5 ((𝜑𝑦𝑌) → 0 ≤ (𝑁‘(𝐴 𝑦)))
3837ralrimiva 3144 . . . 4 (𝜑 → ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴 𝑦)))
3929rgenw 3063 . . . . 5 𝑦𝑌 (𝑁‘(𝐴 𝑦)) ∈ V
40 breq2 5152 . . . . . 6 (𝑤 = (𝑁‘(𝐴 𝑦)) → (0 ≤ 𝑤 ↔ 0 ≤ (𝑁‘(𝐴 𝑦))))
4130, 40ralrnmptw 7114 . . . . 5 (∀𝑦𝑌 (𝑁‘(𝐴 𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))0 ≤ 𝑤 ↔ ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴 𝑦))))
4239, 41ax-mp 5 . . . 4 (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))0 ≤ 𝑤 ↔ ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴 𝑦)))
4338, 42sylibr 234 . . 3 (𝜑 → ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))0 ≤ 𝑤)
441raleqi 3322 . . 3 (∀𝑤𝑅 0 ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))0 ≤ 𝑤)
4543, 44sylibr 234 . 2 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
4624, 35, 453jca 1127 1 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  Vcvv 3478  wss 3963  c0 4339   class class class wbr 5148  cmpt 5231  dom cdm 5689  ran crn 5690  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  cle 11294  Basecbs 17245  s cress 17274  TopOpenctopn 17468  -gcsg 18966  LModclmod 20875  LSubSpclss 20947  normcnm 24605  NrmGrpcngp 24606  ℂPreHilccph 25214  CMetSpccms 25380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-0g 17488  df-topgen 17490  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-lmod 20877  df-lss 20948  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-xms 24346  df-ms 24347  df-nm 24611  df-ngp 24612  df-nlm 24615  df-cph 25216
This theorem is referenced by:  minveclem4c  25473  minveclem2  25474  minveclem3b  25476  minveclem4  25480  minveclem6  25482
  Copyright terms: Public domain W3C validator