MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem1 Structured version   Visualization version   GIF version

Theorem minveclem1 24870
Description: Lemma for minvec 24882. The set of all distances from points of 𝑌 to 𝐴 are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
Assertion
Ref Expression
minveclem1 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
Distinct variable groups:   𝑦,𝑤,   𝑤,𝐴,𝑦   𝑤,𝐽,𝑦   𝑤,𝑁,𝑦   𝜑,𝑤,𝑦   𝑤,𝑅,𝑦   𝑤,𝑈,𝑦   𝑤,𝑋,𝑦   𝑤,𝑌,𝑦

Proof of Theorem minveclem1
StepHypRef Expression
1 minvec.r . . 3 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
2 minvec.u . . . . . . 7 (𝜑𝑈 ∈ ℂPreHil)
3 cphngp 24619 . . . . . . 7 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
42, 3syl 17 . . . . . 6 (𝜑𝑈 ∈ NrmGrp)
5 cphlmod 24620 . . . . . . . . 9 (𝑈 ∈ ℂPreHil → 𝑈 ∈ LMod)
62, 5syl 17 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
76adantr 481 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑈 ∈ LMod)
8 minvec.a . . . . . . . 8 (𝜑𝐴𝑋)
98adantr 481 . . . . . . 7 ((𝜑𝑦𝑌) → 𝐴𝑋)
10 minvec.y . . . . . . . . 9 (𝜑𝑌 ∈ (LSubSp‘𝑈))
11 minvec.x . . . . . . . . . 10 𝑋 = (Base‘𝑈)
12 eqid 2731 . . . . . . . . . 10 (LSubSp‘𝑈) = (LSubSp‘𝑈)
1311, 12lssss 20496 . . . . . . . . 9 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
1410, 13syl 17 . . . . . . . 8 (𝜑𝑌𝑋)
1514sselda 3978 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑦𝑋)
16 minvec.m . . . . . . . 8 = (-g𝑈)
1711, 16lmodvsubcl 20466 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝐴𝑋𝑦𝑋) → (𝐴 𝑦) ∈ 𝑋)
187, 9, 15, 17syl3anc 1371 . . . . . 6 ((𝜑𝑦𝑌) → (𝐴 𝑦) ∈ 𝑋)
19 minvec.n . . . . . . 7 𝑁 = (norm‘𝑈)
2011, 19nmcl 24054 . . . . . 6 ((𝑈 ∈ NrmGrp ∧ (𝐴 𝑦) ∈ 𝑋) → (𝑁‘(𝐴 𝑦)) ∈ ℝ)
214, 18, 20syl2an2r 683 . . . . 5 ((𝜑𝑦𝑌) → (𝑁‘(𝐴 𝑦)) ∈ ℝ)
2221fmpttd 7099 . . . 4 (𝜑 → (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))):𝑌⟶ℝ)
2322frnd 6712 . . 3 (𝜑 → ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) ⊆ ℝ)
241, 23eqsstrid 4026 . 2 (𝜑𝑅 ⊆ ℝ)
2512lssn0 20500 . . . 4 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ≠ ∅)
2610, 25syl 17 . . 3 (𝜑𝑌 ≠ ∅)
271eqeq1i 2736 . . . . 5 (𝑅 = ∅ ↔ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = ∅)
28 dm0rn0 5916 . . . . 5 (dom (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = ∅ ↔ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = ∅)
29 fvex 6891 . . . . . . 7 (𝑁‘(𝐴 𝑦)) ∈ V
30 eqid 2731 . . . . . . 7 (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
3129, 30dmmpti 6681 . . . . . 6 dom (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = 𝑌
3231eqeq1i 2736 . . . . 5 (dom (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = ∅ ↔ 𝑌 = ∅)
3327, 28, 323bitr2i 298 . . . 4 (𝑅 = ∅ ↔ 𝑌 = ∅)
3433necon3bii 2992 . . 3 (𝑅 ≠ ∅ ↔ 𝑌 ≠ ∅)
3526, 34sylibr 233 . 2 (𝜑𝑅 ≠ ∅)
3611, 19nmge0 24055 . . . . . 6 ((𝑈 ∈ NrmGrp ∧ (𝐴 𝑦) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴 𝑦)))
374, 18, 36syl2an2r 683 . . . . 5 ((𝜑𝑦𝑌) → 0 ≤ (𝑁‘(𝐴 𝑦)))
3837ralrimiva 3145 . . . 4 (𝜑 → ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴 𝑦)))
3929rgenw 3064 . . . . 5 𝑦𝑌 (𝑁‘(𝐴 𝑦)) ∈ V
40 breq2 5145 . . . . . 6 (𝑤 = (𝑁‘(𝐴 𝑦)) → (0 ≤ 𝑤 ↔ 0 ≤ (𝑁‘(𝐴 𝑦))))
4130, 40ralrnmptw 7080 . . . . 5 (∀𝑦𝑌 (𝑁‘(𝐴 𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))0 ≤ 𝑤 ↔ ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴 𝑦))))
4239, 41ax-mp 5 . . . 4 (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))0 ≤ 𝑤 ↔ ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴 𝑦)))
4338, 42sylibr 233 . . 3 (𝜑 → ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))0 ≤ 𝑤)
441raleqi 3322 . . 3 (∀𝑤𝑅 0 ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))0 ≤ 𝑤)
4543, 44sylibr 233 . 2 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
4624, 35, 453jca 1128 1 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2939  wral 3060  Vcvv 3473  wss 3944  c0 4318   class class class wbr 5141  cmpt 5224  dom cdm 5669  ran crn 5670  cfv 6532  (class class class)co 7393  cr 11091  0cc0 11092  cle 11231  Basecbs 17126  s cress 17155  TopOpenctopn 17349  -gcsg 18796  LModclmod 20420  LSubSpclss 20491  normcnm 24014  NrmGrpcngp 24015  ℂPreHilccph 24612  CMetSpccms 24778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-er 8686  df-map 8805  df-en 8923  df-dom 8924  df-sdom 8925  df-sup 9419  df-inf 9420  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-n0 12455  df-z 12541  df-uz 12805  df-q 12915  df-rp 12957  df-xneg 13074  df-xadd 13075  df-xmul 13076  df-0g 17369  df-topgen 17371  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-grp 18797  df-minusg 18798  df-sbg 18799  df-lmod 20422  df-lss 20492  df-psmet 20870  df-xmet 20871  df-met 20872  df-bl 20873  df-mopn 20874  df-top 22325  df-topon 22342  df-topsp 22364  df-bases 22378  df-xms 23755  df-ms 23756  df-nm 24020  df-ngp 24021  df-nlm 24024  df-cph 24614
This theorem is referenced by:  minveclem4c  24871  minveclem2  24872  minveclem3b  24874  minveclem4  24878  minveclem6  24880
  Copyright terms: Public domain W3C validator