| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > minveclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for minvec 25388. The set of all distances from points of 𝑌 to 𝐴 are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| minvec.x | ⊢ 𝑋 = (Base‘𝑈) |
| minvec.m | ⊢ − = (-g‘𝑈) |
| minvec.n | ⊢ 𝑁 = (norm‘𝑈) |
| minvec.u | ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
| minvec.y | ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
| minvec.w | ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
| minvec.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| minvec.j | ⊢ 𝐽 = (TopOpen‘𝑈) |
| minvec.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
| Ref | Expression |
|---|---|
| minveclem1 | ⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minvec.r | . . 3 ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) | |
| 2 | minvec.u | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) | |
| 3 | cphngp 25125 | . . . . . . 7 ⊢ (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp) | |
| 4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ NrmGrp) |
| 5 | cphlmod 25126 | . . . . . . . . 9 ⊢ (𝑈 ∈ ℂPreHil → 𝑈 ∈ LMod) | |
| 6 | 2, 5 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑈 ∈ LMod) |
| 8 | minvec.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 9 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ 𝑋) |
| 10 | minvec.y | . . . . . . . . 9 ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) | |
| 11 | minvec.x | . . . . . . . . . 10 ⊢ 𝑋 = (Base‘𝑈) | |
| 12 | eqid 2735 | . . . . . . . . . 10 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 13 | 11, 12 | lssss 20893 | . . . . . . . . 9 ⊢ (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ⊆ 𝑋) |
| 14 | 10, 13 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 15 | 14 | sselda 3958 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑋) |
| 16 | minvec.m | . . . . . . . 8 ⊢ − = (-g‘𝑈) | |
| 17 | 11, 16 | lmodvsubcl 20864 | . . . . . . 7 ⊢ ((𝑈 ∈ LMod ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐴 − 𝑦) ∈ 𝑋) |
| 18 | 7, 9, 15, 17 | syl3anc 1373 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐴 − 𝑦) ∈ 𝑋) |
| 19 | minvec.n | . . . . . . 7 ⊢ 𝑁 = (norm‘𝑈) | |
| 20 | 11, 19 | nmcl 24555 | . . . . . 6 ⊢ ((𝑈 ∈ NrmGrp ∧ (𝐴 − 𝑦) ∈ 𝑋) → (𝑁‘(𝐴 − 𝑦)) ∈ ℝ) |
| 21 | 4, 18, 20 | syl2an2r 685 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑁‘(𝐴 − 𝑦)) ∈ ℝ) |
| 22 | 21 | fmpttd 7105 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))):𝑌⟶ℝ) |
| 23 | 22 | frnd 6714 | . . 3 ⊢ (𝜑 → ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) ⊆ ℝ) |
| 24 | 1, 23 | eqsstrid 3997 | . 2 ⊢ (𝜑 → 𝑅 ⊆ ℝ) |
| 25 | 12 | lssn0 20897 | . . . 4 ⊢ (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ≠ ∅) |
| 26 | 10, 25 | syl 17 | . . 3 ⊢ (𝜑 → 𝑌 ≠ ∅) |
| 27 | 1 | eqeq1i 2740 | . . . . 5 ⊢ (𝑅 = ∅ ↔ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = ∅) |
| 28 | dm0rn0 5904 | . . . . 5 ⊢ (dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = ∅ ↔ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = ∅) | |
| 29 | fvex 6889 | . . . . . . 7 ⊢ (𝑁‘(𝐴 − 𝑦)) ∈ V | |
| 30 | eqid 2735 | . . . . . . 7 ⊢ (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) | |
| 31 | 29, 30 | dmmpti 6682 | . . . . . 6 ⊢ dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = 𝑌 |
| 32 | 31 | eqeq1i 2740 | . . . . 5 ⊢ (dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = ∅ ↔ 𝑌 = ∅) |
| 33 | 27, 28, 32 | 3bitr2i 299 | . . . 4 ⊢ (𝑅 = ∅ ↔ 𝑌 = ∅) |
| 34 | 33 | necon3bii 2984 | . . 3 ⊢ (𝑅 ≠ ∅ ↔ 𝑌 ≠ ∅) |
| 35 | 26, 34 | sylibr 234 | . 2 ⊢ (𝜑 → 𝑅 ≠ ∅) |
| 36 | 11, 19 | nmge0 24556 | . . . . . 6 ⊢ ((𝑈 ∈ NrmGrp ∧ (𝐴 − 𝑦) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴 − 𝑦))) |
| 37 | 4, 18, 36 | syl2an2r 685 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 0 ≤ (𝑁‘(𝐴 − 𝑦))) |
| 38 | 37 | ralrimiva 3132 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝑌 0 ≤ (𝑁‘(𝐴 − 𝑦))) |
| 39 | 29 | rgenw 3055 | . . . . 5 ⊢ ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑦)) ∈ V |
| 40 | breq2 5123 | . . . . . 6 ⊢ (𝑤 = (𝑁‘(𝐴 − 𝑦)) → (0 ≤ 𝑤 ↔ 0 ≤ (𝑁‘(𝐴 − 𝑦)))) | |
| 41 | 30, 40 | ralrnmptw 7084 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))0 ≤ 𝑤 ↔ ∀𝑦 ∈ 𝑌 0 ≤ (𝑁‘(𝐴 − 𝑦)))) |
| 42 | 39, 41 | ax-mp 5 | . . . 4 ⊢ (∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))0 ≤ 𝑤 ↔ ∀𝑦 ∈ 𝑌 0 ≤ (𝑁‘(𝐴 − 𝑦))) |
| 43 | 38, 42 | sylibr 234 | . . 3 ⊢ (𝜑 → ∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))0 ≤ 𝑤) |
| 44 | 1 | raleqi 3303 | . . 3 ⊢ (∀𝑤 ∈ 𝑅 0 ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))0 ≤ 𝑤) |
| 45 | 43, 44 | sylibr 234 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) |
| 46 | 24, 35, 45 | 3jca 1128 | 1 ⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 Vcvv 3459 ⊆ wss 3926 ∅c0 4308 class class class wbr 5119 ↦ cmpt 5201 dom cdm 5654 ran crn 5655 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 0cc0 11129 ≤ cle 11270 Basecbs 17228 ↾s cress 17251 TopOpenctopn 17435 -gcsg 18918 LModclmod 20817 LSubSpclss 20888 normcnm 24515 NrmGrpcngp 24516 ℂPreHilccph 25118 CMetSpccms 25284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-0g 17455 df-topgen 17457 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-lmod 20819 df-lss 20889 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-xms 24259 df-ms 24260 df-nm 24521 df-ngp 24522 df-nlm 24525 df-cph 25120 |
| This theorem is referenced by: minveclem4c 25377 minveclem2 25378 minveclem3b 25380 minveclem4 25384 minveclem6 25386 |
| Copyright terms: Public domain | W3C validator |