MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem1 Structured version   Visualization version   GIF version

Theorem minveclem1 25346
Description: Lemma for minvec 25358. The set of all distances from points of 𝑌 to 𝐴 are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
Assertion
Ref Expression
minveclem1 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
Distinct variable groups:   𝑦,𝑤,   𝑤,𝐴,𝑦   𝑤,𝐽,𝑦   𝑤,𝑁,𝑦   𝜑,𝑤,𝑦   𝑤,𝑅,𝑦   𝑤,𝑈,𝑦   𝑤,𝑋,𝑦   𝑤,𝑌,𝑦

Proof of Theorem minveclem1
StepHypRef Expression
1 minvec.r . . 3 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
2 minvec.u . . . . . . 7 (𝜑𝑈 ∈ ℂPreHil)
3 cphngp 25095 . . . . . . 7 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
42, 3syl 17 . . . . . 6 (𝜑𝑈 ∈ NrmGrp)
5 cphlmod 25096 . . . . . . . . 9 (𝑈 ∈ ℂPreHil → 𝑈 ∈ LMod)
62, 5syl 17 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
76adantr 480 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑈 ∈ LMod)
8 minvec.a . . . . . . . 8 (𝜑𝐴𝑋)
98adantr 480 . . . . . . 7 ((𝜑𝑦𝑌) → 𝐴𝑋)
10 minvec.y . . . . . . . . 9 (𝜑𝑌 ∈ (LSubSp‘𝑈))
11 minvec.x . . . . . . . . . 10 𝑋 = (Base‘𝑈)
12 eqid 2731 . . . . . . . . . 10 (LSubSp‘𝑈) = (LSubSp‘𝑈)
1311, 12lssss 20864 . . . . . . . . 9 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
1410, 13syl 17 . . . . . . . 8 (𝜑𝑌𝑋)
1514sselda 3929 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑦𝑋)
16 minvec.m . . . . . . . 8 = (-g𝑈)
1711, 16lmodvsubcl 20835 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝐴𝑋𝑦𝑋) → (𝐴 𝑦) ∈ 𝑋)
187, 9, 15, 17syl3anc 1373 . . . . . 6 ((𝜑𝑦𝑌) → (𝐴 𝑦) ∈ 𝑋)
19 minvec.n . . . . . . 7 𝑁 = (norm‘𝑈)
2011, 19nmcl 24526 . . . . . 6 ((𝑈 ∈ NrmGrp ∧ (𝐴 𝑦) ∈ 𝑋) → (𝑁‘(𝐴 𝑦)) ∈ ℝ)
214, 18, 20syl2an2r 685 . . . . 5 ((𝜑𝑦𝑌) → (𝑁‘(𝐴 𝑦)) ∈ ℝ)
2221fmpttd 7043 . . . 4 (𝜑 → (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))):𝑌⟶ℝ)
2322frnd 6654 . . 3 (𝜑 → ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) ⊆ ℝ)
241, 23eqsstrid 3968 . 2 (𝜑𝑅 ⊆ ℝ)
2512lssn0 20868 . . . 4 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ≠ ∅)
2610, 25syl 17 . . 3 (𝜑𝑌 ≠ ∅)
271eqeq1i 2736 . . . . 5 (𝑅 = ∅ ↔ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = ∅)
28 dm0rn0 5859 . . . . 5 (dom (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = ∅ ↔ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = ∅)
29 fvex 6830 . . . . . . 7 (𝑁‘(𝐴 𝑦)) ∈ V
30 eqid 2731 . . . . . . 7 (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
3129, 30dmmpti 6620 . . . . . 6 dom (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = 𝑌
3231eqeq1i 2736 . . . . 5 (dom (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = ∅ ↔ 𝑌 = ∅)
3327, 28, 323bitr2i 299 . . . 4 (𝑅 = ∅ ↔ 𝑌 = ∅)
3433necon3bii 2980 . . 3 (𝑅 ≠ ∅ ↔ 𝑌 ≠ ∅)
3526, 34sylibr 234 . 2 (𝜑𝑅 ≠ ∅)
3611, 19nmge0 24527 . . . . . 6 ((𝑈 ∈ NrmGrp ∧ (𝐴 𝑦) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴 𝑦)))
374, 18, 36syl2an2r 685 . . . . 5 ((𝜑𝑦𝑌) → 0 ≤ (𝑁‘(𝐴 𝑦)))
3837ralrimiva 3124 . . . 4 (𝜑 → ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴 𝑦)))
3929rgenw 3051 . . . . 5 𝑦𝑌 (𝑁‘(𝐴 𝑦)) ∈ V
40 breq2 5090 . . . . . 6 (𝑤 = (𝑁‘(𝐴 𝑦)) → (0 ≤ 𝑤 ↔ 0 ≤ (𝑁‘(𝐴 𝑦))))
4130, 40ralrnmptw 7022 . . . . 5 (∀𝑦𝑌 (𝑁‘(𝐴 𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))0 ≤ 𝑤 ↔ ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴 𝑦))))
4239, 41ax-mp 5 . . . 4 (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))0 ≤ 𝑤 ↔ ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴 𝑦)))
4338, 42sylibr 234 . . 3 (𝜑 → ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))0 ≤ 𝑤)
441raleqi 3290 . . 3 (∀𝑤𝑅 0 ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))0 ≤ 𝑤)
4543, 44sylibr 234 . 2 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
4624, 35, 453jca 1128 1 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  Vcvv 3436  wss 3897  c0 4278   class class class wbr 5086  cmpt 5167  dom cdm 5611  ran crn 5612  cfv 6476  (class class class)co 7341  cr 11000  0cc0 11001  cle 11142  Basecbs 17115  s cress 17136  TopOpenctopn 17320  -gcsg 18843  LModclmod 20788  LSubSpclss 20859  normcnm 24486  NrmGrpcngp 24487  ℂPreHilccph 25088  CMetSpccms 25254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-n0 12377  df-z 12464  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-0g 17340  df-topgen 17342  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-lmod 20790  df-lss 20860  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-xms 24230  df-ms 24231  df-nm 24492  df-ngp 24493  df-nlm 24496  df-cph 25090
This theorem is referenced by:  minveclem4c  25347  minveclem2  25348  minveclem3b  25350  minveclem4  25354  minveclem6  25356
  Copyright terms: Public domain W3C validator