![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > minveclem1 | Structured version Visualization version GIF version |
Description: Lemma for minvec 25489. The set of all distances from points of 𝑌 to 𝐴 are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
minvec.x | ⊢ 𝑋 = (Base‘𝑈) |
minvec.m | ⊢ − = (-g‘𝑈) |
minvec.n | ⊢ 𝑁 = (norm‘𝑈) |
minvec.u | ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
minvec.y | ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
minvec.w | ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
minvec.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
minvec.j | ⊢ 𝐽 = (TopOpen‘𝑈) |
minvec.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
Ref | Expression |
---|---|
minveclem1 | ⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minvec.r | . . 3 ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) | |
2 | minvec.u | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) | |
3 | cphngp 25226 | . . . . . . 7 ⊢ (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp) | |
4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ NrmGrp) |
5 | cphlmod 25227 | . . . . . . . . 9 ⊢ (𝑈 ∈ ℂPreHil → 𝑈 ∈ LMod) | |
6 | 2, 5 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LMod) |
7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑈 ∈ LMod) |
8 | minvec.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
9 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ 𝑋) |
10 | minvec.y | . . . . . . . . 9 ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) | |
11 | minvec.x | . . . . . . . . . 10 ⊢ 𝑋 = (Base‘𝑈) | |
12 | eqid 2740 | . . . . . . . . . 10 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
13 | 11, 12 | lssss 20957 | . . . . . . . . 9 ⊢ (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ⊆ 𝑋) |
14 | 10, 13 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
15 | 14 | sselda 4008 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑋) |
16 | minvec.m | . . . . . . . 8 ⊢ − = (-g‘𝑈) | |
17 | 11, 16 | lmodvsubcl 20927 | . . . . . . 7 ⊢ ((𝑈 ∈ LMod ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐴 − 𝑦) ∈ 𝑋) |
18 | 7, 9, 15, 17 | syl3anc 1371 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐴 − 𝑦) ∈ 𝑋) |
19 | minvec.n | . . . . . . 7 ⊢ 𝑁 = (norm‘𝑈) | |
20 | 11, 19 | nmcl 24650 | . . . . . 6 ⊢ ((𝑈 ∈ NrmGrp ∧ (𝐴 − 𝑦) ∈ 𝑋) → (𝑁‘(𝐴 − 𝑦)) ∈ ℝ) |
21 | 4, 18, 20 | syl2an2r 684 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑁‘(𝐴 − 𝑦)) ∈ ℝ) |
22 | 21 | fmpttd 7149 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))):𝑌⟶ℝ) |
23 | 22 | frnd 6755 | . . 3 ⊢ (𝜑 → ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) ⊆ ℝ) |
24 | 1, 23 | eqsstrid 4057 | . 2 ⊢ (𝜑 → 𝑅 ⊆ ℝ) |
25 | 12 | lssn0 20961 | . . . 4 ⊢ (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ≠ ∅) |
26 | 10, 25 | syl 17 | . . 3 ⊢ (𝜑 → 𝑌 ≠ ∅) |
27 | 1 | eqeq1i 2745 | . . . . 5 ⊢ (𝑅 = ∅ ↔ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = ∅) |
28 | dm0rn0 5949 | . . . . 5 ⊢ (dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = ∅ ↔ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = ∅) | |
29 | fvex 6933 | . . . . . . 7 ⊢ (𝑁‘(𝐴 − 𝑦)) ∈ V | |
30 | eqid 2740 | . . . . . . 7 ⊢ (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) | |
31 | 29, 30 | dmmpti 6724 | . . . . . 6 ⊢ dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = 𝑌 |
32 | 31 | eqeq1i 2745 | . . . . 5 ⊢ (dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = ∅ ↔ 𝑌 = ∅) |
33 | 27, 28, 32 | 3bitr2i 299 | . . . 4 ⊢ (𝑅 = ∅ ↔ 𝑌 = ∅) |
34 | 33 | necon3bii 2999 | . . 3 ⊢ (𝑅 ≠ ∅ ↔ 𝑌 ≠ ∅) |
35 | 26, 34 | sylibr 234 | . 2 ⊢ (𝜑 → 𝑅 ≠ ∅) |
36 | 11, 19 | nmge0 24651 | . . . . . 6 ⊢ ((𝑈 ∈ NrmGrp ∧ (𝐴 − 𝑦) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴 − 𝑦))) |
37 | 4, 18, 36 | syl2an2r 684 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 0 ≤ (𝑁‘(𝐴 − 𝑦))) |
38 | 37 | ralrimiva 3152 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝑌 0 ≤ (𝑁‘(𝐴 − 𝑦))) |
39 | 29 | rgenw 3071 | . . . . 5 ⊢ ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑦)) ∈ V |
40 | breq2 5170 | . . . . . 6 ⊢ (𝑤 = (𝑁‘(𝐴 − 𝑦)) → (0 ≤ 𝑤 ↔ 0 ≤ (𝑁‘(𝐴 − 𝑦)))) | |
41 | 30, 40 | ralrnmptw 7128 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))0 ≤ 𝑤 ↔ ∀𝑦 ∈ 𝑌 0 ≤ (𝑁‘(𝐴 − 𝑦)))) |
42 | 39, 41 | ax-mp 5 | . . . 4 ⊢ (∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))0 ≤ 𝑤 ↔ ∀𝑦 ∈ 𝑌 0 ≤ (𝑁‘(𝐴 − 𝑦))) |
43 | 38, 42 | sylibr 234 | . . 3 ⊢ (𝜑 → ∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))0 ≤ 𝑤) |
44 | 1 | raleqi 3332 | . . 3 ⊢ (∀𝑤 ∈ 𝑅 0 ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))0 ≤ 𝑤) |
45 | 43, 44 | sylibr 234 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) |
46 | 24, 35, 45 | 3jca 1128 | 1 ⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ran crn 5701 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 0cc0 11184 ≤ cle 11325 Basecbs 17258 ↾s cress 17287 TopOpenctopn 17481 -gcsg 18975 LModclmod 20880 LSubSpclss 20952 normcnm 24610 NrmGrpcngp 24611 ℂPreHilccph 25219 CMetSpccms 25385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-0g 17501 df-topgen 17503 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-lmod 20882 df-lss 20953 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-xms 24351 df-ms 24352 df-nm 24616 df-ngp 24617 df-nlm 24620 df-cph 25221 |
This theorem is referenced by: minveclem4c 25478 minveclem2 25479 minveclem3b 25481 minveclem4 25485 minveclem6 25487 |
Copyright terms: Public domain | W3C validator |