| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > minveclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for minvec 25407. The set of all distances from points of 𝑌 to 𝐴 are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| minvec.x | ⊢ 𝑋 = (Base‘𝑈) |
| minvec.m | ⊢ − = (-g‘𝑈) |
| minvec.n | ⊢ 𝑁 = (norm‘𝑈) |
| minvec.u | ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
| minvec.y | ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
| minvec.w | ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
| minvec.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| minvec.j | ⊢ 𝐽 = (TopOpen‘𝑈) |
| minvec.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
| Ref | Expression |
|---|---|
| minveclem1 | ⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minvec.r | . . 3 ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) | |
| 2 | minvec.u | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) | |
| 3 | cphngp 25144 | . . . . . . 7 ⊢ (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp) | |
| 4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ NrmGrp) |
| 5 | cphlmod 25145 | . . . . . . . . 9 ⊢ (𝑈 ∈ ℂPreHil → 𝑈 ∈ LMod) | |
| 6 | 2, 5 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑈 ∈ LMod) |
| 8 | minvec.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 9 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ 𝑋) |
| 10 | minvec.y | . . . . . . . . 9 ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) | |
| 11 | minvec.x | . . . . . . . . . 10 ⊢ 𝑋 = (Base‘𝑈) | |
| 12 | eqid 2734 | . . . . . . . . . 10 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 13 | 11, 12 | lssss 20903 | . . . . . . . . 9 ⊢ (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ⊆ 𝑋) |
| 14 | 10, 13 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 15 | 14 | sselda 3963 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑋) |
| 16 | minvec.m | . . . . . . . 8 ⊢ − = (-g‘𝑈) | |
| 17 | 11, 16 | lmodvsubcl 20874 | . . . . . . 7 ⊢ ((𝑈 ∈ LMod ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐴 − 𝑦) ∈ 𝑋) |
| 18 | 7, 9, 15, 17 | syl3anc 1372 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐴 − 𝑦) ∈ 𝑋) |
| 19 | minvec.n | . . . . . . 7 ⊢ 𝑁 = (norm‘𝑈) | |
| 20 | 11, 19 | nmcl 24574 | . . . . . 6 ⊢ ((𝑈 ∈ NrmGrp ∧ (𝐴 − 𝑦) ∈ 𝑋) → (𝑁‘(𝐴 − 𝑦)) ∈ ℝ) |
| 21 | 4, 18, 20 | syl2an2r 685 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑁‘(𝐴 − 𝑦)) ∈ ℝ) |
| 22 | 21 | fmpttd 7115 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))):𝑌⟶ℝ) |
| 23 | 22 | frnd 6724 | . . 3 ⊢ (𝜑 → ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) ⊆ ℝ) |
| 24 | 1, 23 | eqsstrid 4002 | . 2 ⊢ (𝜑 → 𝑅 ⊆ ℝ) |
| 25 | 12 | lssn0 20907 | . . . 4 ⊢ (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ≠ ∅) |
| 26 | 10, 25 | syl 17 | . . 3 ⊢ (𝜑 → 𝑌 ≠ ∅) |
| 27 | 1 | eqeq1i 2739 | . . . . 5 ⊢ (𝑅 = ∅ ↔ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = ∅) |
| 28 | dm0rn0 5915 | . . . . 5 ⊢ (dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = ∅ ↔ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = ∅) | |
| 29 | fvex 6899 | . . . . . . 7 ⊢ (𝑁‘(𝐴 − 𝑦)) ∈ V | |
| 30 | eqid 2734 | . . . . . . 7 ⊢ (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) | |
| 31 | 29, 30 | dmmpti 6692 | . . . . . 6 ⊢ dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = 𝑌 |
| 32 | 31 | eqeq1i 2739 | . . . . 5 ⊢ (dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = ∅ ↔ 𝑌 = ∅) |
| 33 | 27, 28, 32 | 3bitr2i 299 | . . . 4 ⊢ (𝑅 = ∅ ↔ 𝑌 = ∅) |
| 34 | 33 | necon3bii 2983 | . . 3 ⊢ (𝑅 ≠ ∅ ↔ 𝑌 ≠ ∅) |
| 35 | 26, 34 | sylibr 234 | . 2 ⊢ (𝜑 → 𝑅 ≠ ∅) |
| 36 | 11, 19 | nmge0 24575 | . . . . . 6 ⊢ ((𝑈 ∈ NrmGrp ∧ (𝐴 − 𝑦) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴 − 𝑦))) |
| 37 | 4, 18, 36 | syl2an2r 685 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 0 ≤ (𝑁‘(𝐴 − 𝑦))) |
| 38 | 37 | ralrimiva 3133 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝑌 0 ≤ (𝑁‘(𝐴 − 𝑦))) |
| 39 | 29 | rgenw 3054 | . . . . 5 ⊢ ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑦)) ∈ V |
| 40 | breq2 5127 | . . . . . 6 ⊢ (𝑤 = (𝑁‘(𝐴 − 𝑦)) → (0 ≤ 𝑤 ↔ 0 ≤ (𝑁‘(𝐴 − 𝑦)))) | |
| 41 | 30, 40 | ralrnmptw 7094 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))0 ≤ 𝑤 ↔ ∀𝑦 ∈ 𝑌 0 ≤ (𝑁‘(𝐴 − 𝑦)))) |
| 42 | 39, 41 | ax-mp 5 | . . . 4 ⊢ (∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))0 ≤ 𝑤 ↔ ∀𝑦 ∈ 𝑌 0 ≤ (𝑁‘(𝐴 − 𝑦))) |
| 43 | 38, 42 | sylibr 234 | . . 3 ⊢ (𝜑 → ∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))0 ≤ 𝑤) |
| 44 | 1 | raleqi 3307 | . . 3 ⊢ (∀𝑤 ∈ 𝑅 0 ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))0 ≤ 𝑤) |
| 45 | 43, 44 | sylibr 234 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) |
| 46 | 24, 35, 45 | 3jca 1128 | 1 ⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 Vcvv 3463 ⊆ wss 3931 ∅c0 4313 class class class wbr 5123 ↦ cmpt 5205 dom cdm 5665 ran crn 5666 ‘cfv 6541 (class class class)co 7413 ℝcr 11136 0cc0 11137 ≤ cle 11278 Basecbs 17230 ↾s cress 17253 TopOpenctopn 17438 -gcsg 18923 LModclmod 20827 LSubSpclss 20898 normcnm 24534 NrmGrpcngp 24535 ℂPreHilccph 25137 CMetSpccms 25303 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-sup 9464 df-inf 9465 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-n0 12510 df-z 12597 df-uz 12861 df-q 12973 df-rp 13017 df-xneg 13136 df-xadd 13137 df-xmul 13138 df-0g 17458 df-topgen 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-sbg 18926 df-lmod 20829 df-lss 20899 df-psmet 21319 df-xmet 21320 df-met 21321 df-bl 21322 df-mopn 21323 df-top 22849 df-topon 22866 df-topsp 22888 df-bases 22901 df-xms 24276 df-ms 24277 df-nm 24540 df-ngp 24541 df-nlm 24544 df-cph 25139 |
| This theorem is referenced by: minveclem4c 25396 minveclem2 25397 minveclem3b 25399 minveclem4 25403 minveclem6 25405 |
| Copyright terms: Public domain | W3C validator |