Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem1 Structured version   Visualization version   GIF version

Theorem minveclem1 24019
 Description: Lemma for minvec 24031. The set of all distances from points of 𝑌 to 𝐴 are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
Assertion
Ref Expression
minveclem1 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
Distinct variable groups:   𝑦,𝑤,   𝑤,𝐴,𝑦   𝑤,𝐽,𝑦   𝑤,𝑁,𝑦   𝜑,𝑤,𝑦   𝑤,𝑅,𝑦   𝑤,𝑈,𝑦   𝑤,𝑋,𝑦   𝑤,𝑌,𝑦

Proof of Theorem minveclem1
StepHypRef Expression
1 minvec.r . . 3 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
2 minvec.u . . . . . . 7 (𝜑𝑈 ∈ ℂPreHil)
3 cphngp 23769 . . . . . . 7 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
42, 3syl 17 . . . . . 6 (𝜑𝑈 ∈ NrmGrp)
5 cphlmod 23770 . . . . . . . . 9 (𝑈 ∈ ℂPreHil → 𝑈 ∈ LMod)
62, 5syl 17 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
76adantr 483 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑈 ∈ LMod)
8 minvec.a . . . . . . . 8 (𝜑𝐴𝑋)
98adantr 483 . . . . . . 7 ((𝜑𝑦𝑌) → 𝐴𝑋)
10 minvec.y . . . . . . . . 9 (𝜑𝑌 ∈ (LSubSp‘𝑈))
11 minvec.x . . . . . . . . . 10 𝑋 = (Base‘𝑈)
12 eqid 2819 . . . . . . . . . 10 (LSubSp‘𝑈) = (LSubSp‘𝑈)
1311, 12lssss 19700 . . . . . . . . 9 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
1410, 13syl 17 . . . . . . . 8 (𝜑𝑌𝑋)
1514sselda 3965 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑦𝑋)
16 minvec.m . . . . . . . 8 = (-g𝑈)
1711, 16lmodvsubcl 19671 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝐴𝑋𝑦𝑋) → (𝐴 𝑦) ∈ 𝑋)
187, 9, 15, 17syl3anc 1365 . . . . . 6 ((𝜑𝑦𝑌) → (𝐴 𝑦) ∈ 𝑋)
19 minvec.n . . . . . . 7 𝑁 = (norm‘𝑈)
2011, 19nmcl 23217 . . . . . 6 ((𝑈 ∈ NrmGrp ∧ (𝐴 𝑦) ∈ 𝑋) → (𝑁‘(𝐴 𝑦)) ∈ ℝ)
214, 18, 20syl2an2r 683 . . . . 5 ((𝜑𝑦𝑌) → (𝑁‘(𝐴 𝑦)) ∈ ℝ)
2221fmpttd 6872 . . . 4 (𝜑 → (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))):𝑌⟶ℝ)
2322frnd 6514 . . 3 (𝜑 → ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) ⊆ ℝ)
241, 23eqsstrid 4013 . 2 (𝜑𝑅 ⊆ ℝ)
2512lssn0 19704 . . . 4 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ≠ ∅)
2610, 25syl 17 . . 3 (𝜑𝑌 ≠ ∅)
271eqeq1i 2824 . . . . 5 (𝑅 = ∅ ↔ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = ∅)
28 dm0rn0 5788 . . . . 5 (dom (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = ∅ ↔ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = ∅)
29 fvex 6676 . . . . . . 7 (𝑁‘(𝐴 𝑦)) ∈ V
30 eqid 2819 . . . . . . 7 (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
3129, 30dmmpti 6485 . . . . . 6 dom (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = 𝑌
3231eqeq1i 2824 . . . . 5 (dom (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = ∅ ↔ 𝑌 = ∅)
3327, 28, 323bitr2i 301 . . . 4 (𝑅 = ∅ ↔ 𝑌 = ∅)
3433necon3bii 3066 . . 3 (𝑅 ≠ ∅ ↔ 𝑌 ≠ ∅)
3526, 34sylibr 236 . 2 (𝜑𝑅 ≠ ∅)
3611, 19nmge0 23218 . . . . . 6 ((𝑈 ∈ NrmGrp ∧ (𝐴 𝑦) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴 𝑦)))
374, 18, 36syl2an2r 683 . . . . 5 ((𝜑𝑦𝑌) → 0 ≤ (𝑁‘(𝐴 𝑦)))
3837ralrimiva 3180 . . . 4 (𝜑 → ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴 𝑦)))
3929rgenw 3148 . . . . 5 𝑦𝑌 (𝑁‘(𝐴 𝑦)) ∈ V
40 breq2 5061 . . . . . 6 (𝑤 = (𝑁‘(𝐴 𝑦)) → (0 ≤ 𝑤 ↔ 0 ≤ (𝑁‘(𝐴 𝑦))))
4130, 40ralrnmptw 6853 . . . . 5 (∀𝑦𝑌 (𝑁‘(𝐴 𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))0 ≤ 𝑤 ↔ ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴 𝑦))))
4239, 41ax-mp 5 . . . 4 (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))0 ≤ 𝑤 ↔ ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴 𝑦)))
4338, 42sylibr 236 . . 3 (𝜑 → ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))0 ≤ 𝑤)
441raleqi 3412 . . 3 (∀𝑤𝑅 0 ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))0 ≤ 𝑤)
4543, 44sylibr 236 . 2 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
4624, 35, 453jca 1122 1 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107   ≠ wne 3014  ∀wral 3136  Vcvv 3493   ⊆ wss 3934  ∅c0 4289   class class class wbr 5057   ↦ cmpt 5137  dom cdm 5548  ran crn 5549  ‘cfv 6348  (class class class)co 7148  ℝcr 10528  0cc0 10529   ≤ cle 10668  Basecbs 16475   ↾s cress 16476  TopOpenctopn 16687  -gcsg 18097  LModclmod 19626  LSubSpclss 19695  normcnm 23178  NrmGrpcngp 23179  ℂPreHilccph 23762  CMetSpccms 23927 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-0g 16707  df-topgen 16709  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-lmod 19628  df-lss 19696  df-psmet 20529  df-xmet 20530  df-met 20531  df-bl 20532  df-mopn 20533  df-top 21494  df-topon 21511  df-topsp 21533  df-bases 21546  df-xms 22922  df-ms 22923  df-nm 23184  df-ngp 23185  df-nlm 23188  df-cph 23764 This theorem is referenced by:  minveclem4c  24020  minveclem2  24021  minveclem3b  24023  minveclem4  24027  minveclem6  24029
 Copyright terms: Public domain W3C validator