| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > minveclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for minvec 25358. The set of all distances from points of 𝑌 to 𝐴 are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| minvec.x | ⊢ 𝑋 = (Base‘𝑈) |
| minvec.m | ⊢ − = (-g‘𝑈) |
| minvec.n | ⊢ 𝑁 = (norm‘𝑈) |
| minvec.u | ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
| minvec.y | ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
| minvec.w | ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
| minvec.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| minvec.j | ⊢ 𝐽 = (TopOpen‘𝑈) |
| minvec.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
| Ref | Expression |
|---|---|
| minveclem1 | ⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minvec.r | . . 3 ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) | |
| 2 | minvec.u | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) | |
| 3 | cphngp 25095 | . . . . . . 7 ⊢ (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp) | |
| 4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ NrmGrp) |
| 5 | cphlmod 25096 | . . . . . . . . 9 ⊢ (𝑈 ∈ ℂPreHil → 𝑈 ∈ LMod) | |
| 6 | 2, 5 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑈 ∈ LMod) |
| 8 | minvec.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 9 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ 𝑋) |
| 10 | minvec.y | . . . . . . . . 9 ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) | |
| 11 | minvec.x | . . . . . . . . . 10 ⊢ 𝑋 = (Base‘𝑈) | |
| 12 | eqid 2731 | . . . . . . . . . 10 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 13 | 11, 12 | lssss 20864 | . . . . . . . . 9 ⊢ (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ⊆ 𝑋) |
| 14 | 10, 13 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 15 | 14 | sselda 3929 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑋) |
| 16 | minvec.m | . . . . . . . 8 ⊢ − = (-g‘𝑈) | |
| 17 | 11, 16 | lmodvsubcl 20835 | . . . . . . 7 ⊢ ((𝑈 ∈ LMod ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐴 − 𝑦) ∈ 𝑋) |
| 18 | 7, 9, 15, 17 | syl3anc 1373 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐴 − 𝑦) ∈ 𝑋) |
| 19 | minvec.n | . . . . . . 7 ⊢ 𝑁 = (norm‘𝑈) | |
| 20 | 11, 19 | nmcl 24526 | . . . . . 6 ⊢ ((𝑈 ∈ NrmGrp ∧ (𝐴 − 𝑦) ∈ 𝑋) → (𝑁‘(𝐴 − 𝑦)) ∈ ℝ) |
| 21 | 4, 18, 20 | syl2an2r 685 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑁‘(𝐴 − 𝑦)) ∈ ℝ) |
| 22 | 21 | fmpttd 7043 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))):𝑌⟶ℝ) |
| 23 | 22 | frnd 6654 | . . 3 ⊢ (𝜑 → ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) ⊆ ℝ) |
| 24 | 1, 23 | eqsstrid 3968 | . 2 ⊢ (𝜑 → 𝑅 ⊆ ℝ) |
| 25 | 12 | lssn0 20868 | . . . 4 ⊢ (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ≠ ∅) |
| 26 | 10, 25 | syl 17 | . . 3 ⊢ (𝜑 → 𝑌 ≠ ∅) |
| 27 | 1 | eqeq1i 2736 | . . . . 5 ⊢ (𝑅 = ∅ ↔ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = ∅) |
| 28 | dm0rn0 5859 | . . . . 5 ⊢ (dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = ∅ ↔ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = ∅) | |
| 29 | fvex 6830 | . . . . . . 7 ⊢ (𝑁‘(𝐴 − 𝑦)) ∈ V | |
| 30 | eqid 2731 | . . . . . . 7 ⊢ (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) | |
| 31 | 29, 30 | dmmpti 6620 | . . . . . 6 ⊢ dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = 𝑌 |
| 32 | 31 | eqeq1i 2736 | . . . . 5 ⊢ (dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = ∅ ↔ 𝑌 = ∅) |
| 33 | 27, 28, 32 | 3bitr2i 299 | . . . 4 ⊢ (𝑅 = ∅ ↔ 𝑌 = ∅) |
| 34 | 33 | necon3bii 2980 | . . 3 ⊢ (𝑅 ≠ ∅ ↔ 𝑌 ≠ ∅) |
| 35 | 26, 34 | sylibr 234 | . 2 ⊢ (𝜑 → 𝑅 ≠ ∅) |
| 36 | 11, 19 | nmge0 24527 | . . . . . 6 ⊢ ((𝑈 ∈ NrmGrp ∧ (𝐴 − 𝑦) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴 − 𝑦))) |
| 37 | 4, 18, 36 | syl2an2r 685 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 0 ≤ (𝑁‘(𝐴 − 𝑦))) |
| 38 | 37 | ralrimiva 3124 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝑌 0 ≤ (𝑁‘(𝐴 − 𝑦))) |
| 39 | 29 | rgenw 3051 | . . . . 5 ⊢ ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑦)) ∈ V |
| 40 | breq2 5090 | . . . . . 6 ⊢ (𝑤 = (𝑁‘(𝐴 − 𝑦)) → (0 ≤ 𝑤 ↔ 0 ≤ (𝑁‘(𝐴 − 𝑦)))) | |
| 41 | 30, 40 | ralrnmptw 7022 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))0 ≤ 𝑤 ↔ ∀𝑦 ∈ 𝑌 0 ≤ (𝑁‘(𝐴 − 𝑦)))) |
| 42 | 39, 41 | ax-mp 5 | . . . 4 ⊢ (∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))0 ≤ 𝑤 ↔ ∀𝑦 ∈ 𝑌 0 ≤ (𝑁‘(𝐴 − 𝑦))) |
| 43 | 38, 42 | sylibr 234 | . . 3 ⊢ (𝜑 → ∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))0 ≤ 𝑤) |
| 44 | 1 | raleqi 3290 | . . 3 ⊢ (∀𝑤 ∈ 𝑅 0 ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))0 ≤ 𝑤) |
| 45 | 43, 44 | sylibr 234 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) |
| 46 | 24, 35, 45 | 3jca 1128 | 1 ⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 Vcvv 3436 ⊆ wss 3897 ∅c0 4278 class class class wbr 5086 ↦ cmpt 5167 dom cdm 5611 ran crn 5612 ‘cfv 6476 (class class class)co 7341 ℝcr 11000 0cc0 11001 ≤ cle 11142 Basecbs 17115 ↾s cress 17136 TopOpenctopn 17320 -gcsg 18843 LModclmod 20788 LSubSpclss 20859 normcnm 24486 NrmGrpcngp 24487 ℂPreHilccph 25088 CMetSpccms 25254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-n0 12377 df-z 12464 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-0g 17340 df-topgen 17342 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-lmod 20790 df-lss 20860 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-top 22804 df-topon 22821 df-topsp 22843 df-bases 22856 df-xms 24230 df-ms 24231 df-nm 24492 df-ngp 24493 df-nlm 24496 df-cph 25090 |
| This theorem is referenced by: minveclem4c 25347 minveclem2 25348 minveclem3b 25350 minveclem4 25354 minveclem6 25356 |
| Copyright terms: Public domain | W3C validator |