| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cph2ass | Structured version Visualization version GIF version | ||
| Description: Move scalar multiplication to outside of inner product. See his35 31069. (Contributed by Mario Carneiro, 17-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphipcj.h | ⊢ , = (·𝑖‘𝑊) |
| cphipcj.v | ⊢ 𝑉 = (Base‘𝑊) |
| cphass.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| cphass.k | ⊢ 𝐾 = (Base‘𝐹) |
| cphass.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| Ref | Expression |
|---|---|
| cph2ass | ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 · 𝐶) , (𝐵 · 𝐷)) = ((𝐴 · (∗‘𝐵)) · (𝐶 , 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝑊 ∈ ℂPreHil) | |
| 2 | simp2r 1201 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐵 ∈ 𝐾) | |
| 3 | simp3l 1202 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
| 4 | simp3r 1203 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐷 ∈ 𝑉) | |
| 5 | cphipcj.h | . . . . 5 ⊢ , = (·𝑖‘𝑊) | |
| 6 | cphipcj.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 7 | cphass.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 8 | cphass.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 9 | cphass.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 10 | 5, 6, 7, 8, 9 | cphassr 25164 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐶 , (𝐵 · 𝐷)) = ((∗‘𝐵) · (𝐶 , 𝐷))) |
| 11 | 1, 2, 3, 4, 10 | syl13anc 1374 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐶 , (𝐵 · 𝐷)) = ((∗‘𝐵) · (𝐶 , 𝐷))) |
| 12 | 11 | oveq2d 7421 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐴 · (𝐶 , (𝐵 · 𝐷))) = (𝐴 · ((∗‘𝐵) · (𝐶 , 𝐷)))) |
| 13 | simp2l 1200 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐴 ∈ 𝐾) | |
| 14 | cphlmod 25126 | . . . . 5 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod) | |
| 15 | 14 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝑊 ∈ LMod) |
| 16 | 6, 7, 9, 8 | lmodvscl 20835 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝐷 ∈ 𝑉) → (𝐵 · 𝐷) ∈ 𝑉) |
| 17 | 15, 2, 4, 16 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐵 · 𝐷) ∈ 𝑉) |
| 18 | 5, 6, 7, 8, 9 | cphass 25163 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉 ∧ (𝐵 · 𝐷) ∈ 𝑉)) → ((𝐴 · 𝐶) , (𝐵 · 𝐷)) = (𝐴 · (𝐶 , (𝐵 · 𝐷)))) |
| 19 | 1, 13, 3, 17, 18 | syl13anc 1374 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 · 𝐶) , (𝐵 · 𝐷)) = (𝐴 · (𝐶 , (𝐵 · 𝐷)))) |
| 20 | cphclm 25141 | . . . . . 6 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod) | |
| 21 | 20 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝑊 ∈ ℂMod) |
| 22 | 7, 8 | clmsscn 25030 | . . . . 5 ⊢ (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ) |
| 23 | 21, 22 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐾 ⊆ ℂ) |
| 24 | 23, 13 | sseldd 3959 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐴 ∈ ℂ) |
| 25 | 23, 2 | sseldd 3959 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐵 ∈ ℂ) |
| 26 | 25 | cjcld 15215 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (∗‘𝐵) ∈ ℂ) |
| 27 | 6, 5 | cphipcl 25143 | . . . . 5 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → (𝐶 , 𝐷) ∈ ℂ) |
| 28 | 27 | 3expb 1120 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐶 , 𝐷) ∈ ℂ) |
| 29 | 28 | 3adant2 1131 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐶 , 𝐷) ∈ ℂ) |
| 30 | 24, 26, 29 | mulassd 11258 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 · (∗‘𝐵)) · (𝐶 , 𝐷)) = (𝐴 · ((∗‘𝐵) · (𝐶 , 𝐷)))) |
| 31 | 12, 19, 30 | 3eqtr4d 2780 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 · 𝐶) , (𝐵 · 𝐷)) = ((𝐴 · (∗‘𝐵)) · (𝐶 , 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 · cmul 11134 ∗ccj 15115 Basecbs 17228 Scalarcsca 17274 ·𝑠 cvsca 17275 ·𝑖cip 17276 LModclmod 20817 ℂModcclm 25013 ℂPreHilccph 25118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-addf 11208 ax-mulf 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-seq 14020 df-exp 14080 df-cj 15118 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-grp 18919 df-minusg 18920 df-subg 19106 df-ghm 19196 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-cring 20196 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-rhm 20432 df-subrg 20530 df-drng 20691 df-staf 20799 df-srng 20800 df-lmod 20819 df-lmhm 20980 df-lvec 21061 df-sra 21131 df-rgmod 21132 df-cnfld 21316 df-phl 21586 df-nlm 24525 df-clm 25014 df-cph 25120 |
| This theorem is referenced by: pjthlem1 25389 |
| Copyright terms: Public domain | W3C validator |