![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cph2ass | Structured version Visualization version GIF version |
Description: Move scalar multiplication to outside of inner product. See his35 28517. (Contributed by Mario Carneiro, 17-Oct-2015.) |
Ref | Expression |
---|---|
cphipcj.h | ⊢ , = (·𝑖‘𝑊) |
cphipcj.v | ⊢ 𝑉 = (Base‘𝑊) |
cphass.f | ⊢ 𝐹 = (Scalar‘𝑊) |
cphass.k | ⊢ 𝐾 = (Base‘𝐹) |
cphass.s | ⊢ · = ( ·𝑠 ‘𝑊) |
Ref | Expression |
---|---|
cph2ass | ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 · 𝐶) , (𝐵 · 𝐷)) = ((𝐴 · (∗‘𝐵)) · (𝐶 , 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1127 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝑊 ∈ ℂPreHil) | |
2 | simp2r 1214 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐵 ∈ 𝐾) | |
3 | simp3l 1215 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
4 | simp3r 1216 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐷 ∈ 𝑉) | |
5 | cphipcj.h | . . . . 5 ⊢ , = (·𝑖‘𝑊) | |
6 | cphipcj.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
7 | cphass.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
8 | cphass.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
9 | cphass.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
10 | 5, 6, 7, 8, 9 | cphassr 23419 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐶 , (𝐵 · 𝐷)) = ((∗‘𝐵) · (𝐶 , 𝐷))) |
11 | 1, 2, 3, 4, 10 | syl13anc 1440 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐶 , (𝐵 · 𝐷)) = ((∗‘𝐵) · (𝐶 , 𝐷))) |
12 | 11 | oveq2d 6938 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐴 · (𝐶 , (𝐵 · 𝐷))) = (𝐴 · ((∗‘𝐵) · (𝐶 , 𝐷)))) |
13 | simp2l 1213 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐴 ∈ 𝐾) | |
14 | cphlmod 23381 | . . . . 5 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod) | |
15 | 14 | 3ad2ant1 1124 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝑊 ∈ LMod) |
16 | 6, 7, 9, 8 | lmodvscl 19272 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝐷 ∈ 𝑉) → (𝐵 · 𝐷) ∈ 𝑉) |
17 | 15, 2, 4, 16 | syl3anc 1439 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐵 · 𝐷) ∈ 𝑉) |
18 | 5, 6, 7, 8, 9 | cphass 23418 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉 ∧ (𝐵 · 𝐷) ∈ 𝑉)) → ((𝐴 · 𝐶) , (𝐵 · 𝐷)) = (𝐴 · (𝐶 , (𝐵 · 𝐷)))) |
19 | 1, 13, 3, 17, 18 | syl13anc 1440 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 · 𝐶) , (𝐵 · 𝐷)) = (𝐴 · (𝐶 , (𝐵 · 𝐷)))) |
20 | cphclm 23396 | . . . . . 6 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod) | |
21 | 20 | 3ad2ant1 1124 | . . . . 5 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝑊 ∈ ℂMod) |
22 | 7, 8 | clmsscn 23286 | . . . . 5 ⊢ (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ) |
23 | 21, 22 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐾 ⊆ ℂ) |
24 | 23, 13 | sseldd 3822 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐴 ∈ ℂ) |
25 | 23, 2 | sseldd 3822 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐵 ∈ ℂ) |
26 | 25 | cjcld 14343 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (∗‘𝐵) ∈ ℂ) |
27 | 6, 5 | cphipcl 23398 | . . . . 5 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → (𝐶 , 𝐷) ∈ ℂ) |
28 | 27 | 3expb 1110 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐶 , 𝐷) ∈ ℂ) |
29 | 28 | 3adant2 1122 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐶 , 𝐷) ∈ ℂ) |
30 | 24, 26, 29 | mulassd 10400 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 · (∗‘𝐵)) · (𝐶 , 𝐷)) = (𝐴 · ((∗‘𝐵) · (𝐶 , 𝐷)))) |
31 | 12, 19, 30 | 3eqtr4d 2824 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 · 𝐶) , (𝐵 · 𝐷)) = ((𝐴 · (∗‘𝐵)) · (𝐶 , 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ⊆ wss 3792 ‘cfv 6135 (class class class)co 6922 ℂcc 10270 · cmul 10277 ∗ccj 14243 Basecbs 16255 Scalarcsca 16341 ·𝑠 cvsca 16342 ·𝑖cip 16343 LModclmod 19255 ℂModcclm 23269 ℂPreHilccph 23373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-addf 10351 ax-mulf 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-tpos 7634 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-dec 11846 df-uz 11993 df-fz 12644 df-seq 13120 df-exp 13179 df-cj 14246 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-mulr 16352 df-starv 16353 df-sca 16354 df-vsca 16355 df-ip 16356 df-tset 16357 df-ple 16358 df-ds 16360 df-unif 16361 df-0g 16488 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-mhm 17721 df-grp 17812 df-subg 17975 df-ghm 18042 df-cmn 18581 df-mgp 18877 df-ur 18889 df-ring 18936 df-cring 18937 df-oppr 19010 df-dvdsr 19028 df-unit 19029 df-rnghom 19104 df-drng 19141 df-subrg 19170 df-staf 19237 df-srng 19238 df-lmod 19257 df-lmhm 19417 df-lvec 19498 df-sra 19569 df-rgmod 19570 df-cnfld 20143 df-phl 20369 df-nlm 22799 df-clm 23270 df-cph 23375 |
This theorem is referenced by: pjthlem1 23643 |
Copyright terms: Public domain | W3C validator |