MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cph2ass Structured version   Visualization version   GIF version

Theorem cph2ass 24064
Description: Move scalar multiplication to outside of inner product. See his35 29123. (Contributed by Mario Carneiro, 17-Oct-2015.)
Hypotheses
Ref Expression
cphipcj.h , = (·𝑖𝑊)
cphipcj.v 𝑉 = (Base‘𝑊)
cphass.f 𝐹 = (Scalar‘𝑊)
cphass.k 𝐾 = (Base‘𝐹)
cphass.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
cph2ass ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐴 · 𝐶) , (𝐵 · 𝐷)) = ((𝐴 · (∗‘𝐵)) · (𝐶 , 𝐷)))

Proof of Theorem cph2ass
StepHypRef Expression
1 simp1 1138 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → 𝑊 ∈ ℂPreHil)
2 simp2r 1202 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → 𝐵𝐾)
3 simp3l 1203 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → 𝐶𝑉)
4 simp3r 1204 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → 𝐷𝑉)
5 cphipcj.h . . . . 5 , = (·𝑖𝑊)
6 cphipcj.v . . . . 5 𝑉 = (Base‘𝑊)
7 cphass.f . . . . 5 𝐹 = (Scalar‘𝑊)
8 cphass.k . . . . 5 𝐾 = (Base‘𝐹)
9 cphass.s . . . . 5 · = ( ·𝑠𝑊)
105, 6, 7, 8, 9cphassr 24063 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐵𝐾𝐶𝑉𝐷𝑉)) → (𝐶 , (𝐵 · 𝐷)) = ((∗‘𝐵) · (𝐶 , 𝐷)))
111, 2, 3, 4, 10syl13anc 1374 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → (𝐶 , (𝐵 · 𝐷)) = ((∗‘𝐵) · (𝐶 , 𝐷)))
1211oveq2d 7207 . 2 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → (𝐴 · (𝐶 , (𝐵 · 𝐷))) = (𝐴 · ((∗‘𝐵) · (𝐶 , 𝐷))))
13 simp2l 1201 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → 𝐴𝐾)
14 cphlmod 24025 . . . . 5 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
15143ad2ant1 1135 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → 𝑊 ∈ LMod)
166, 7, 9, 8lmodvscl 19870 . . . 4 ((𝑊 ∈ LMod ∧ 𝐵𝐾𝐷𝑉) → (𝐵 · 𝐷) ∈ 𝑉)
1715, 2, 4, 16syl3anc 1373 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → (𝐵 · 𝐷) ∈ 𝑉)
185, 6, 7, 8, 9cphass 24062 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐶𝑉 ∧ (𝐵 · 𝐷) ∈ 𝑉)) → ((𝐴 · 𝐶) , (𝐵 · 𝐷)) = (𝐴 · (𝐶 , (𝐵 · 𝐷))))
191, 13, 3, 17, 18syl13anc 1374 . 2 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐴 · 𝐶) , (𝐵 · 𝐷)) = (𝐴 · (𝐶 , (𝐵 · 𝐷))))
20 cphclm 24040 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
21203ad2ant1 1135 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → 𝑊 ∈ ℂMod)
227, 8clmsscn 23930 . . . . 5 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
2321, 22syl 17 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → 𝐾 ⊆ ℂ)
2423, 13sseldd 3888 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → 𝐴 ∈ ℂ)
2523, 2sseldd 3888 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → 𝐵 ∈ ℂ)
2625cjcld 14724 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → (∗‘𝐵) ∈ ℂ)
276, 5cphipcl 24042 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝐶𝑉𝐷𝑉) → (𝐶 , 𝐷) ∈ ℂ)
28273expb 1122 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐶𝑉𝐷𝑉)) → (𝐶 , 𝐷) ∈ ℂ)
29283adant2 1133 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → (𝐶 , 𝐷) ∈ ℂ)
3024, 26, 29mulassd 10821 . 2 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐴 · (∗‘𝐵)) · (𝐶 , 𝐷)) = (𝐴 · ((∗‘𝐵) · (𝐶 , 𝐷))))
3112, 19, 303eqtr4d 2781 1 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐴 · 𝐶) , (𝐵 · 𝐷)) = ((𝐴 · (∗‘𝐵)) · (𝐶 , 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112  wss 3853  cfv 6358  (class class class)co 7191  cc 10692   · cmul 10699  ccj 14624  Basecbs 16666  Scalarcsca 16752   ·𝑠 cvsca 16753  ·𝑖cip 16754  LModclmod 19853  ℂModcclm 23913  ℂPreHilccph 24017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-addf 10773  ax-mulf 10774
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-tpos 7946  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-fz 13061  df-seq 13540  df-exp 13601  df-cj 14627  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-starv 16764  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-0g 16900  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-mhm 18172  df-grp 18322  df-subg 18494  df-ghm 18574  df-cmn 19126  df-mgp 19459  df-ur 19471  df-ring 19518  df-cring 19519  df-oppr 19595  df-dvdsr 19613  df-unit 19614  df-rnghom 19689  df-drng 19723  df-subrg 19752  df-staf 19835  df-srng 19836  df-lmod 19855  df-lmhm 20013  df-lvec 20094  df-sra 20163  df-rgmod 20164  df-cnfld 20318  df-phl 20542  df-nlm 23438  df-clm 23914  df-cph 24019
This theorem is referenced by:  pjthlem1  24288
  Copyright terms: Public domain W3C validator