Step | Hyp | Ref
| Expression |
1 | | 4re 11987 |
. . . . . 6
⊢ 4 ∈
ℝ |
2 | | minvec.x |
. . . . . . . 8
⊢ 𝑋 = (Base‘𝑈) |
3 | | minvec.m |
. . . . . . . 8
⊢ − =
(-g‘𝑈) |
4 | | minvec.n |
. . . . . . . 8
⊢ 𝑁 = (norm‘𝑈) |
5 | | minvec.u |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
6 | | minvec.y |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
7 | | minvec.w |
. . . . . . . 8
⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
8 | | minvec.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
9 | | minvec.j |
. . . . . . . 8
⊢ 𝐽 = (TopOpen‘𝑈) |
10 | | minvec.r |
. . . . . . . 8
⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
11 | | minvec.s |
. . . . . . . 8
⊢ 𝑆 = inf(𝑅, ℝ, < ) |
12 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | minveclem4c 24494 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ ℝ) |
13 | 12 | resqcld 13893 |
. . . . . 6
⊢ (𝜑 → (𝑆↑2) ∈ ℝ) |
14 | | remulcl 10887 |
. . . . . 6
⊢ ((4
∈ ℝ ∧ (𝑆↑2) ∈ ℝ) → (4 ·
(𝑆↑2)) ∈
ℝ) |
15 | 1, 13, 14 | sylancr 586 |
. . . . 5
⊢ (𝜑 → (4 · (𝑆↑2)) ∈
ℝ) |
16 | | cphngp 24242 |
. . . . . . . . . 10
⊢ (𝑈 ∈ ℂPreHil →
𝑈 ∈
NrmGrp) |
17 | 5, 16 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ NrmGrp) |
18 | | ngpms 23662 |
. . . . . . . . 9
⊢ (𝑈 ∈ NrmGrp → 𝑈 ∈ MetSp) |
19 | 17, 18 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ MetSp) |
20 | | minvec.d |
. . . . . . . . 9
⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) |
21 | 2, 20 | msmet 23518 |
. . . . . . . 8
⊢ (𝑈 ∈ MetSp → 𝐷 ∈ (Met‘𝑋)) |
22 | 19, 21 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
23 | | eqid 2738 |
. . . . . . . . . 10
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
24 | 2, 23 | lssss 20113 |
. . . . . . . . 9
⊢ (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ⊆ 𝑋) |
25 | 6, 24 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
26 | | minveclem2.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ 𝑌) |
27 | 25, 26 | sseldd 3918 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ 𝑋) |
28 | | minveclem2.4 |
. . . . . . . 8
⊢ (𝜑 → 𝐿 ∈ 𝑌) |
29 | 25, 28 | sseldd 3918 |
. . . . . . 7
⊢ (𝜑 → 𝐿 ∈ 𝑋) |
30 | | metcl 23393 |
. . . . . . 7
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐾 ∈ 𝑋 ∧ 𝐿 ∈ 𝑋) → (𝐾𝐷𝐿) ∈ ℝ) |
31 | 22, 27, 29, 30 | syl3anc 1369 |
. . . . . 6
⊢ (𝜑 → (𝐾𝐷𝐿) ∈ ℝ) |
32 | 31 | resqcld 13893 |
. . . . 5
⊢ (𝜑 → ((𝐾𝐷𝐿)↑2) ∈ ℝ) |
33 | 15, 32 | readdcld 10935 |
. . . 4
⊢ (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ∈ ℝ) |
34 | | cphlmod 24243 |
. . . . . . . . . 10
⊢ (𝑈 ∈ ℂPreHil →
𝑈 ∈
LMod) |
35 | 5, 34 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ LMod) |
36 | | cphclm 24258 |
. . . . . . . . . . . . . . 15
⊢ (𝑈 ∈ ℂPreHil →
𝑈 ∈
ℂMod) |
37 | 5, 36 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑈 ∈ ℂMod) |
38 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(Scalar‘𝑈) =
(Scalar‘𝑈) |
39 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) |
40 | 38, 39 | clmzss 24147 |
. . . . . . . . . . . . . 14
⊢ (𝑈 ∈ ℂMod →
ℤ ⊆ (Base‘(Scalar‘𝑈))) |
41 | 37, 40 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ℤ ⊆
(Base‘(Scalar‘𝑈))) |
42 | | 2z 12282 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℤ |
43 | 42 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 2 ∈
ℤ) |
44 | 41, 43 | sseldd 3918 |
. . . . . . . . . . . 12
⊢ (𝜑 → 2 ∈
(Base‘(Scalar‘𝑈))) |
45 | | 2ne0 12007 |
. . . . . . . . . . . . 13
⊢ 2 ≠
0 |
46 | 45 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 2 ≠ 0) |
47 | 38, 39 | cphreccl 24250 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ ℂPreHil ∧ 2
∈ (Base‘(Scalar‘𝑈)) ∧ 2 ≠ 0) → (1 / 2) ∈
(Base‘(Scalar‘𝑈))) |
48 | 5, 44, 46, 47 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 / 2) ∈
(Base‘(Scalar‘𝑈))) |
49 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(+g‘𝑈) = (+g‘𝑈) |
50 | 49, 23 | lssvacl 20131 |
. . . . . . . . . . . 12
⊢ (((𝑈 ∈ LMod ∧ 𝑌 ∈ (LSubSp‘𝑈)) ∧ (𝐾 ∈ 𝑌 ∧ 𝐿 ∈ 𝑌)) → (𝐾(+g‘𝑈)𝐿) ∈ 𝑌) |
51 | 35, 6, 26, 28, 50 | syl22anc 835 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐾(+g‘𝑈)𝐿) ∈ 𝑌) |
52 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (
·𝑠 ‘𝑈) = ( ·𝑠
‘𝑈) |
53 | 38, 52, 39, 23 | lssvscl 20132 |
. . . . . . . . . . 11
⊢ (((𝑈 ∈ LMod ∧ 𝑌 ∈ (LSubSp‘𝑈)) ∧ ((1 / 2) ∈
(Base‘(Scalar‘𝑈)) ∧ (𝐾(+g‘𝑈)𝐿) ∈ 𝑌)) → ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)) ∈ 𝑌) |
54 | 35, 6, 48, 51, 53 | syl22anc 835 |
. . . . . . . . . 10
⊢ (𝜑 → ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)) ∈ 𝑌) |
55 | 25, 54 | sseldd 3918 |
. . . . . . . . 9
⊢ (𝜑 → ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)) ∈ 𝑋) |
56 | 2, 3 | lmodvsubcl 20083 |
. . . . . . . . 9
⊢ ((𝑈 ∈ LMod ∧ 𝐴 ∈ 𝑋 ∧ ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)) ∈ 𝑋) → (𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))) ∈ 𝑋) |
57 | 35, 8, 55, 56 | syl3anc 1369 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))) ∈ 𝑋) |
58 | 2, 4 | nmcl 23678 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmGrp ∧ (𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))) ∈ 𝑋) → (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))) ∈ ℝ) |
59 | 17, 57, 58 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))) ∈ ℝ) |
60 | 59 | resqcld 13893 |
. . . . . 6
⊢ (𝜑 → ((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))↑2) ∈
ℝ) |
61 | | remulcl 10887 |
. . . . . 6
⊢ ((4
∈ ℝ ∧ ((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))↑2) ∈ ℝ) → (4
· ((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))↑2)) ∈
ℝ) |
62 | 1, 60, 61 | sylancr 586 |
. . . . 5
⊢ (𝜑 → (4 · ((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))↑2)) ∈
ℝ) |
63 | 62, 32 | readdcld 10935 |
. . . 4
⊢ (𝜑 → ((4 · ((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) ∈ ℝ) |
64 | | minveclem2.1 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℝ) |
65 | 13, 64 | readdcld 10935 |
. . . . 5
⊢ (𝜑 → ((𝑆↑2) + 𝐵) ∈ ℝ) |
66 | | remulcl 10887 |
. . . . 5
⊢ ((4
∈ ℝ ∧ ((𝑆↑2) + 𝐵) ∈ ℝ) → (4 · ((𝑆↑2) + 𝐵)) ∈ ℝ) |
67 | 1, 65, 66 | sylancr 586 |
. . . 4
⊢ (𝜑 → (4 · ((𝑆↑2) + 𝐵)) ∈ ℝ) |
68 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | minveclem1 24493 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
69 | 68 | simp3d 1142 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) |
70 | 68 | simp1d 1140 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ⊆ ℝ) |
71 | 68 | simp2d 1141 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ≠ ∅) |
72 | | 0re 10908 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
73 | | breq1 5073 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 0 → (𝑥 ≤ 𝑤 ↔ 0 ≤ 𝑤)) |
74 | 73 | ralbidv 3120 |
. . . . . . . . . . . 12
⊢ (𝑥 = 0 → (∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ↔ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
75 | 74 | rspcev 3552 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) |
76 | 72, 69, 75 | sylancr 586 |
. . . . . . . . . 10
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) |
77 | 72 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈
ℝ) |
78 | | infregelb 11889 |
. . . . . . . . . 10
⊢ (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) ∧ 0 ∈ ℝ) → (0 ≤
inf(𝑅, ℝ, < )
↔ ∀𝑤 ∈
𝑅 0 ≤ 𝑤)) |
79 | 70, 71, 76, 77, 78 | syl31anc 1371 |
. . . . . . . . 9
⊢ (𝜑 → (0 ≤ inf(𝑅, ℝ, < ) ↔
∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
80 | 69, 79 | mpbird 256 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ inf(𝑅, ℝ, <
)) |
81 | 80, 11 | breqtrrdi 5112 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ 𝑆) |
82 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))) = (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))) |
83 | | oveq2 7263 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)) → (𝐴 − 𝑦) = (𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))) |
84 | 83 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)) → (𝑁‘(𝐴 − 𝑦)) = (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))) |
85 | 84 | rspceeqv 3567 |
. . . . . . . . . . . 12
⊢ ((((1 /
2)( ·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)) ∈ 𝑌 ∧ (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))) = (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))) → ∃𝑦 ∈ 𝑌 (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))) = (𝑁‘(𝐴 − 𝑦))) |
86 | 54, 82, 85 | sylancl 585 |
. . . . . . . . . . 11
⊢ (𝜑 → ∃𝑦 ∈ 𝑌 (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))) = (𝑁‘(𝐴 − 𝑦))) |
87 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
88 | | fvex 6769 |
. . . . . . . . . . . 12
⊢ (𝑁‘(𝐴 − 𝑦)) ∈ V |
89 | 87, 88 | elrnmpti 5858 |
. . . . . . . . . . 11
⊢ ((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))) ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) ↔ ∃𝑦 ∈ 𝑌 (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))) = (𝑁‘(𝐴 − 𝑦))) |
90 | 86, 89 | sylibr 233 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))) ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))) |
91 | 90, 10 | eleqtrrdi 2850 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))) ∈ 𝑅) |
92 | | infrelb 11890 |
. . . . . . . . 9
⊢ ((𝑅 ⊆ ℝ ∧
∃𝑥 ∈ ℝ
∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ∧ (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))) ∈ 𝑅) → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))) |
93 | 70, 76, 91, 92 | syl3anc 1369 |
. . . . . . . 8
⊢ (𝜑 → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))) |
94 | 11, 93 | eqbrtrid 5105 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ≤ (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))) |
95 | | le2sq2 13782 |
. . . . . . 7
⊢ (((𝑆 ∈ ℝ ∧ 0 ≤
𝑆) ∧ ((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))) ∈ ℝ ∧ 𝑆 ≤ (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))))) → (𝑆↑2) ≤ ((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))↑2)) |
96 | 12, 81, 59, 94, 95 | syl22anc 835 |
. . . . . 6
⊢ (𝜑 → (𝑆↑2) ≤ ((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))↑2)) |
97 | | 4pos 12010 |
. . . . . . . . 9
⊢ 0 <
4 |
98 | 1, 97 | pm3.2i 470 |
. . . . . . . 8
⊢ (4 ∈
ℝ ∧ 0 < 4) |
99 | | lemul2 11758 |
. . . . . . . 8
⊢ (((𝑆↑2) ∈ ℝ ∧
((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))↑2) ∈ ℝ ∧ (4 ∈
ℝ ∧ 0 < 4)) → ((𝑆↑2) ≤ ((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))↑2) ↔ (4 · (𝑆↑2)) ≤ (4 ·
((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))↑2)))) |
100 | 98, 99 | mp3an3 1448 |
. . . . . . 7
⊢ (((𝑆↑2) ∈ ℝ ∧
((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))↑2) ∈ ℝ) → ((𝑆↑2) ≤ ((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))↑2) ↔ (4 · (𝑆↑2)) ≤ (4 ·
((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))↑2)))) |
101 | 13, 60, 100 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → ((𝑆↑2) ≤ ((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))↑2) ↔ (4 · (𝑆↑2)) ≤ (4 ·
((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))↑2)))) |
102 | 96, 101 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (4 · (𝑆↑2)) ≤ (4 ·
((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))↑2))) |
103 | 15, 62, 32, 102 | leadd1dd 11519 |
. . . 4
⊢ (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ ((4 · ((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2))) |
104 | | metcl 23393 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐾 ∈ 𝑋) → (𝐴𝐷𝐾) ∈ ℝ) |
105 | 22, 8, 27, 104 | syl3anc 1369 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴𝐷𝐾) ∈ ℝ) |
106 | 105 | resqcld 13893 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴𝐷𝐾)↑2) ∈ ℝ) |
107 | | metcl 23393 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐿 ∈ 𝑋) → (𝐴𝐷𝐿) ∈ ℝ) |
108 | 22, 8, 29, 107 | syl3anc 1369 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴𝐷𝐿) ∈ ℝ) |
109 | 108 | resqcld 13893 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴𝐷𝐿)↑2) ∈ ℝ) |
110 | | minveclem2.5 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴𝐷𝐾)↑2) ≤ ((𝑆↑2) + 𝐵)) |
111 | | minveclem2.6 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴𝐷𝐿)↑2) ≤ ((𝑆↑2) + 𝐵)) |
112 | 106, 109,
65, 65, 110, 111 | le2addd 11524 |
. . . . . . 7
⊢ (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (((𝑆↑2) + 𝐵) + ((𝑆↑2) + 𝐵))) |
113 | 65 | recnd 10934 |
. . . . . . . 8
⊢ (𝜑 → ((𝑆↑2) + 𝐵) ∈ ℂ) |
114 | 113 | 2timesd 12146 |
. . . . . . 7
⊢ (𝜑 → (2 · ((𝑆↑2) + 𝐵)) = (((𝑆↑2) + 𝐵) + ((𝑆↑2) + 𝐵))) |
115 | 112, 114 | breqtrrd 5098 |
. . . . . 6
⊢ (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵))) |
116 | 106, 109 | readdcld 10935 |
. . . . . . 7
⊢ (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ∈ ℝ) |
117 | | 2re 11977 |
. . . . . . . 8
⊢ 2 ∈
ℝ |
118 | | remulcl 10887 |
. . . . . . . 8
⊢ ((2
∈ ℝ ∧ ((𝑆↑2) + 𝐵) ∈ ℝ) → (2 · ((𝑆↑2) + 𝐵)) ∈ ℝ) |
119 | 117, 65, 118 | sylancr 586 |
. . . . . . 7
⊢ (𝜑 → (2 · ((𝑆↑2) + 𝐵)) ∈ ℝ) |
120 | | 2pos 12006 |
. . . . . . . . 9
⊢ 0 <
2 |
121 | 117, 120 | pm3.2i 470 |
. . . . . . . 8
⊢ (2 ∈
ℝ ∧ 0 < 2) |
122 | | lemul2 11758 |
. . . . . . . 8
⊢
(((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ∈ ℝ ∧ (2 ·
((𝑆↑2) + 𝐵)) ∈ ℝ ∧ (2
∈ ℝ ∧ 0 < 2)) → ((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵)) ↔ (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 ·
((𝑆↑2) + 𝐵))))) |
123 | 121, 122 | mp3an3 1448 |
. . . . . . 7
⊢
(((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ∈ ℝ ∧ (2 ·
((𝑆↑2) + 𝐵)) ∈ ℝ) →
((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵)) ↔ (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 ·
((𝑆↑2) + 𝐵))))) |
124 | 116, 119,
123 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → ((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵)) ↔ (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 ·
((𝑆↑2) + 𝐵))))) |
125 | 115, 124 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 ·
((𝑆↑2) + 𝐵)))) |
126 | 2, 3 | lmodvsubcl 20083 |
. . . . . . . 8
⊢ ((𝑈 ∈ LMod ∧ 𝐴 ∈ 𝑋 ∧ 𝐾 ∈ 𝑋) → (𝐴 − 𝐾) ∈ 𝑋) |
127 | 35, 8, 27, 126 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → (𝐴 − 𝐾) ∈ 𝑋) |
128 | 2, 3 | lmodvsubcl 20083 |
. . . . . . . 8
⊢ ((𝑈 ∈ LMod ∧ 𝐴 ∈ 𝑋 ∧ 𝐿 ∈ 𝑋) → (𝐴 − 𝐿) ∈ 𝑋) |
129 | 35, 8, 29, 128 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → (𝐴 − 𝐿) ∈ 𝑋) |
130 | 2, 49, 3, 4 | nmpar 24309 |
. . . . . . 7
⊢ ((𝑈 ∈ ℂPreHil ∧
(𝐴 − 𝐾) ∈ 𝑋 ∧ (𝐴 − 𝐿) ∈ 𝑋) → (((𝑁‘((𝐴 − 𝐾)(+g‘𝑈)(𝐴 − 𝐿)))↑2) + ((𝑁‘((𝐴 − 𝐾) − (𝐴 − 𝐿)))↑2)) = (2 · (((𝑁‘(𝐴 − 𝐾))↑2) + ((𝑁‘(𝐴 − 𝐿))↑2)))) |
131 | 5, 127, 129, 130 | syl3anc 1369 |
. . . . . 6
⊢ (𝜑 → (((𝑁‘((𝐴 − 𝐾)(+g‘𝑈)(𝐴 − 𝐿)))↑2) + ((𝑁‘((𝐴 − 𝐾) − (𝐴 − 𝐿)))↑2)) = (2 · (((𝑁‘(𝐴 − 𝐾))↑2) + ((𝑁‘(𝐴 − 𝐿))↑2)))) |
132 | | 2cn 11978 |
. . . . . . . . . 10
⊢ 2 ∈
ℂ |
133 | 59 | recnd 10934 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))) ∈ ℂ) |
134 | | sqmul 13767 |
. . . . . . . . . 10
⊢ ((2
∈ ℂ ∧ (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))) ∈ ℂ) → ((2 ·
(𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))))↑2) = ((2↑2) · ((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))↑2))) |
135 | 132, 133,
134 | sylancr 586 |
. . . . . . . . 9
⊢ (𝜑 → ((2 · (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))))↑2) = ((2↑2) · ((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))↑2))) |
136 | | sq2 13842 |
. . . . . . . . . 10
⊢
(2↑2) = 4 |
137 | 136 | oveq1i 7265 |
. . . . . . . . 9
⊢
((2↑2) · ((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))↑2)) = (4 · ((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))↑2)) |
138 | 135, 137 | eqtrdi 2795 |
. . . . . . . 8
⊢ (𝜑 → ((2 · (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))))↑2) = (4 · ((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))↑2))) |
139 | 2, 4, 52, 38, 39 | cphnmvs 24259 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ ℂPreHil ∧ 2
∈ (Base‘(Scalar‘𝑈)) ∧ (𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))) ∈ 𝑋) → (𝑁‘(2(
·𝑠 ‘𝑈)(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))) = ((abs‘2) · (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))))) |
140 | 5, 44, 57, 139 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁‘(2(
·𝑠 ‘𝑈)(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))) = ((abs‘2) · (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))))) |
141 | | 0le2 12005 |
. . . . . . . . . . . . 13
⊢ 0 ≤
2 |
142 | | absid 14936 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2) |
143 | 117, 141,
142 | mp2an 688 |
. . . . . . . . . . . 12
⊢
(abs‘2) = 2 |
144 | 143 | oveq1i 7265 |
. . . . . . . . . . 11
⊢
((abs‘2) · (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))) = (2 · (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))) |
145 | 140, 144 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁‘(2(
·𝑠 ‘𝑈)(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))) = (2 · (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))))) |
146 | 2, 52, 38, 39, 3, 35, 44, 8, 55 | lmodsubdi 20095 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2(
·𝑠 ‘𝑈)(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))) = ((2(
·𝑠 ‘𝑈)𝐴) − (2(
·𝑠 ‘𝑈)((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))) |
147 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(.g‘𝑈) = (.g‘𝑈) |
148 | 2, 147, 49 | mulg2 18628 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ 𝑋 → (2(.g‘𝑈)𝐴) = (𝐴(+g‘𝑈)𝐴)) |
149 | 8, 148 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(2(.g‘𝑈)𝐴) = (𝐴(+g‘𝑈)𝐴)) |
150 | 2, 147, 52 | clmmulg 24170 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ ℂMod ∧ 2
∈ ℤ ∧ 𝐴
∈ 𝑋) →
(2(.g‘𝑈)𝐴) = (2( ·𝑠
‘𝑈)𝐴)) |
151 | 37, 43, 8, 150 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(2(.g‘𝑈)𝐴) = (2( ·𝑠
‘𝑈)𝐴)) |
152 | 149, 151 | eqtr3d 2780 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴(+g‘𝑈)𝐴) = (2( ·𝑠
‘𝑈)𝐴)) |
153 | 2, 49 | lmodvacl 20052 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈 ∈ LMod ∧ 𝐾 ∈ 𝑋 ∧ 𝐿 ∈ 𝑋) → (𝐾(+g‘𝑈)𝐿) ∈ 𝑋) |
154 | 35, 27, 29, 153 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐾(+g‘𝑈)𝐿) ∈ 𝑋) |
155 | 2, 52 | clmvs1 24162 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ ℂMod ∧ (𝐾(+g‘𝑈)𝐿) ∈ 𝑋) → (1(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)) = (𝐾(+g‘𝑈)𝐿)) |
156 | 37, 154, 155 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)) = (𝐾(+g‘𝑈)𝐿)) |
157 | 132, 45 | recidi 11636 |
. . . . . . . . . . . . . . . 16
⊢ (2
· (1 / 2)) = 1 |
158 | 157 | oveq1i 7265 |
. . . . . . . . . . . . . . 15
⊢ ((2
· (1 / 2))( ·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)) = (1( ·𝑠
‘𝑈)(𝐾(+g‘𝑈)𝐿)) |
159 | 2, 38, 52, 39 | clmvsass 24158 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈 ∈ ℂMod ∧ (2
∈ (Base‘(Scalar‘𝑈)) ∧ (1 / 2) ∈
(Base‘(Scalar‘𝑈)) ∧ (𝐾(+g‘𝑈)𝐿) ∈ 𝑋)) → ((2 · (1 / 2))(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)) = (2( ·𝑠
‘𝑈)((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))) |
160 | 37, 44, 48, 154, 159 | syl13anc 1370 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((2 · (1 / 2))(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)) = (2( ·𝑠
‘𝑈)((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))) |
161 | 158, 160 | eqtr3id 2793 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)) = (2( ·𝑠
‘𝑈)((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))) |
162 | 156, 161 | eqtr3d 2780 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐾(+g‘𝑈)𝐿) = (2( ·𝑠
‘𝑈)((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))) |
163 | 152, 162 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐴(+g‘𝑈)𝐴) − (𝐾(+g‘𝑈)𝐿)) = ((2(
·𝑠 ‘𝑈)𝐴) − (2(
·𝑠 ‘𝑈)((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))) |
164 | | lmodabl 20085 |
. . . . . . . . . . . . . 14
⊢ (𝑈 ∈ LMod → 𝑈 ∈ Abel) |
165 | 35, 164 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑈 ∈ Abel) |
166 | 2, 49, 3 | ablsub4 19329 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ Abel ∧ (𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐾 ∈ 𝑋 ∧ 𝐿 ∈ 𝑋)) → ((𝐴(+g‘𝑈)𝐴) − (𝐾(+g‘𝑈)𝐿)) = ((𝐴 − 𝐾)(+g‘𝑈)(𝐴 − 𝐿))) |
167 | 165, 8, 8, 27, 29, 166 | syl122anc 1377 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐴(+g‘𝑈)𝐴) − (𝐾(+g‘𝑈)𝐿)) = ((𝐴 − 𝐾)(+g‘𝑈)(𝐴 − 𝐿))) |
168 | 146, 163,
167 | 3eqtr2d 2784 |
. . . . . . . . . . 11
⊢ (𝜑 → (2(
·𝑠 ‘𝑈)(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))) = ((𝐴 − 𝐾)(+g‘𝑈)(𝐴 − 𝐿))) |
169 | 168 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁‘(2(
·𝑠 ‘𝑈)(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))) = (𝑁‘((𝐴 − 𝐾)(+g‘𝑈)(𝐴 − 𝐿)))) |
170 | 145, 169 | eqtr3d 2780 |
. . . . . . . . 9
⊢ (𝜑 → (2 · (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))) = (𝑁‘((𝐴 − 𝐾)(+g‘𝑈)(𝐴 − 𝐿)))) |
171 | 170 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝜑 → ((2 · (𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿)))))↑2) = ((𝑁‘((𝐴 − 𝐾)(+g‘𝑈)(𝐴 − 𝐿)))↑2)) |
172 | 138, 171 | eqtr3d 2780 |
. . . . . . 7
⊢ (𝜑 → (4 · ((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))↑2)) = ((𝑁‘((𝐴 − 𝐾)(+g‘𝑈)(𝐴 − 𝐿)))↑2)) |
173 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(dist‘𝑈) =
(dist‘𝑈) |
174 | 4, 2, 3, 173 | ngpdsr 23667 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmGrp ∧ 𝐾 ∈ 𝑋 ∧ 𝐿 ∈ 𝑋) → (𝐾(dist‘𝑈)𝐿) = (𝑁‘(𝐿 − 𝐾))) |
175 | 17, 27, 29, 174 | syl3anc 1369 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾(dist‘𝑈)𝐿) = (𝑁‘(𝐿 − 𝐾))) |
176 | 20 | oveqi 7268 |
. . . . . . . . . 10
⊢ (𝐾𝐷𝐿) = (𝐾((dist‘𝑈) ↾ (𝑋 × 𝑋))𝐿) |
177 | 27, 29 | ovresd 7417 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐾((dist‘𝑈) ↾ (𝑋 × 𝑋))𝐿) = (𝐾(dist‘𝑈)𝐿)) |
178 | 176, 177 | syl5eq 2791 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾𝐷𝐿) = (𝐾(dist‘𝑈)𝐿)) |
179 | 2, 3, 165, 8, 27, 29 | ablnnncan1 19340 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 − 𝐾) − (𝐴 − 𝐿)) = (𝐿 − 𝐾)) |
180 | 179 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁‘((𝐴 − 𝐾) − (𝐴 − 𝐿))) = (𝑁‘(𝐿 − 𝐾))) |
181 | 175, 178,
180 | 3eqtr4d 2788 |
. . . . . . . 8
⊢ (𝜑 → (𝐾𝐷𝐿) = (𝑁‘((𝐴 − 𝐾) − (𝐴 − 𝐿)))) |
182 | 181 | oveq1d 7270 |
. . . . . . 7
⊢ (𝜑 → ((𝐾𝐷𝐿)↑2) = ((𝑁‘((𝐴 − 𝐾) − (𝐴 − 𝐿)))↑2)) |
183 | 172, 182 | oveq12d 7273 |
. . . . . 6
⊢ (𝜑 → ((4 · ((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) = (((𝑁‘((𝐴 − 𝐾)(+g‘𝑈)(𝐴 − 𝐿)))↑2) + ((𝑁‘((𝐴 − 𝐾) − (𝐴 − 𝐿)))↑2))) |
184 | 20 | oveqi 7268 |
. . . . . . . . . . 11
⊢ (𝐴𝐷𝐾) = (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝐾) |
185 | 8, 27 | ovresd 7417 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝐾) = (𝐴(dist‘𝑈)𝐾)) |
186 | 184, 185 | syl5eq 2791 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴𝐷𝐾) = (𝐴(dist‘𝑈)𝐾)) |
187 | 4, 2, 3, 173 | ngpds 23666 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐾 ∈ 𝑋) → (𝐴(dist‘𝑈)𝐾) = (𝑁‘(𝐴 − 𝐾))) |
188 | 17, 8, 27, 187 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴(dist‘𝑈)𝐾) = (𝑁‘(𝐴 − 𝐾))) |
189 | 186, 188 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴𝐷𝐾) = (𝑁‘(𝐴 − 𝐾))) |
190 | 189 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴𝐷𝐾)↑2) = ((𝑁‘(𝐴 − 𝐾))↑2)) |
191 | 20 | oveqi 7268 |
. . . . . . . . . . 11
⊢ (𝐴𝐷𝐿) = (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝐿) |
192 | 8, 29 | ovresd 7417 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝐿) = (𝐴(dist‘𝑈)𝐿)) |
193 | 191, 192 | syl5eq 2791 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴𝐷𝐿) = (𝐴(dist‘𝑈)𝐿)) |
194 | 4, 2, 3, 173 | ngpds 23666 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐿 ∈ 𝑋) → (𝐴(dist‘𝑈)𝐿) = (𝑁‘(𝐴 − 𝐿))) |
195 | 17, 8, 29, 194 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴(dist‘𝑈)𝐿) = (𝑁‘(𝐴 − 𝐿))) |
196 | 193, 195 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴𝐷𝐿) = (𝑁‘(𝐴 − 𝐿))) |
197 | 196 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴𝐷𝐿)↑2) = ((𝑁‘(𝐴 − 𝐿))↑2)) |
198 | 190, 197 | oveq12d 7273 |
. . . . . . 7
⊢ (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) = (((𝑁‘(𝐴 − 𝐾))↑2) + ((𝑁‘(𝐴 − 𝐿))↑2))) |
199 | 198 | oveq2d 7271 |
. . . . . 6
⊢ (𝜑 → (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) = (2 · (((𝑁‘(𝐴 − 𝐾))↑2) + ((𝑁‘(𝐴 − 𝐿))↑2)))) |
200 | 131, 183,
199 | 3eqtr4d 2788 |
. . . . 5
⊢ (𝜑 → ((4 · ((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) = (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)))) |
201 | | 2t2e4 12067 |
. . . . . . 7
⊢ (2
· 2) = 4 |
202 | 201 | oveq1i 7265 |
. . . . . 6
⊢ ((2
· 2) · ((𝑆↑2) + 𝐵)) = (4 · ((𝑆↑2) + 𝐵)) |
203 | | 2cnd 11981 |
. . . . . . 7
⊢ (𝜑 → 2 ∈
ℂ) |
204 | 203, 203,
113 | mulassd 10929 |
. . . . . 6
⊢ (𝜑 → ((2 · 2) ·
((𝑆↑2) + 𝐵)) = (2 · (2 ·
((𝑆↑2) + 𝐵)))) |
205 | 202, 204 | eqtr3id 2793 |
. . . . 5
⊢ (𝜑 → (4 · ((𝑆↑2) + 𝐵)) = (2 · (2 · ((𝑆↑2) + 𝐵)))) |
206 | 125, 200,
205 | 3brtr4d 5102 |
. . . 4
⊢ (𝜑 → ((4 · ((𝑁‘(𝐴 − ((1 / 2)(
·𝑠 ‘𝑈)(𝐾(+g‘𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ (4 · ((𝑆↑2) + 𝐵))) |
207 | 33, 63, 67, 103, 206 | letrd 11062 |
. . 3
⊢ (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ (4 · ((𝑆↑2) + 𝐵))) |
208 | | 4cn 11988 |
. . . . 5
⊢ 4 ∈
ℂ |
209 | 208 | a1i 11 |
. . . 4
⊢ (𝜑 → 4 ∈
ℂ) |
210 | 13 | recnd 10934 |
. . . 4
⊢ (𝜑 → (𝑆↑2) ∈ ℂ) |
211 | 64 | recnd 10934 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℂ) |
212 | 209, 210,
211 | adddid 10930 |
. . 3
⊢ (𝜑 → (4 · ((𝑆↑2) + 𝐵)) = ((4 · (𝑆↑2)) + (4 · 𝐵))) |
213 | 207, 212 | breqtrd 5096 |
. 2
⊢ (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ ((4 · (𝑆↑2)) + (4 · 𝐵))) |
214 | | remulcl 10887 |
. . . 4
⊢ ((4
∈ ℝ ∧ 𝐵
∈ ℝ) → (4 · 𝐵) ∈ ℝ) |
215 | 1, 64, 214 | sylancr 586 |
. . 3
⊢ (𝜑 → (4 · 𝐵) ∈
ℝ) |
216 | 32, 215, 15 | leadd2d 11500 |
. 2
⊢ (𝜑 → (((𝐾𝐷𝐿)↑2) ≤ (4 · 𝐵) ↔ ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ ((4 · (𝑆↑2)) + (4 · 𝐵)))) |
217 | 213, 216 | mpbird 256 |
1
⊢ (𝜑 → ((𝐾𝐷𝐿)↑2) ≤ (4 · 𝐵)) |