MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem2 Structured version   Visualization version   GIF version

Theorem minveclem2 23486
Description: Lemma for minvec 23496. Any two points 𝐾 and 𝐿 in 𝑌 are close to each other if they are close to the infimum of distance to 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
minveclem2.1 (𝜑𝐵 ∈ ℝ)
minveclem2.2 (𝜑 → 0 ≤ 𝐵)
minveclem2.3 (𝜑𝐾𝑌)
minveclem2.4 (𝜑𝐿𝑌)
minveclem2.5 (𝜑 → ((𝐴𝐷𝐾)↑2) ≤ ((𝑆↑2) + 𝐵))
minveclem2.6 (𝜑 → ((𝐴𝐷𝐿)↑2) ≤ ((𝑆↑2) + 𝐵))
Assertion
Ref Expression
minveclem2 (𝜑 → ((𝐾𝐷𝐿)↑2) ≤ (4 · 𝐵))
Distinct variable groups:   𝑦,   𝑦,𝐴   𝑦,𝐽   𝑦,𝐾   𝑦,𝑁   𝜑,𝑦   𝑦,𝑅   𝑦,𝑈   𝑦,𝑋   𝑦,𝑌   𝑦,𝐷   𝑦,𝑆   𝑦,𝐿
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem minveclem2
Dummy variables 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4re 11357 . . . . . 6 4 ∈ ℝ
2 minvec.x . . . . . . . 8 𝑋 = (Base‘𝑈)
3 minvec.m . . . . . . . 8 = (-g𝑈)
4 minvec.n . . . . . . . 8 𝑁 = (norm‘𝑈)
5 minvec.u . . . . . . . 8 (𝜑𝑈 ∈ ℂPreHil)
6 minvec.y . . . . . . . 8 (𝜑𝑌 ∈ (LSubSp‘𝑈))
7 minvec.w . . . . . . . 8 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
8 minvec.a . . . . . . . 8 (𝜑𝐴𝑋)
9 minvec.j . . . . . . . 8 𝐽 = (TopOpen‘𝑈)
10 minvec.r . . . . . . . 8 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
11 minvec.s . . . . . . . 8 𝑆 = inf(𝑅, ℝ, < )
122, 3, 4, 5, 6, 7, 8, 9, 10, 11minveclem4c 23485 . . . . . . 7 (𝜑𝑆 ∈ ℝ)
1312resqcld 13242 . . . . . 6 (𝜑 → (𝑆↑2) ∈ ℝ)
14 remulcl 10274 . . . . . 6 ((4 ∈ ℝ ∧ (𝑆↑2) ∈ ℝ) → (4 · (𝑆↑2)) ∈ ℝ)
151, 13, 14sylancr 581 . . . . 5 (𝜑 → (4 · (𝑆↑2)) ∈ ℝ)
16 cphngp 23251 . . . . . . . . . 10 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
175, 16syl 17 . . . . . . . . 9 (𝜑𝑈 ∈ NrmGrp)
18 ngpms 22683 . . . . . . . . 9 (𝑈 ∈ NrmGrp → 𝑈 ∈ MetSp)
1917, 18syl 17 . . . . . . . 8 (𝜑𝑈 ∈ MetSp)
20 minvec.d . . . . . . . . 9 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
212, 20msmet 22541 . . . . . . . 8 (𝑈 ∈ MetSp → 𝐷 ∈ (Met‘𝑋))
2219, 21syl 17 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
23 eqid 2765 . . . . . . . . . 10 (LSubSp‘𝑈) = (LSubSp‘𝑈)
242, 23lssss 19206 . . . . . . . . 9 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
256, 24syl 17 . . . . . . . 8 (𝜑𝑌𝑋)
26 minveclem2.3 . . . . . . . 8 (𝜑𝐾𝑌)
2725, 26sseldd 3762 . . . . . . 7 (𝜑𝐾𝑋)
28 minveclem2.4 . . . . . . . 8 (𝜑𝐿𝑌)
2925, 28sseldd 3762 . . . . . . 7 (𝜑𝐿𝑋)
30 metcl 22416 . . . . . . 7 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐾𝑋𝐿𝑋) → (𝐾𝐷𝐿) ∈ ℝ)
3122, 27, 29, 30syl3anc 1490 . . . . . 6 (𝜑 → (𝐾𝐷𝐿) ∈ ℝ)
3231resqcld 13242 . . . . 5 (𝜑 → ((𝐾𝐷𝐿)↑2) ∈ ℝ)
3315, 32readdcld 10323 . . . 4 (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ∈ ℝ)
34 cphlmod 23252 . . . . . . . . . 10 (𝑈 ∈ ℂPreHil → 𝑈 ∈ LMod)
355, 34syl 17 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
36 cphclm 23267 . . . . . . . . . . . . . . 15 (𝑈 ∈ ℂPreHil → 𝑈 ∈ ℂMod)
375, 36syl 17 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ ℂMod)
38 eqid 2765 . . . . . . . . . . . . . . 15 (Scalar‘𝑈) = (Scalar‘𝑈)
39 eqid 2765 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
4038, 39clmzss 23156 . . . . . . . . . . . . . 14 (𝑈 ∈ ℂMod → ℤ ⊆ (Base‘(Scalar‘𝑈)))
4137, 40syl 17 . . . . . . . . . . . . 13 (𝜑 → ℤ ⊆ (Base‘(Scalar‘𝑈)))
42 2z 11656 . . . . . . . . . . . . . 14 2 ∈ ℤ
4342a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℤ)
4441, 43sseldd 3762 . . . . . . . . . . . 12 (𝜑 → 2 ∈ (Base‘(Scalar‘𝑈)))
45 2ne0 11383 . . . . . . . . . . . . 13 2 ≠ 0
4645a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ≠ 0)
4738, 39cphreccl 23259 . . . . . . . . . . . 12 ((𝑈 ∈ ℂPreHil ∧ 2 ∈ (Base‘(Scalar‘𝑈)) ∧ 2 ≠ 0) → (1 / 2) ∈ (Base‘(Scalar‘𝑈)))
485, 44, 46, 47syl3anc 1490 . . . . . . . . . . 11 (𝜑 → (1 / 2) ∈ (Base‘(Scalar‘𝑈)))
49 eqid 2765 . . . . . . . . . . . . 13 (+g𝑈) = (+g𝑈)
5049, 23lssvacl 19226 . . . . . . . . . . . 12 (((𝑈 ∈ LMod ∧ 𝑌 ∈ (LSubSp‘𝑈)) ∧ (𝐾𝑌𝐿𝑌)) → (𝐾(+g𝑈)𝐿) ∈ 𝑌)
5135, 6, 26, 28, 50syl22anc 867 . . . . . . . . . . 11 (𝜑 → (𝐾(+g𝑈)𝐿) ∈ 𝑌)
52 eqid 2765 . . . . . . . . . . . 12 ( ·𝑠𝑈) = ( ·𝑠𝑈)
5338, 52, 39, 23lssvscl 19227 . . . . . . . . . . 11 (((𝑈 ∈ LMod ∧ 𝑌 ∈ (LSubSp‘𝑈)) ∧ ((1 / 2) ∈ (Base‘(Scalar‘𝑈)) ∧ (𝐾(+g𝑈)𝐿) ∈ 𝑌)) → ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)) ∈ 𝑌)
5435, 6, 48, 51, 53syl22anc 867 . . . . . . . . . 10 (𝜑 → ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)) ∈ 𝑌)
5525, 54sseldd 3762 . . . . . . . . 9 (𝜑 → ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)) ∈ 𝑋)
562, 3lmodvsubcl 19177 . . . . . . . . 9 ((𝑈 ∈ LMod ∧ 𝐴𝑋 ∧ ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)) ∈ 𝑋) → (𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))) ∈ 𝑋)
5735, 8, 55, 56syl3anc 1490 . . . . . . . 8 (𝜑 → (𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))) ∈ 𝑋)
582, 4nmcl 22699 . . . . . . . 8 ((𝑈 ∈ NrmGrp ∧ (𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))) ∈ 𝑋) → (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) ∈ ℝ)
5917, 57, 58syl2anc 579 . . . . . . 7 (𝜑 → (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) ∈ ℝ)
6059resqcld 13242 . . . . . 6 (𝜑 → ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2) ∈ ℝ)
61 remulcl 10274 . . . . . 6 ((4 ∈ ℝ ∧ ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2) ∈ ℝ) → (4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2)) ∈ ℝ)
621, 60, 61sylancr 581 . . . . 5 (𝜑 → (4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2)) ∈ ℝ)
6362, 32readdcld 10323 . . . 4 (𝜑 → ((4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) ∈ ℝ)
64 minveclem2.1 . . . . . 6 (𝜑𝐵 ∈ ℝ)
6513, 64readdcld 10323 . . . . 5 (𝜑 → ((𝑆↑2) + 𝐵) ∈ ℝ)
66 remulcl 10274 . . . . 5 ((4 ∈ ℝ ∧ ((𝑆↑2) + 𝐵) ∈ ℝ) → (4 · ((𝑆↑2) + 𝐵)) ∈ ℝ)
671, 65, 66sylancr 581 . . . 4 (𝜑 → (4 · ((𝑆↑2) + 𝐵)) ∈ ℝ)
682, 3, 4, 5, 6, 7, 8, 9, 10minveclem1 23484 . . . . . . . . . 10 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
6968simp3d 1174 . . . . . . . . 9 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
7068simp1d 1172 . . . . . . . . . 10 (𝜑𝑅 ⊆ ℝ)
7168simp2d 1173 . . . . . . . . . 10 (𝜑𝑅 ≠ ∅)
72 0re 10295 . . . . . . . . . . 11 0 ∈ ℝ
73 breq1 4812 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
7473ralbidv 3133 . . . . . . . . . . . 12 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
7574rspcev 3461 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
7672, 69, 75sylancr 581 . . . . . . . . . 10 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
7772a1i 11 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
78 infregelb 11261 . . . . . . . . . 10 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
7970, 71, 76, 77, 78syl31anc 1492 . . . . . . . . 9 (𝜑 → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
8069, 79mpbird 248 . . . . . . . 8 (𝜑 → 0 ≤ inf(𝑅, ℝ, < ))
8180, 11syl6breqr 4851 . . . . . . 7 (𝜑 → 0 ≤ 𝑆)
82 eqid 2765 . . . . . . . . . . . 12 (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) = (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))
83 oveq2 6850 . . . . . . . . . . . . . 14 (𝑦 = ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)) → (𝐴 𝑦) = (𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))
8483fveq2d 6379 . . . . . . . . . . . . 13 (𝑦 = ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)) → (𝑁‘(𝐴 𝑦)) = (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))))
8584rspceeqv 3479 . . . . . . . . . . . 12 ((((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)) ∈ 𝑌 ∧ (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) = (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))) → ∃𝑦𝑌 (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) = (𝑁‘(𝐴 𝑦)))
8654, 82, 85sylancl 580 . . . . . . . . . . 11 (𝜑 → ∃𝑦𝑌 (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) = (𝑁‘(𝐴 𝑦)))
87 eqid 2765 . . . . . . . . . . . 12 (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
88 fvex 6388 . . . . . . . . . . . 12 (𝑁‘(𝐴 𝑦)) ∈ V
8987, 88elrnmpti 5545 . . . . . . . . . . 11 ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) ↔ ∃𝑦𝑌 (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) = (𝑁‘(𝐴 𝑦)))
9086, 89sylibr 225 . . . . . . . . . 10 (𝜑 → (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))))
9190, 10syl6eleqr 2855 . . . . . . . . 9 (𝜑 → (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) ∈ 𝑅)
92 infrelb 11262 . . . . . . . . 9 ((𝑅 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤 ∧ (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) ∈ 𝑅) → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))))
9370, 76, 91, 92syl3anc 1490 . . . . . . . 8 (𝜑 → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))))
9411, 93syl5eqbr 4844 . . . . . . 7 (𝜑𝑆 ≤ (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))))
95 le2sq2 13146 . . . . . . 7 (((𝑆 ∈ ℝ ∧ 0 ≤ 𝑆) ∧ ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) ∈ ℝ ∧ 𝑆 ≤ (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))))) → (𝑆↑2) ≤ ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2))
9612, 81, 59, 94, 95syl22anc 867 . . . . . 6 (𝜑 → (𝑆↑2) ≤ ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2))
97 4pos 11386 . . . . . . . . 9 0 < 4
981, 97pm3.2i 462 . . . . . . . 8 (4 ∈ ℝ ∧ 0 < 4)
99 lemul2 11130 . . . . . . . 8 (((𝑆↑2) ∈ ℝ ∧ ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2) ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → ((𝑆↑2) ≤ ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2) ↔ (4 · (𝑆↑2)) ≤ (4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2))))
10098, 99mp3an3 1574 . . . . . . 7 (((𝑆↑2) ∈ ℝ ∧ ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2) ∈ ℝ) → ((𝑆↑2) ≤ ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2) ↔ (4 · (𝑆↑2)) ≤ (4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2))))
10113, 60, 100syl2anc 579 . . . . . 6 (𝜑 → ((𝑆↑2) ≤ ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2) ↔ (4 · (𝑆↑2)) ≤ (4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2))))
10296, 101mpbid 223 . . . . 5 (𝜑 → (4 · (𝑆↑2)) ≤ (4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2)))
10315, 62, 32, 102leadd1dd 10895 . . . 4 (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ ((4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)))
104 metcl 22416 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝐾𝑋) → (𝐴𝐷𝐾) ∈ ℝ)
10522, 8, 27, 104syl3anc 1490 . . . . . . . . 9 (𝜑 → (𝐴𝐷𝐾) ∈ ℝ)
106105resqcld 13242 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐾)↑2) ∈ ℝ)
107 metcl 22416 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝐿𝑋) → (𝐴𝐷𝐿) ∈ ℝ)
10822, 8, 29, 107syl3anc 1490 . . . . . . . . 9 (𝜑 → (𝐴𝐷𝐿) ∈ ℝ)
109108resqcld 13242 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐿)↑2) ∈ ℝ)
110 minveclem2.5 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐾)↑2) ≤ ((𝑆↑2) + 𝐵))
111 minveclem2.6 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐿)↑2) ≤ ((𝑆↑2) + 𝐵))
112106, 109, 65, 65, 110, 111le2addd 10900 . . . . . . 7 (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (((𝑆↑2) + 𝐵) + ((𝑆↑2) + 𝐵)))
11365recnd 10322 . . . . . . . 8 (𝜑 → ((𝑆↑2) + 𝐵) ∈ ℂ)
1141132timesd 11521 . . . . . . 7 (𝜑 → (2 · ((𝑆↑2) + 𝐵)) = (((𝑆↑2) + 𝐵) + ((𝑆↑2) + 𝐵)))
115112, 114breqtrrd 4837 . . . . . 6 (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵)))
116106, 109readdcld 10323 . . . . . . 7 (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ∈ ℝ)
117 2re 11346 . . . . . . . 8 2 ∈ ℝ
118 remulcl 10274 . . . . . . . 8 ((2 ∈ ℝ ∧ ((𝑆↑2) + 𝐵) ∈ ℝ) → (2 · ((𝑆↑2) + 𝐵)) ∈ ℝ)
119117, 65, 118sylancr 581 . . . . . . 7 (𝜑 → (2 · ((𝑆↑2) + 𝐵)) ∈ ℝ)
120 2pos 11382 . . . . . . . . 9 0 < 2
121117, 120pm3.2i 462 . . . . . . . 8 (2 ∈ ℝ ∧ 0 < 2)
122 lemul2 11130 . . . . . . . 8 (((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ∈ ℝ ∧ (2 · ((𝑆↑2) + 𝐵)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵)) ↔ (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 · ((𝑆↑2) + 𝐵)))))
123121, 122mp3an3 1574 . . . . . . 7 (((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ∈ ℝ ∧ (2 · ((𝑆↑2) + 𝐵)) ∈ ℝ) → ((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵)) ↔ (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 · ((𝑆↑2) + 𝐵)))))
124116, 119, 123syl2anc 579 . . . . . 6 (𝜑 → ((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵)) ↔ (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 · ((𝑆↑2) + 𝐵)))))
125115, 124mpbid 223 . . . . 5 (𝜑 → (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 · ((𝑆↑2) + 𝐵))))
1262, 3lmodvsubcl 19177 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝐴𝑋𝐾𝑋) → (𝐴 𝐾) ∈ 𝑋)
12735, 8, 27, 126syl3anc 1490 . . . . . . 7 (𝜑 → (𝐴 𝐾) ∈ 𝑋)
1282, 3lmodvsubcl 19177 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝐴𝑋𝐿𝑋) → (𝐴 𝐿) ∈ 𝑋)
12935, 8, 29, 128syl3anc 1490 . . . . . . 7 (𝜑 → (𝐴 𝐿) ∈ 𝑋)
1302, 49, 3, 4nmpar 23317 . . . . . . 7 ((𝑈 ∈ ℂPreHil ∧ (𝐴 𝐾) ∈ 𝑋 ∧ (𝐴 𝐿) ∈ 𝑋) → (((𝑁‘((𝐴 𝐾)(+g𝑈)(𝐴 𝐿)))↑2) + ((𝑁‘((𝐴 𝐾) (𝐴 𝐿)))↑2)) = (2 · (((𝑁‘(𝐴 𝐾))↑2) + ((𝑁‘(𝐴 𝐿))↑2))))
1315, 127, 129, 130syl3anc 1490 . . . . . 6 (𝜑 → (((𝑁‘((𝐴 𝐾)(+g𝑈)(𝐴 𝐿)))↑2) + ((𝑁‘((𝐴 𝐾) (𝐴 𝐿)))↑2)) = (2 · (((𝑁‘(𝐴 𝐾))↑2) + ((𝑁‘(𝐴 𝐿))↑2))))
132 2cn 11347 . . . . . . . . . 10 2 ∈ ℂ
13359recnd 10322 . . . . . . . . . 10 (𝜑 → (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) ∈ ℂ)
134 sqmul 13133 . . . . . . . . . 10 ((2 ∈ ℂ ∧ (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) ∈ ℂ) → ((2 · (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))))↑2) = ((2↑2) · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2)))
135132, 133, 134sylancr 581 . . . . . . . . 9 (𝜑 → ((2 · (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))))↑2) = ((2↑2) · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2)))
136 sq2 13167 . . . . . . . . . 10 (2↑2) = 4
137136oveq1i 6852 . . . . . . . . 9 ((2↑2) · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2)) = (4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2))
138135, 137syl6eq 2815 . . . . . . . 8 (𝜑 → ((2 · (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))))↑2) = (4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2)))
1392, 4, 52, 38, 39cphnmvs 23268 . . . . . . . . . . . 12 ((𝑈 ∈ ℂPreHil ∧ 2 ∈ (Base‘(Scalar‘𝑈)) ∧ (𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))) ∈ 𝑋) → (𝑁‘(2( ·𝑠𝑈)(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))) = ((abs‘2) · (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))))
1405, 44, 57, 139syl3anc 1490 . . . . . . . . . . 11 (𝜑 → (𝑁‘(2( ·𝑠𝑈)(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))) = ((abs‘2) · (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))))
141 0le2 11381 . . . . . . . . . . . . 13 0 ≤ 2
142 absid 14321 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
143117, 141, 142mp2an 683 . . . . . . . . . . . 12 (abs‘2) = 2
144143oveq1i 6852 . . . . . . . . . . 11 ((abs‘2) · (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))) = (2 · (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))))
145140, 144syl6eq 2815 . . . . . . . . . 10 (𝜑 → (𝑁‘(2( ·𝑠𝑈)(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))) = (2 · (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))))
1462, 52, 38, 39, 3, 35, 44, 8, 55lmodsubdi 19189 . . . . . . . . . . . 12 (𝜑 → (2( ·𝑠𝑈)(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) = ((2( ·𝑠𝑈)𝐴) (2( ·𝑠𝑈)((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))))
147 eqid 2765 . . . . . . . . . . . . . . . 16 (.g𝑈) = (.g𝑈)
1482, 147, 49mulg2 17817 . . . . . . . . . . . . . . 15 (𝐴𝑋 → (2(.g𝑈)𝐴) = (𝐴(+g𝑈)𝐴))
1498, 148syl 17 . . . . . . . . . . . . . 14 (𝜑 → (2(.g𝑈)𝐴) = (𝐴(+g𝑈)𝐴))
1502, 147, 52clmmulg 23179 . . . . . . . . . . . . . . 15 ((𝑈 ∈ ℂMod ∧ 2 ∈ ℤ ∧ 𝐴𝑋) → (2(.g𝑈)𝐴) = (2( ·𝑠𝑈)𝐴))
15137, 43, 8, 150syl3anc 1490 . . . . . . . . . . . . . 14 (𝜑 → (2(.g𝑈)𝐴) = (2( ·𝑠𝑈)𝐴))
152149, 151eqtr3d 2801 . . . . . . . . . . . . 13 (𝜑 → (𝐴(+g𝑈)𝐴) = (2( ·𝑠𝑈)𝐴))
1532, 49lmodvacl 19146 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ LMod ∧ 𝐾𝑋𝐿𝑋) → (𝐾(+g𝑈)𝐿) ∈ 𝑋)
15435, 27, 29, 153syl3anc 1490 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾(+g𝑈)𝐿) ∈ 𝑋)
1552, 52clmvs1 23171 . . . . . . . . . . . . . . 15 ((𝑈 ∈ ℂMod ∧ (𝐾(+g𝑈)𝐿) ∈ 𝑋) → (1( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)) = (𝐾(+g𝑈)𝐿))
15637, 154, 155syl2anc 579 . . . . . . . . . . . . . 14 (𝜑 → (1( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)) = (𝐾(+g𝑈)𝐿))
157132, 45recidi 11010 . . . . . . . . . . . . . . . 16 (2 · (1 / 2)) = 1
158157oveq1i 6852 . . . . . . . . . . . . . . 15 ((2 · (1 / 2))( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)) = (1( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))
1592, 38, 52, 39clmvsass 23167 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ ℂMod ∧ (2 ∈ (Base‘(Scalar‘𝑈)) ∧ (1 / 2) ∈ (Base‘(Scalar‘𝑈)) ∧ (𝐾(+g𝑈)𝐿) ∈ 𝑋)) → ((2 · (1 / 2))( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)) = (2( ·𝑠𝑈)((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))
16037, 44, 48, 154, 159syl13anc 1491 . . . . . . . . . . . . . . 15 (𝜑 → ((2 · (1 / 2))( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)) = (2( ·𝑠𝑈)((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))
161158, 160syl5eqr 2813 . . . . . . . . . . . . . 14 (𝜑 → (1( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)) = (2( ·𝑠𝑈)((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))
162156, 161eqtr3d 2801 . . . . . . . . . . . . 13 (𝜑 → (𝐾(+g𝑈)𝐿) = (2( ·𝑠𝑈)((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))
163152, 162oveq12d 6860 . . . . . . . . . . . 12 (𝜑 → ((𝐴(+g𝑈)𝐴) (𝐾(+g𝑈)𝐿)) = ((2( ·𝑠𝑈)𝐴) (2( ·𝑠𝑈)((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))))
164 lmodabl 19179 . . . . . . . . . . . . . 14 (𝑈 ∈ LMod → 𝑈 ∈ Abel)
16535, 164syl 17 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ Abel)
1662, 49, 3ablsub4 18484 . . . . . . . . . . . . 13 ((𝑈 ∈ Abel ∧ (𝐴𝑋𝐴𝑋) ∧ (𝐾𝑋𝐿𝑋)) → ((𝐴(+g𝑈)𝐴) (𝐾(+g𝑈)𝐿)) = ((𝐴 𝐾)(+g𝑈)(𝐴 𝐿)))
167165, 8, 8, 27, 29, 166syl122anc 1498 . . . . . . . . . . . 12 (𝜑 → ((𝐴(+g𝑈)𝐴) (𝐾(+g𝑈)𝐿)) = ((𝐴 𝐾)(+g𝑈)(𝐴 𝐿)))
168146, 163, 1673eqtr2d 2805 . . . . . . . . . . 11 (𝜑 → (2( ·𝑠𝑈)(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) = ((𝐴 𝐾)(+g𝑈)(𝐴 𝐿)))
169168fveq2d 6379 . . . . . . . . . 10 (𝜑 → (𝑁‘(2( ·𝑠𝑈)(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))) = (𝑁‘((𝐴 𝐾)(+g𝑈)(𝐴 𝐿))))
170145, 169eqtr3d 2801 . . . . . . . . 9 (𝜑 → (2 · (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))) = (𝑁‘((𝐴 𝐾)(+g𝑈)(𝐴 𝐿))))
171170oveq1d 6857 . . . . . . . 8 (𝜑 → ((2 · (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))))↑2) = ((𝑁‘((𝐴 𝐾)(+g𝑈)(𝐴 𝐿)))↑2))
172138, 171eqtr3d 2801 . . . . . . 7 (𝜑 → (4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2)) = ((𝑁‘((𝐴 𝐾)(+g𝑈)(𝐴 𝐿)))↑2))
173 eqid 2765 . . . . . . . . . . 11 (dist‘𝑈) = (dist‘𝑈)
1744, 2, 3, 173ngpdsr 22688 . . . . . . . . . 10 ((𝑈 ∈ NrmGrp ∧ 𝐾𝑋𝐿𝑋) → (𝐾(dist‘𝑈)𝐿) = (𝑁‘(𝐿 𝐾)))
17517, 27, 29, 174syl3anc 1490 . . . . . . . . 9 (𝜑 → (𝐾(dist‘𝑈)𝐿) = (𝑁‘(𝐿 𝐾)))
17620oveqi 6855 . . . . . . . . . 10 (𝐾𝐷𝐿) = (𝐾((dist‘𝑈) ↾ (𝑋 × 𝑋))𝐿)
17727, 29ovresd 6999 . . . . . . . . . 10 (𝜑 → (𝐾((dist‘𝑈) ↾ (𝑋 × 𝑋))𝐿) = (𝐾(dist‘𝑈)𝐿))
178176, 177syl5eq 2811 . . . . . . . . 9 (𝜑 → (𝐾𝐷𝐿) = (𝐾(dist‘𝑈)𝐿))
1792, 3, 165, 8, 27, 29ablnnncan1 18495 . . . . . . . . . 10 (𝜑 → ((𝐴 𝐾) (𝐴 𝐿)) = (𝐿 𝐾))
180179fveq2d 6379 . . . . . . . . 9 (𝜑 → (𝑁‘((𝐴 𝐾) (𝐴 𝐿))) = (𝑁‘(𝐿 𝐾)))
181175, 178, 1803eqtr4d 2809 . . . . . . . 8 (𝜑 → (𝐾𝐷𝐿) = (𝑁‘((𝐴 𝐾) (𝐴 𝐿))))
182181oveq1d 6857 . . . . . . 7 (𝜑 → ((𝐾𝐷𝐿)↑2) = ((𝑁‘((𝐴 𝐾) (𝐴 𝐿)))↑2))
183172, 182oveq12d 6860 . . . . . 6 (𝜑 → ((4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) = (((𝑁‘((𝐴 𝐾)(+g𝑈)(𝐴 𝐿)))↑2) + ((𝑁‘((𝐴 𝐾) (𝐴 𝐿)))↑2)))
18420oveqi 6855 . . . . . . . . . . 11 (𝐴𝐷𝐾) = (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝐾)
1858, 27ovresd 6999 . . . . . . . . . . 11 (𝜑 → (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝐾) = (𝐴(dist‘𝑈)𝐾))
186184, 185syl5eq 2811 . . . . . . . . . 10 (𝜑 → (𝐴𝐷𝐾) = (𝐴(dist‘𝑈)𝐾))
1874, 2, 3, 173ngpds 22687 . . . . . . . . . . 11 ((𝑈 ∈ NrmGrp ∧ 𝐴𝑋𝐾𝑋) → (𝐴(dist‘𝑈)𝐾) = (𝑁‘(𝐴 𝐾)))
18817, 8, 27, 187syl3anc 1490 . . . . . . . . . 10 (𝜑 → (𝐴(dist‘𝑈)𝐾) = (𝑁‘(𝐴 𝐾)))
189186, 188eqtrd 2799 . . . . . . . . 9 (𝜑 → (𝐴𝐷𝐾) = (𝑁‘(𝐴 𝐾)))
190189oveq1d 6857 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐾)↑2) = ((𝑁‘(𝐴 𝐾))↑2))
19120oveqi 6855 . . . . . . . . . . 11 (𝐴𝐷𝐿) = (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝐿)
1928, 29ovresd 6999 . . . . . . . . . . 11 (𝜑 → (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝐿) = (𝐴(dist‘𝑈)𝐿))
193191, 192syl5eq 2811 . . . . . . . . . 10 (𝜑 → (𝐴𝐷𝐿) = (𝐴(dist‘𝑈)𝐿))
1944, 2, 3, 173ngpds 22687 . . . . . . . . . . 11 ((𝑈 ∈ NrmGrp ∧ 𝐴𝑋𝐿𝑋) → (𝐴(dist‘𝑈)𝐿) = (𝑁‘(𝐴 𝐿)))
19517, 8, 29, 194syl3anc 1490 . . . . . . . . . 10 (𝜑 → (𝐴(dist‘𝑈)𝐿) = (𝑁‘(𝐴 𝐿)))
196193, 195eqtrd 2799 . . . . . . . . 9 (𝜑 → (𝐴𝐷𝐿) = (𝑁‘(𝐴 𝐿)))
197196oveq1d 6857 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐿)↑2) = ((𝑁‘(𝐴 𝐿))↑2))
198190, 197oveq12d 6860 . . . . . . 7 (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) = (((𝑁‘(𝐴 𝐾))↑2) + ((𝑁‘(𝐴 𝐿))↑2)))
199198oveq2d 6858 . . . . . 6 (𝜑 → (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) = (2 · (((𝑁‘(𝐴 𝐾))↑2) + ((𝑁‘(𝐴 𝐿))↑2))))
200131, 183, 1993eqtr4d 2809 . . . . 5 (𝜑 → ((4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) = (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))))
201 2t2e4 11442 . . . . . . 7 (2 · 2) = 4
202201oveq1i 6852 . . . . . 6 ((2 · 2) · ((𝑆↑2) + 𝐵)) = (4 · ((𝑆↑2) + 𝐵))
203 2cnd 11350 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
204203, 203, 113mulassd 10317 . . . . . 6 (𝜑 → ((2 · 2) · ((𝑆↑2) + 𝐵)) = (2 · (2 · ((𝑆↑2) + 𝐵))))
205202, 204syl5eqr 2813 . . . . 5 (𝜑 → (4 · ((𝑆↑2) + 𝐵)) = (2 · (2 · ((𝑆↑2) + 𝐵))))
206125, 200, 2053brtr4d 4841 . . . 4 (𝜑 → ((4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ (4 · ((𝑆↑2) + 𝐵)))
20733, 63, 67, 103, 206letrd 10448 . . 3 (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ (4 · ((𝑆↑2) + 𝐵)))
208 4cn 11358 . . . . 5 4 ∈ ℂ
209208a1i 11 . . . 4 (𝜑 → 4 ∈ ℂ)
21013recnd 10322 . . . 4 (𝜑 → (𝑆↑2) ∈ ℂ)
21164recnd 10322 . . . 4 (𝜑𝐵 ∈ ℂ)
212209, 210, 211adddid 10318 . . 3 (𝜑 → (4 · ((𝑆↑2) + 𝐵)) = ((4 · (𝑆↑2)) + (4 · 𝐵)))
213207, 212breqtrd 4835 . 2 (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ ((4 · (𝑆↑2)) + (4 · 𝐵)))
214 remulcl 10274 . . . 4 ((4 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (4 · 𝐵) ∈ ℝ)
2151, 64, 214sylancr 581 . . 3 (𝜑 → (4 · 𝐵) ∈ ℝ)
21632, 215, 15leadd2d 10876 . 2 (𝜑 → (((𝐾𝐷𝐿)↑2) ≤ (4 · 𝐵) ↔ ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ ((4 · (𝑆↑2)) + (4 · 𝐵))))
217213, 216mpbird 248 1 (𝜑 → ((𝐾𝐷𝐿)↑2) ≤ (4 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  wss 3732  c0 4079   class class class wbr 4809  cmpt 4888   × cxp 5275  ran crn 5278  cres 5279  cfv 6068  (class class class)co 6842  infcinf 8554  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194   < clt 10328  cle 10329   / cdiv 10938  2c2 11327  4c4 11329  cz 11624  cexp 13067  abscabs 14259  Basecbs 16130  s cress 16131  +gcplusg 16214  Scalarcsca 16217   ·𝑠 cvsca 16218  distcds 16223  TopOpenctopn 16348  -gcsg 17691  .gcmg 17807  Abelcabl 18460  LModclmod 19132  LSubSpclss 19201  Metcmet 20005  MetSpcms 22402  normcnm 22660  NrmGrpcngp 22661  ℂModcclm 23140  ℂPreHilccph 23244  CMetSpccms 23409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-tpos 7555  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-inf 8556  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-fz 12534  df-seq 13009  df-exp 13068  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-starv 16229  df-sca 16230  df-vsca 16231  df-ip 16232  df-tset 16233  df-ple 16234  df-ds 16236  df-unif 16237  df-0g 16368  df-topgen 16370  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-mhm 17601  df-grp 17692  df-minusg 17693  df-sbg 17694  df-mulg 17808  df-subg 17855  df-ghm 17922  df-cmn 18461  df-abl 18462  df-mgp 18757  df-ur 18769  df-ring 18816  df-cring 18817  df-oppr 18890  df-dvdsr 18908  df-unit 18909  df-invr 18939  df-dvr 18950  df-rnghom 18984  df-drng 19018  df-subrg 19047  df-staf 19114  df-srng 19115  df-lmod 19134  df-lss 19202  df-lmhm 19294  df-lvec 19375  df-sra 19446  df-rgmod 19447  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-cnfld 20020  df-phl 20246  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-xms 22404  df-ms 22405  df-nm 22666  df-ngp 22667  df-nlm 22670  df-clm 23141  df-cph 23246
This theorem is referenced by:  minveclem3  23489  minveclem7  23495
  Copyright terms: Public domain W3C validator