MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem2 Structured version   Visualization version   GIF version

Theorem minveclem2 25302
Description: Lemma for minvec 25312. Any two points 𝐾 and 𝐿 in 𝑌 are close to each other if they are close to the infimum of distance to 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
minveclem2.1 (𝜑𝐵 ∈ ℝ)
minveclem2.2 (𝜑 → 0 ≤ 𝐵)
minveclem2.3 (𝜑𝐾𝑌)
minveclem2.4 (𝜑𝐿𝑌)
minveclem2.5 (𝜑 → ((𝐴𝐷𝐾)↑2) ≤ ((𝑆↑2) + 𝐵))
minveclem2.6 (𝜑 → ((𝐴𝐷𝐿)↑2) ≤ ((𝑆↑2) + 𝐵))
Assertion
Ref Expression
minveclem2 (𝜑 → ((𝐾𝐷𝐿)↑2) ≤ (4 · 𝐵))
Distinct variable groups:   𝑦,   𝑦,𝐴   𝑦,𝐽   𝑦,𝐾   𝑦,𝑁   𝜑,𝑦   𝑦,𝑅   𝑦,𝑈   𝑦,𝑋   𝑦,𝑌   𝑦,𝐷   𝑦,𝑆   𝑦,𝐿
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem minveclem2
Dummy variables 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4re 12246 . . . . . 6 4 ∈ ℝ
2 minvec.x . . . . . . . 8 𝑋 = (Base‘𝑈)
3 minvec.m . . . . . . . 8 = (-g𝑈)
4 minvec.n . . . . . . . 8 𝑁 = (norm‘𝑈)
5 minvec.u . . . . . . . 8 (𝜑𝑈 ∈ ℂPreHil)
6 minvec.y . . . . . . . 8 (𝜑𝑌 ∈ (LSubSp‘𝑈))
7 minvec.w . . . . . . . 8 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
8 minvec.a . . . . . . . 8 (𝜑𝐴𝑋)
9 minvec.j . . . . . . . 8 𝐽 = (TopOpen‘𝑈)
10 minvec.r . . . . . . . 8 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
11 minvec.s . . . . . . . 8 𝑆 = inf(𝑅, ℝ, < )
122, 3, 4, 5, 6, 7, 8, 9, 10, 11minveclem4c 25301 . . . . . . 7 (𝜑𝑆 ∈ ℝ)
1312resqcld 14066 . . . . . 6 (𝜑 → (𝑆↑2) ∈ ℝ)
14 remulcl 11129 . . . . . 6 ((4 ∈ ℝ ∧ (𝑆↑2) ∈ ℝ) → (4 · (𝑆↑2)) ∈ ℝ)
151, 13, 14sylancr 587 . . . . 5 (𝜑 → (4 · (𝑆↑2)) ∈ ℝ)
16 cphngp 25049 . . . . . . . . . 10 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
175, 16syl 17 . . . . . . . . 9 (𝜑𝑈 ∈ NrmGrp)
18 ngpms 24464 . . . . . . . . 9 (𝑈 ∈ NrmGrp → 𝑈 ∈ MetSp)
1917, 18syl 17 . . . . . . . 8 (𝜑𝑈 ∈ MetSp)
20 minvec.d . . . . . . . . 9 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
212, 20msmet 24321 . . . . . . . 8 (𝑈 ∈ MetSp → 𝐷 ∈ (Met‘𝑋))
2219, 21syl 17 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
23 eqid 2729 . . . . . . . . . 10 (LSubSp‘𝑈) = (LSubSp‘𝑈)
242, 23lssss 20818 . . . . . . . . 9 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
256, 24syl 17 . . . . . . . 8 (𝜑𝑌𝑋)
26 minveclem2.3 . . . . . . . 8 (𝜑𝐾𝑌)
2725, 26sseldd 3944 . . . . . . 7 (𝜑𝐾𝑋)
28 minveclem2.4 . . . . . . . 8 (𝜑𝐿𝑌)
2925, 28sseldd 3944 . . . . . . 7 (𝜑𝐿𝑋)
30 metcl 24196 . . . . . . 7 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐾𝑋𝐿𝑋) → (𝐾𝐷𝐿) ∈ ℝ)
3122, 27, 29, 30syl3anc 1373 . . . . . 6 (𝜑 → (𝐾𝐷𝐿) ∈ ℝ)
3231resqcld 14066 . . . . 5 (𝜑 → ((𝐾𝐷𝐿)↑2) ∈ ℝ)
3315, 32readdcld 11179 . . . 4 (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ∈ ℝ)
34 cphlmod 25050 . . . . . . . . . 10 (𝑈 ∈ ℂPreHil → 𝑈 ∈ LMod)
355, 34syl 17 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
36 cphclm 25065 . . . . . . . . . . . . . . 15 (𝑈 ∈ ℂPreHil → 𝑈 ∈ ℂMod)
375, 36syl 17 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ ℂMod)
38 eqid 2729 . . . . . . . . . . . . . . 15 (Scalar‘𝑈) = (Scalar‘𝑈)
39 eqid 2729 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
4038, 39clmzss 24954 . . . . . . . . . . . . . 14 (𝑈 ∈ ℂMod → ℤ ⊆ (Base‘(Scalar‘𝑈)))
4137, 40syl 17 . . . . . . . . . . . . 13 (𝜑 → ℤ ⊆ (Base‘(Scalar‘𝑈)))
42 2z 12541 . . . . . . . . . . . . . 14 2 ∈ ℤ
4342a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℤ)
4441, 43sseldd 3944 . . . . . . . . . . . 12 (𝜑 → 2 ∈ (Base‘(Scalar‘𝑈)))
45 2ne0 12266 . . . . . . . . . . . . 13 2 ≠ 0
4645a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ≠ 0)
4738, 39cphreccl 25057 . . . . . . . . . . . 12 ((𝑈 ∈ ℂPreHil ∧ 2 ∈ (Base‘(Scalar‘𝑈)) ∧ 2 ≠ 0) → (1 / 2) ∈ (Base‘(Scalar‘𝑈)))
485, 44, 46, 47syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (1 / 2) ∈ (Base‘(Scalar‘𝑈)))
49 eqid 2729 . . . . . . . . . . . . 13 (+g𝑈) = (+g𝑈)
5049, 23lssvacl 20825 . . . . . . . . . . . 12 (((𝑈 ∈ LMod ∧ 𝑌 ∈ (LSubSp‘𝑈)) ∧ (𝐾𝑌𝐿𝑌)) → (𝐾(+g𝑈)𝐿) ∈ 𝑌)
5135, 6, 26, 28, 50syl22anc 838 . . . . . . . . . . 11 (𝜑 → (𝐾(+g𝑈)𝐿) ∈ 𝑌)
52 eqid 2729 . . . . . . . . . . . 12 ( ·𝑠𝑈) = ( ·𝑠𝑈)
5338, 52, 39, 23lssvscl 20837 . . . . . . . . . . 11 (((𝑈 ∈ LMod ∧ 𝑌 ∈ (LSubSp‘𝑈)) ∧ ((1 / 2) ∈ (Base‘(Scalar‘𝑈)) ∧ (𝐾(+g𝑈)𝐿) ∈ 𝑌)) → ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)) ∈ 𝑌)
5435, 6, 48, 51, 53syl22anc 838 . . . . . . . . . 10 (𝜑 → ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)) ∈ 𝑌)
5525, 54sseldd 3944 . . . . . . . . 9 (𝜑 → ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)) ∈ 𝑋)
562, 3lmodvsubcl 20789 . . . . . . . . 9 ((𝑈 ∈ LMod ∧ 𝐴𝑋 ∧ ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)) ∈ 𝑋) → (𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))) ∈ 𝑋)
5735, 8, 55, 56syl3anc 1373 . . . . . . . 8 (𝜑 → (𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))) ∈ 𝑋)
582, 4nmcl 24480 . . . . . . . 8 ((𝑈 ∈ NrmGrp ∧ (𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))) ∈ 𝑋) → (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) ∈ ℝ)
5917, 57, 58syl2anc 584 . . . . . . 7 (𝜑 → (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) ∈ ℝ)
6059resqcld 14066 . . . . . 6 (𝜑 → ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2) ∈ ℝ)
61 remulcl 11129 . . . . . 6 ((4 ∈ ℝ ∧ ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2) ∈ ℝ) → (4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2)) ∈ ℝ)
621, 60, 61sylancr 587 . . . . 5 (𝜑 → (4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2)) ∈ ℝ)
6362, 32readdcld 11179 . . . 4 (𝜑 → ((4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) ∈ ℝ)
64 minveclem2.1 . . . . . 6 (𝜑𝐵 ∈ ℝ)
6513, 64readdcld 11179 . . . . 5 (𝜑 → ((𝑆↑2) + 𝐵) ∈ ℝ)
66 remulcl 11129 . . . . 5 ((4 ∈ ℝ ∧ ((𝑆↑2) + 𝐵) ∈ ℝ) → (4 · ((𝑆↑2) + 𝐵)) ∈ ℝ)
671, 65, 66sylancr 587 . . . 4 (𝜑 → (4 · ((𝑆↑2) + 𝐵)) ∈ ℝ)
682, 3, 4, 5, 6, 7, 8, 9, 10minveclem1 25300 . . . . . . . . . 10 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
6968simp3d 1144 . . . . . . . . 9 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
7068simp1d 1142 . . . . . . . . . 10 (𝜑𝑅 ⊆ ℝ)
7168simp2d 1143 . . . . . . . . . 10 (𝜑𝑅 ≠ ∅)
72 0re 11152 . . . . . . . . . . 11 0 ∈ ℝ
73 breq1 5105 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
7473ralbidv 3156 . . . . . . . . . . . 12 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
7574rspcev 3585 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
7672, 69, 75sylancr 587 . . . . . . . . . 10 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
7772a1i 11 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
78 infregelb 12143 . . . . . . . . . 10 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
7970, 71, 76, 77, 78syl31anc 1375 . . . . . . . . 9 (𝜑 → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
8069, 79mpbird 257 . . . . . . . 8 (𝜑 → 0 ≤ inf(𝑅, ℝ, < ))
8180, 11breqtrrdi 5144 . . . . . . 7 (𝜑 → 0 ≤ 𝑆)
82 eqid 2729 . . . . . . . . . . . 12 (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) = (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))
83 oveq2 7377 . . . . . . . . . . . . . 14 (𝑦 = ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)) → (𝐴 𝑦) = (𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))
8483fveq2d 6844 . . . . . . . . . . . . 13 (𝑦 = ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)) → (𝑁‘(𝐴 𝑦)) = (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))))
8584rspceeqv 3608 . . . . . . . . . . . 12 ((((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)) ∈ 𝑌 ∧ (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) = (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))) → ∃𝑦𝑌 (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) = (𝑁‘(𝐴 𝑦)))
8654, 82, 85sylancl 586 . . . . . . . . . . 11 (𝜑 → ∃𝑦𝑌 (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) = (𝑁‘(𝐴 𝑦)))
87 eqid 2729 . . . . . . . . . . . 12 (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
88 fvex 6853 . . . . . . . . . . . 12 (𝑁‘(𝐴 𝑦)) ∈ V
8987, 88elrnmpti 5915 . . . . . . . . . . 11 ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) ↔ ∃𝑦𝑌 (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) = (𝑁‘(𝐴 𝑦)))
9086, 89sylibr 234 . . . . . . . . . 10 (𝜑 → (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))))
9190, 10eleqtrrdi 2839 . . . . . . . . 9 (𝜑 → (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) ∈ 𝑅)
92 infrelb 12144 . . . . . . . . 9 ((𝑅 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤 ∧ (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) ∈ 𝑅) → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))))
9370, 76, 91, 92syl3anc 1373 . . . . . . . 8 (𝜑 → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))))
9411, 93eqbrtrid 5137 . . . . . . 7 (𝜑𝑆 ≤ (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))))
95 le2sq2 14076 . . . . . . 7 (((𝑆 ∈ ℝ ∧ 0 ≤ 𝑆) ∧ ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) ∈ ℝ ∧ 𝑆 ≤ (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))))) → (𝑆↑2) ≤ ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2))
9612, 81, 59, 94, 95syl22anc 838 . . . . . 6 (𝜑 → (𝑆↑2) ≤ ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2))
97 4pos 12269 . . . . . . . . 9 0 < 4
981, 97pm3.2i 470 . . . . . . . 8 (4 ∈ ℝ ∧ 0 < 4)
99 lemul2 12011 . . . . . . . 8 (((𝑆↑2) ∈ ℝ ∧ ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2) ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → ((𝑆↑2) ≤ ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2) ↔ (4 · (𝑆↑2)) ≤ (4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2))))
10098, 99mp3an3 1452 . . . . . . 7 (((𝑆↑2) ∈ ℝ ∧ ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2) ∈ ℝ) → ((𝑆↑2) ≤ ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2) ↔ (4 · (𝑆↑2)) ≤ (4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2))))
10113, 60, 100syl2anc 584 . . . . . 6 (𝜑 → ((𝑆↑2) ≤ ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2) ↔ (4 · (𝑆↑2)) ≤ (4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2))))
10296, 101mpbid 232 . . . . 5 (𝜑 → (4 · (𝑆↑2)) ≤ (4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2)))
10315, 62, 32, 102leadd1dd 11768 . . . 4 (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ ((4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)))
104 metcl 24196 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝐾𝑋) → (𝐴𝐷𝐾) ∈ ℝ)
10522, 8, 27, 104syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝐴𝐷𝐾) ∈ ℝ)
106105resqcld 14066 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐾)↑2) ∈ ℝ)
107 metcl 24196 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝐿𝑋) → (𝐴𝐷𝐿) ∈ ℝ)
10822, 8, 29, 107syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝐴𝐷𝐿) ∈ ℝ)
109108resqcld 14066 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐿)↑2) ∈ ℝ)
110 minveclem2.5 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐾)↑2) ≤ ((𝑆↑2) + 𝐵))
111 minveclem2.6 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐿)↑2) ≤ ((𝑆↑2) + 𝐵))
112106, 109, 65, 65, 110, 111le2addd 11773 . . . . . . 7 (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (((𝑆↑2) + 𝐵) + ((𝑆↑2) + 𝐵)))
11365recnd 11178 . . . . . . . 8 (𝜑 → ((𝑆↑2) + 𝐵) ∈ ℂ)
1141132timesd 12401 . . . . . . 7 (𝜑 → (2 · ((𝑆↑2) + 𝐵)) = (((𝑆↑2) + 𝐵) + ((𝑆↑2) + 𝐵)))
115112, 114breqtrrd 5130 . . . . . 6 (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵)))
116106, 109readdcld 11179 . . . . . . 7 (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ∈ ℝ)
117 2re 12236 . . . . . . . 8 2 ∈ ℝ
118 remulcl 11129 . . . . . . . 8 ((2 ∈ ℝ ∧ ((𝑆↑2) + 𝐵) ∈ ℝ) → (2 · ((𝑆↑2) + 𝐵)) ∈ ℝ)
119117, 65, 118sylancr 587 . . . . . . 7 (𝜑 → (2 · ((𝑆↑2) + 𝐵)) ∈ ℝ)
120 2pos 12265 . . . . . . . . 9 0 < 2
121117, 120pm3.2i 470 . . . . . . . 8 (2 ∈ ℝ ∧ 0 < 2)
122 lemul2 12011 . . . . . . . 8 (((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ∈ ℝ ∧ (2 · ((𝑆↑2) + 𝐵)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵)) ↔ (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 · ((𝑆↑2) + 𝐵)))))
123121, 122mp3an3 1452 . . . . . . 7 (((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ∈ ℝ ∧ (2 · ((𝑆↑2) + 𝐵)) ∈ ℝ) → ((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵)) ↔ (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 · ((𝑆↑2) + 𝐵)))))
124116, 119, 123syl2anc 584 . . . . . 6 (𝜑 → ((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵)) ↔ (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 · ((𝑆↑2) + 𝐵)))))
125115, 124mpbid 232 . . . . 5 (𝜑 → (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 · ((𝑆↑2) + 𝐵))))
1262, 3lmodvsubcl 20789 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝐴𝑋𝐾𝑋) → (𝐴 𝐾) ∈ 𝑋)
12735, 8, 27, 126syl3anc 1373 . . . . . . 7 (𝜑 → (𝐴 𝐾) ∈ 𝑋)
1282, 3lmodvsubcl 20789 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝐴𝑋𝐿𝑋) → (𝐴 𝐿) ∈ 𝑋)
12935, 8, 29, 128syl3anc 1373 . . . . . . 7 (𝜑 → (𝐴 𝐿) ∈ 𝑋)
1302, 49, 3, 4nmpar 25116 . . . . . . 7 ((𝑈 ∈ ℂPreHil ∧ (𝐴 𝐾) ∈ 𝑋 ∧ (𝐴 𝐿) ∈ 𝑋) → (((𝑁‘((𝐴 𝐾)(+g𝑈)(𝐴 𝐿)))↑2) + ((𝑁‘((𝐴 𝐾) (𝐴 𝐿)))↑2)) = (2 · (((𝑁‘(𝐴 𝐾))↑2) + ((𝑁‘(𝐴 𝐿))↑2))))
1315, 127, 129, 130syl3anc 1373 . . . . . 6 (𝜑 → (((𝑁‘((𝐴 𝐾)(+g𝑈)(𝐴 𝐿)))↑2) + ((𝑁‘((𝐴 𝐾) (𝐴 𝐿)))↑2)) = (2 · (((𝑁‘(𝐴 𝐾))↑2) + ((𝑁‘(𝐴 𝐿))↑2))))
132 2cn 12237 . . . . . . . . . 10 2 ∈ ℂ
13359recnd 11178 . . . . . . . . . 10 (𝜑 → (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) ∈ ℂ)
134 sqmul 14060 . . . . . . . . . 10 ((2 ∈ ℂ ∧ (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) ∈ ℂ) → ((2 · (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))))↑2) = ((2↑2) · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2)))
135132, 133, 134sylancr 587 . . . . . . . . 9 (𝜑 → ((2 · (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))))↑2) = ((2↑2) · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2)))
136 sq2 14138 . . . . . . . . . 10 (2↑2) = 4
137136oveq1i 7379 . . . . . . . . 9 ((2↑2) · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2)) = (4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2))
138135, 137eqtrdi 2780 . . . . . . . 8 (𝜑 → ((2 · (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))))↑2) = (4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2)))
1392, 4, 52, 38, 39cphnmvs 25066 . . . . . . . . . . . 12 ((𝑈 ∈ ℂPreHil ∧ 2 ∈ (Base‘(Scalar‘𝑈)) ∧ (𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))) ∈ 𝑋) → (𝑁‘(2( ·𝑠𝑈)(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))) = ((abs‘2) · (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))))
1405, 44, 57, 139syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (𝑁‘(2( ·𝑠𝑈)(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))) = ((abs‘2) · (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))))
141 0le2 12264 . . . . . . . . . . . . 13 0 ≤ 2
142 absid 15238 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
143117, 141, 142mp2an 692 . . . . . . . . . . . 12 (abs‘2) = 2
144143oveq1i 7379 . . . . . . . . . . 11 ((abs‘2) · (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))) = (2 · (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))))
145140, 144eqtrdi 2780 . . . . . . . . . 10 (𝜑 → (𝑁‘(2( ·𝑠𝑈)(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))) = (2 · (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))))
1462, 52, 38, 39, 3, 35, 44, 8, 55lmodsubdi 20801 . . . . . . . . . . . 12 (𝜑 → (2( ·𝑠𝑈)(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) = ((2( ·𝑠𝑈)𝐴) (2( ·𝑠𝑈)((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))))
147 eqid 2729 . . . . . . . . . . . . . . . 16 (.g𝑈) = (.g𝑈)
1482, 147, 49mulg2 18991 . . . . . . . . . . . . . . 15 (𝐴𝑋 → (2(.g𝑈)𝐴) = (𝐴(+g𝑈)𝐴))
1498, 148syl 17 . . . . . . . . . . . . . 14 (𝜑 → (2(.g𝑈)𝐴) = (𝐴(+g𝑈)𝐴))
1502, 147, 52clmmulg 24977 . . . . . . . . . . . . . . 15 ((𝑈 ∈ ℂMod ∧ 2 ∈ ℤ ∧ 𝐴𝑋) → (2(.g𝑈)𝐴) = (2( ·𝑠𝑈)𝐴))
15137, 43, 8, 150syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑 → (2(.g𝑈)𝐴) = (2( ·𝑠𝑈)𝐴))
152149, 151eqtr3d 2766 . . . . . . . . . . . . 13 (𝜑 → (𝐴(+g𝑈)𝐴) = (2( ·𝑠𝑈)𝐴))
1532, 49lmodvacl 20757 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ LMod ∧ 𝐾𝑋𝐿𝑋) → (𝐾(+g𝑈)𝐿) ∈ 𝑋)
15435, 27, 29, 153syl3anc 1373 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾(+g𝑈)𝐿) ∈ 𝑋)
1552, 52clmvs1 24969 . . . . . . . . . . . . . . 15 ((𝑈 ∈ ℂMod ∧ (𝐾(+g𝑈)𝐿) ∈ 𝑋) → (1( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)) = (𝐾(+g𝑈)𝐿))
15637, 154, 155syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (1( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)) = (𝐾(+g𝑈)𝐿))
157132, 45recidi 11889 . . . . . . . . . . . . . . . 16 (2 · (1 / 2)) = 1
158157oveq1i 7379 . . . . . . . . . . . . . . 15 ((2 · (1 / 2))( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)) = (1( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))
1592, 38, 52, 39clmvsass 24965 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ ℂMod ∧ (2 ∈ (Base‘(Scalar‘𝑈)) ∧ (1 / 2) ∈ (Base‘(Scalar‘𝑈)) ∧ (𝐾(+g𝑈)𝐿) ∈ 𝑋)) → ((2 · (1 / 2))( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)) = (2( ·𝑠𝑈)((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))
16037, 44, 48, 154, 159syl13anc 1374 . . . . . . . . . . . . . . 15 (𝜑 → ((2 · (1 / 2))( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)) = (2( ·𝑠𝑈)((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))
161158, 160eqtr3id 2778 . . . . . . . . . . . . . 14 (𝜑 → (1( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)) = (2( ·𝑠𝑈)((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))
162156, 161eqtr3d 2766 . . . . . . . . . . . . 13 (𝜑 → (𝐾(+g𝑈)𝐿) = (2( ·𝑠𝑈)((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))
163152, 162oveq12d 7387 . . . . . . . . . . . 12 (𝜑 → ((𝐴(+g𝑈)𝐴) (𝐾(+g𝑈)𝐿)) = ((2( ·𝑠𝑈)𝐴) (2( ·𝑠𝑈)((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))))
164 lmodabl 20791 . . . . . . . . . . . . . 14 (𝑈 ∈ LMod → 𝑈 ∈ Abel)
16535, 164syl 17 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ Abel)
1662, 49, 3ablsub4 19716 . . . . . . . . . . . . 13 ((𝑈 ∈ Abel ∧ (𝐴𝑋𝐴𝑋) ∧ (𝐾𝑋𝐿𝑋)) → ((𝐴(+g𝑈)𝐴) (𝐾(+g𝑈)𝐿)) = ((𝐴 𝐾)(+g𝑈)(𝐴 𝐿)))
167165, 8, 8, 27, 29, 166syl122anc 1381 . . . . . . . . . . . 12 (𝜑 → ((𝐴(+g𝑈)𝐴) (𝐾(+g𝑈)𝐿)) = ((𝐴 𝐾)(+g𝑈)(𝐴 𝐿)))
168146, 163, 1673eqtr2d 2770 . . . . . . . . . . 11 (𝜑 → (2( ·𝑠𝑈)(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))) = ((𝐴 𝐾)(+g𝑈)(𝐴 𝐿)))
169168fveq2d 6844 . . . . . . . . . 10 (𝜑 → (𝑁‘(2( ·𝑠𝑈)(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))) = (𝑁‘((𝐴 𝐾)(+g𝑈)(𝐴 𝐿))))
170145, 169eqtr3d 2766 . . . . . . . . 9 (𝜑 → (2 · (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))) = (𝑁‘((𝐴 𝐾)(+g𝑈)(𝐴 𝐿))))
171170oveq1d 7384 . . . . . . . 8 (𝜑 → ((2 · (𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿)))))↑2) = ((𝑁‘((𝐴 𝐾)(+g𝑈)(𝐴 𝐿)))↑2))
172138, 171eqtr3d 2766 . . . . . . 7 (𝜑 → (4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2)) = ((𝑁‘((𝐴 𝐾)(+g𝑈)(𝐴 𝐿)))↑2))
173 eqid 2729 . . . . . . . . . . 11 (dist‘𝑈) = (dist‘𝑈)
1744, 2, 3, 173ngpdsr 24469 . . . . . . . . . 10 ((𝑈 ∈ NrmGrp ∧ 𝐾𝑋𝐿𝑋) → (𝐾(dist‘𝑈)𝐿) = (𝑁‘(𝐿 𝐾)))
17517, 27, 29, 174syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝐾(dist‘𝑈)𝐿) = (𝑁‘(𝐿 𝐾)))
17620oveqi 7382 . . . . . . . . . 10 (𝐾𝐷𝐿) = (𝐾((dist‘𝑈) ↾ (𝑋 × 𝑋))𝐿)
17727, 29ovresd 7536 . . . . . . . . . 10 (𝜑 → (𝐾((dist‘𝑈) ↾ (𝑋 × 𝑋))𝐿) = (𝐾(dist‘𝑈)𝐿))
178176, 177eqtrid 2776 . . . . . . . . 9 (𝜑 → (𝐾𝐷𝐿) = (𝐾(dist‘𝑈)𝐿))
1792, 3, 165, 8, 27, 29ablnnncan1 19729 . . . . . . . . . 10 (𝜑 → ((𝐴 𝐾) (𝐴 𝐿)) = (𝐿 𝐾))
180179fveq2d 6844 . . . . . . . . 9 (𝜑 → (𝑁‘((𝐴 𝐾) (𝐴 𝐿))) = (𝑁‘(𝐿 𝐾)))
181175, 178, 1803eqtr4d 2774 . . . . . . . 8 (𝜑 → (𝐾𝐷𝐿) = (𝑁‘((𝐴 𝐾) (𝐴 𝐿))))
182181oveq1d 7384 . . . . . . 7 (𝜑 → ((𝐾𝐷𝐿)↑2) = ((𝑁‘((𝐴 𝐾) (𝐴 𝐿)))↑2))
183172, 182oveq12d 7387 . . . . . 6 (𝜑 → ((4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) = (((𝑁‘((𝐴 𝐾)(+g𝑈)(𝐴 𝐿)))↑2) + ((𝑁‘((𝐴 𝐾) (𝐴 𝐿)))↑2)))
18420oveqi 7382 . . . . . . . . . . 11 (𝐴𝐷𝐾) = (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝐾)
1858, 27ovresd 7536 . . . . . . . . . . 11 (𝜑 → (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝐾) = (𝐴(dist‘𝑈)𝐾))
186184, 185eqtrid 2776 . . . . . . . . . 10 (𝜑 → (𝐴𝐷𝐾) = (𝐴(dist‘𝑈)𝐾))
1874, 2, 3, 173ngpds 24468 . . . . . . . . . . 11 ((𝑈 ∈ NrmGrp ∧ 𝐴𝑋𝐾𝑋) → (𝐴(dist‘𝑈)𝐾) = (𝑁‘(𝐴 𝐾)))
18817, 8, 27, 187syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝐴(dist‘𝑈)𝐾) = (𝑁‘(𝐴 𝐾)))
189186, 188eqtrd 2764 . . . . . . . . 9 (𝜑 → (𝐴𝐷𝐾) = (𝑁‘(𝐴 𝐾)))
190189oveq1d 7384 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐾)↑2) = ((𝑁‘(𝐴 𝐾))↑2))
19120oveqi 7382 . . . . . . . . . . 11 (𝐴𝐷𝐿) = (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝐿)
1928, 29ovresd 7536 . . . . . . . . . . 11 (𝜑 → (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝐿) = (𝐴(dist‘𝑈)𝐿))
193191, 192eqtrid 2776 . . . . . . . . . 10 (𝜑 → (𝐴𝐷𝐿) = (𝐴(dist‘𝑈)𝐿))
1944, 2, 3, 173ngpds 24468 . . . . . . . . . . 11 ((𝑈 ∈ NrmGrp ∧ 𝐴𝑋𝐿𝑋) → (𝐴(dist‘𝑈)𝐿) = (𝑁‘(𝐴 𝐿)))
19517, 8, 29, 194syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝐴(dist‘𝑈)𝐿) = (𝑁‘(𝐴 𝐿)))
196193, 195eqtrd 2764 . . . . . . . . 9 (𝜑 → (𝐴𝐷𝐿) = (𝑁‘(𝐴 𝐿)))
197196oveq1d 7384 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐿)↑2) = ((𝑁‘(𝐴 𝐿))↑2))
198190, 197oveq12d 7387 . . . . . . 7 (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) = (((𝑁‘(𝐴 𝐾))↑2) + ((𝑁‘(𝐴 𝐿))↑2)))
199198oveq2d 7385 . . . . . 6 (𝜑 → (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) = (2 · (((𝑁‘(𝐴 𝐾))↑2) + ((𝑁‘(𝐴 𝐿))↑2))))
200131, 183, 1993eqtr4d 2774 . . . . 5 (𝜑 → ((4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) = (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))))
201 2t2e4 12321 . . . . . . 7 (2 · 2) = 4
202201oveq1i 7379 . . . . . 6 ((2 · 2) · ((𝑆↑2) + 𝐵)) = (4 · ((𝑆↑2) + 𝐵))
203 2cnd 12240 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
204203, 203, 113mulassd 11173 . . . . . 6 (𝜑 → ((2 · 2) · ((𝑆↑2) + 𝐵)) = (2 · (2 · ((𝑆↑2) + 𝐵))))
205202, 204eqtr3id 2778 . . . . 5 (𝜑 → (4 · ((𝑆↑2) + 𝐵)) = (2 · (2 · ((𝑆↑2) + 𝐵))))
206125, 200, 2053brtr4d 5134 . . . 4 (𝜑 → ((4 · ((𝑁‘(𝐴 ((1 / 2)( ·𝑠𝑈)(𝐾(+g𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ (4 · ((𝑆↑2) + 𝐵)))
20733, 63, 67, 103, 206letrd 11307 . . 3 (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ (4 · ((𝑆↑2) + 𝐵)))
208 4cn 12247 . . . . 5 4 ∈ ℂ
209208a1i 11 . . . 4 (𝜑 → 4 ∈ ℂ)
21013recnd 11178 . . . 4 (𝜑 → (𝑆↑2) ∈ ℂ)
21164recnd 11178 . . . 4 (𝜑𝐵 ∈ ℂ)
212209, 210, 211adddid 11174 . . 3 (𝜑 → (4 · ((𝑆↑2) + 𝐵)) = ((4 · (𝑆↑2)) + (4 · 𝐵)))
213207, 212breqtrd 5128 . 2 (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ ((4 · (𝑆↑2)) + (4 · 𝐵)))
214 remulcl 11129 . . . 4 ((4 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (4 · 𝐵) ∈ ℝ)
2151, 64, 214sylancr 587 . . 3 (𝜑 → (4 · 𝐵) ∈ ℝ)
21632, 215, 15leadd2d 11749 . 2 (𝜑 → (((𝐾𝐷𝐿)↑2) ≤ (4 · 𝐵) ↔ ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ ((4 · (𝑆↑2)) + (4 · 𝐵))))
217213, 216mpbird 257 1 (𝜑 → ((𝐾𝐷𝐿)↑2) ≤ (4 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3911  c0 4292   class class class wbr 5102  cmpt 5183   × cxp 5629  ran crn 5632  cres 5633  cfv 6499  (class class class)co 7369  infcinf 9368  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185   / cdiv 11811  2c2 12217  4c4 12219  cz 12505  cexp 14002  abscabs 15176  Basecbs 17155  s cress 17176  +gcplusg 17196  Scalarcsca 17199   ·𝑠 cvsca 17200  distcds 17205  TopOpenctopn 17360  -gcsg 18843  .gcmg 18975  Abelcabl 19687  LModclmod 20742  LSubSpclss 20813  Metcmet 21226  MetSpcms 24182  normcnm 24440  NrmGrpcngp 24441  ℂModcclm 24938  ℂPreHilccph 25042  CMetSpccms 25208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-fz 13445  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-0g 17380  df-topgen 17382  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19121  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-rhm 20357  df-subrg 20455  df-drng 20616  df-staf 20724  df-srng 20725  df-lmod 20744  df-lss 20814  df-lmhm 20905  df-lvec 20986  df-sra 21056  df-rgmod 21057  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-cnfld 21241  df-phl 21511  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-xms 24184  df-ms 24185  df-nm 24446  df-ngp 24447  df-nlm 24450  df-clm 24939  df-cph 25044
This theorem is referenced by:  minveclem3  25305  minveclem7  25311
  Copyright terms: Public domain W3C validator