Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmparlem Structured version   Visualization version   GIF version

Theorem nmparlem 23849
 Description: Lemma for nmpar 23850. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
nmpar.v 𝑉 = (Base‘𝑊)
nmpar.p + = (+g𝑊)
nmpar.m = (-g𝑊)
nmpar.n 𝑁 = (norm‘𝑊)
nmpar.h , = (·𝑖𝑊)
nmpar.f 𝐹 = (Scalar‘𝑊)
nmpar.k 𝐾 = (Base‘𝐹)
nmpar.1 (𝜑𝑊 ∈ ℂPreHil)
nmpar.2 (𝜑𝐴𝑉)
nmpar.3 (𝜑𝐵𝑉)
Assertion
Ref Expression
nmparlem (𝜑 → (((𝑁‘(𝐴 + 𝐵))↑2) + ((𝑁‘(𝐴 𝐵))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))

Proof of Theorem nmparlem
StepHypRef Expression
1 nmpar.h . . . . 5 , = (·𝑖𝑊)
2 nmpar.v . . . . 5 𝑉 = (Base‘𝑊)
3 nmpar.p . . . . 5 + = (+g𝑊)
4 nmpar.1 . . . . 5 (𝜑𝑊 ∈ ℂPreHil)
5 nmpar.2 . . . . 5 (𝜑𝐴𝑉)
6 nmpar.3 . . . . 5 (𝜑𝐵𝑉)
71, 2, 3, 4, 5, 6, 5, 6cph2di 23818 . . . 4 (𝜑 → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
8 nmpar.m . . . . 5 = (-g𝑊)
91, 2, 8, 4, 5, 6, 5, 6cph2subdi 23821 . . . 4 (𝜑 → ((𝐴 𝐵) , (𝐴 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
107, 9oveq12d 7167 . . 3 (𝜑 → (((𝐴 + 𝐵) , (𝐴 + 𝐵)) + ((𝐴 𝐵) , (𝐴 𝐵))) = ((((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) + (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴)))))
11 cphclm 23800 . . . . . . 7 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
124, 11syl 17 . . . . . 6 (𝜑𝑊 ∈ ℂMod)
13 nmpar.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
14 nmpar.k . . . . . . 7 𝐾 = (Base‘𝐹)
1513, 14clmsscn 23690 . . . . . 6 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
1612, 15syl 17 . . . . 5 (𝜑𝐾 ⊆ ℂ)
17 cphphl 23782 . . . . . . . 8 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
184, 17syl 17 . . . . . . 7 (𝜑𝑊 ∈ PreHil)
1913, 1, 2, 14ipcl 20379 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐴𝑉) → (𝐴 , 𝐴) ∈ 𝐾)
2018, 5, 5, 19syl3anc 1368 . . . . . 6 (𝜑 → (𝐴 , 𝐴) ∈ 𝐾)
2113, 1, 2, 14ipcl 20379 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐵𝑉) → (𝐵 , 𝐵) ∈ 𝐾)
2218, 6, 6, 21syl3anc 1368 . . . . . 6 (𝜑 → (𝐵 , 𝐵) ∈ 𝐾)
2313, 14clmacl 23695 . . . . . 6 ((𝑊 ∈ ℂMod ∧ (𝐴 , 𝐴) ∈ 𝐾 ∧ (𝐵 , 𝐵) ∈ 𝐾) → ((𝐴 , 𝐴) + (𝐵 , 𝐵)) ∈ 𝐾)
2412, 20, 22, 23syl3anc 1368 . . . . 5 (𝜑 → ((𝐴 , 𝐴) + (𝐵 , 𝐵)) ∈ 𝐾)
2516, 24sseldd 3954 . . . 4 (𝜑 → ((𝐴 , 𝐴) + (𝐵 , 𝐵)) ∈ ℂ)
2613, 1, 2, 14ipcl 20379 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ 𝐾)
2718, 5, 6, 26syl3anc 1368 . . . . . 6 (𝜑 → (𝐴 , 𝐵) ∈ 𝐾)
2813, 1, 2, 14ipcl 20379 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐴𝑉) → (𝐵 , 𝐴) ∈ 𝐾)
2918, 6, 5, 28syl3anc 1368 . . . . . 6 (𝜑 → (𝐵 , 𝐴) ∈ 𝐾)
3013, 14clmacl 23695 . . . . . 6 ((𝑊 ∈ ℂMod ∧ (𝐴 , 𝐵) ∈ 𝐾 ∧ (𝐵 , 𝐴) ∈ 𝐾) → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) ∈ 𝐾)
3112, 27, 29, 30syl3anc 1368 . . . . 5 (𝜑 → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) ∈ 𝐾)
3216, 31sseldd 3954 . . . 4 (𝜑 → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) ∈ ℂ)
3325, 32, 25ppncand 11035 . . 3 (𝜑 → ((((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) + (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴)))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐴) + (𝐵 , 𝐵))))
3410, 33eqtrd 2859 . 2 (𝜑 → (((𝐴 + 𝐵) , (𝐴 + 𝐵)) + ((𝐴 𝐵) , (𝐴 𝐵))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐴) + (𝐵 , 𝐵))))
35 cphlmod 23785 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
364, 35syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
372, 3lmodvacl 19648 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 + 𝐵) ∈ 𝑉)
3836, 5, 6, 37syl3anc 1368 . . . 4 (𝜑 → (𝐴 + 𝐵) ∈ 𝑉)
39 nmpar.n . . . . 5 𝑁 = (norm‘𝑊)
402, 1, 39nmsq 23805 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + 𝐵) ∈ 𝑉) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
414, 38, 40syl2anc 587 . . 3 (𝜑 → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
422, 8lmodvsubcl 19679 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 𝐵) ∈ 𝑉)
4336, 5, 6, 42syl3anc 1368 . . . 4 (𝜑 → (𝐴 𝐵) ∈ 𝑉)
442, 1, 39nmsq 23805 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴 𝐵) ∈ 𝑉) → ((𝑁‘(𝐴 𝐵))↑2) = ((𝐴 𝐵) , (𝐴 𝐵)))
454, 43, 44syl2anc 587 . . 3 (𝜑 → ((𝑁‘(𝐴 𝐵))↑2) = ((𝐴 𝐵) , (𝐴 𝐵)))
4641, 45oveq12d 7167 . 2 (𝜑 → (((𝑁‘(𝐴 + 𝐵))↑2) + ((𝑁‘(𝐴 𝐵))↑2)) = (((𝐴 + 𝐵) , (𝐴 + 𝐵)) + ((𝐴 𝐵) , (𝐴 𝐵))))
472, 1, 39nmsq 23805 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → ((𝑁𝐴)↑2) = (𝐴 , 𝐴))
484, 5, 47syl2anc 587 . . . . 5 (𝜑 → ((𝑁𝐴)↑2) = (𝐴 , 𝐴))
492, 1, 39nmsq 23805 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝐵𝑉) → ((𝑁𝐵)↑2) = (𝐵 , 𝐵))
504, 6, 49syl2anc 587 . . . . 5 (𝜑 → ((𝑁𝐵)↑2) = (𝐵 , 𝐵))
5148, 50oveq12d 7167 . . . 4 (𝜑 → (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)) = ((𝐴 , 𝐴) + (𝐵 , 𝐵)))
5251oveq2d 7165 . . 3 (𝜑 → (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))) = (2 · ((𝐴 , 𝐴) + (𝐵 , 𝐵))))
53252timesd 11877 . . 3 (𝜑 → (2 · ((𝐴 , 𝐴) + (𝐵 , 𝐵))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐴) + (𝐵 , 𝐵))))
5452, 53eqtrd 2859 . 2 (𝜑 → (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐴) + (𝐵 , 𝐵))))
5534, 46, 543eqtr4d 2869 1 (𝜑 → (((𝑁‘(𝐴 + 𝐵))↑2) + ((𝑁‘(𝐴 𝐵))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2115   ⊆ wss 3919  ‘cfv 6343  (class class class)co 7149  ℂcc 10533   + caddc 10538   · cmul 10540   − cmin 10868  2c2 11689  ↑cexp 13434  Basecbs 16483  +gcplusg 16565  Scalarcsca 16568  ·𝑖cip 16570  -gcsg 18105  LModclmod 19634  PreHilcphl 20370  normcnm 23189  ℂModcclm 23673  ℂPreHilccph 23777 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613  ax-addf 10614  ax-mulf 10615 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-tpos 7888  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-sup 8903  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-rp 12387  df-fz 12895  df-seq 13374  df-exp 13435  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-ghm 18356  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19376  df-dvdsr 19394  df-unit 19395  df-rnghom 19470  df-drng 19504  df-subrg 19533  df-staf 19616  df-srng 19617  df-lmod 19636  df-lmhm 19794  df-lvec 19875  df-sra 19944  df-rgmod 19945  df-cnfld 20148  df-phl 20372  df-nlm 23199  df-clm 23674  df-cph 23779 This theorem is referenced by:  nmpar  23850
 Copyright terms: Public domain W3C validator