MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmparlem Structured version   Visualization version   GIF version

Theorem nmparlem 23843
Description: Lemma for nmpar 23844. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
nmpar.v 𝑉 = (Base‘𝑊)
nmpar.p + = (+g𝑊)
nmpar.m = (-g𝑊)
nmpar.n 𝑁 = (norm‘𝑊)
nmpar.h , = (·𝑖𝑊)
nmpar.f 𝐹 = (Scalar‘𝑊)
nmpar.k 𝐾 = (Base‘𝐹)
nmpar.1 (𝜑𝑊 ∈ ℂPreHil)
nmpar.2 (𝜑𝐴𝑉)
nmpar.3 (𝜑𝐵𝑉)
Assertion
Ref Expression
nmparlem (𝜑 → (((𝑁‘(𝐴 + 𝐵))↑2) + ((𝑁‘(𝐴 𝐵))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))

Proof of Theorem nmparlem
StepHypRef Expression
1 nmpar.h . . . . 5 , = (·𝑖𝑊)
2 nmpar.v . . . . 5 𝑉 = (Base‘𝑊)
3 nmpar.p . . . . 5 + = (+g𝑊)
4 nmpar.1 . . . . 5 (𝜑𝑊 ∈ ℂPreHil)
5 nmpar.2 . . . . 5 (𝜑𝐴𝑉)
6 nmpar.3 . . . . 5 (𝜑𝐵𝑉)
71, 2, 3, 4, 5, 6, 5, 6cph2di 23812 . . . 4 (𝜑 → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
8 nmpar.m . . . . 5 = (-g𝑊)
91, 2, 8, 4, 5, 6, 5, 6cph2subdi 23815 . . . 4 (𝜑 → ((𝐴 𝐵) , (𝐴 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
107, 9oveq12d 7153 . . 3 (𝜑 → (((𝐴 + 𝐵) , (𝐴 + 𝐵)) + ((𝐴 𝐵) , (𝐴 𝐵))) = ((((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) + (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴)))))
11 cphclm 23794 . . . . . . 7 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
124, 11syl 17 . . . . . 6 (𝜑𝑊 ∈ ℂMod)
13 nmpar.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
14 nmpar.k . . . . . . 7 𝐾 = (Base‘𝐹)
1513, 14clmsscn 23684 . . . . . 6 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
1612, 15syl 17 . . . . 5 (𝜑𝐾 ⊆ ℂ)
17 cphphl 23776 . . . . . . . 8 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
184, 17syl 17 . . . . . . 7 (𝜑𝑊 ∈ PreHil)
1913, 1, 2, 14ipcl 20322 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐴𝑉) → (𝐴 , 𝐴) ∈ 𝐾)
2018, 5, 5, 19syl3anc 1368 . . . . . 6 (𝜑 → (𝐴 , 𝐴) ∈ 𝐾)
2113, 1, 2, 14ipcl 20322 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐵𝑉) → (𝐵 , 𝐵) ∈ 𝐾)
2218, 6, 6, 21syl3anc 1368 . . . . . 6 (𝜑 → (𝐵 , 𝐵) ∈ 𝐾)
2313, 14clmacl 23689 . . . . . 6 ((𝑊 ∈ ℂMod ∧ (𝐴 , 𝐴) ∈ 𝐾 ∧ (𝐵 , 𝐵) ∈ 𝐾) → ((𝐴 , 𝐴) + (𝐵 , 𝐵)) ∈ 𝐾)
2412, 20, 22, 23syl3anc 1368 . . . . 5 (𝜑 → ((𝐴 , 𝐴) + (𝐵 , 𝐵)) ∈ 𝐾)
2516, 24sseldd 3916 . . . 4 (𝜑 → ((𝐴 , 𝐴) + (𝐵 , 𝐵)) ∈ ℂ)
2613, 1, 2, 14ipcl 20322 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ 𝐾)
2718, 5, 6, 26syl3anc 1368 . . . . . 6 (𝜑 → (𝐴 , 𝐵) ∈ 𝐾)
2813, 1, 2, 14ipcl 20322 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐴𝑉) → (𝐵 , 𝐴) ∈ 𝐾)
2918, 6, 5, 28syl3anc 1368 . . . . . 6 (𝜑 → (𝐵 , 𝐴) ∈ 𝐾)
3013, 14clmacl 23689 . . . . . 6 ((𝑊 ∈ ℂMod ∧ (𝐴 , 𝐵) ∈ 𝐾 ∧ (𝐵 , 𝐴) ∈ 𝐾) → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) ∈ 𝐾)
3112, 27, 29, 30syl3anc 1368 . . . . 5 (𝜑 → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) ∈ 𝐾)
3216, 31sseldd 3916 . . . 4 (𝜑 → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) ∈ ℂ)
3325, 32, 25ppncand 11026 . . 3 (𝜑 → ((((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) + (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴)))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐴) + (𝐵 , 𝐵))))
3410, 33eqtrd 2833 . 2 (𝜑 → (((𝐴 + 𝐵) , (𝐴 + 𝐵)) + ((𝐴 𝐵) , (𝐴 𝐵))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐴) + (𝐵 , 𝐵))))
35 cphlmod 23779 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
364, 35syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
372, 3lmodvacl 19641 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 + 𝐵) ∈ 𝑉)
3836, 5, 6, 37syl3anc 1368 . . . 4 (𝜑 → (𝐴 + 𝐵) ∈ 𝑉)
39 nmpar.n . . . . 5 𝑁 = (norm‘𝑊)
402, 1, 39nmsq 23799 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + 𝐵) ∈ 𝑉) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
414, 38, 40syl2anc 587 . . 3 (𝜑 → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
422, 8lmodvsubcl 19672 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 𝐵) ∈ 𝑉)
4336, 5, 6, 42syl3anc 1368 . . . 4 (𝜑 → (𝐴 𝐵) ∈ 𝑉)
442, 1, 39nmsq 23799 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴 𝐵) ∈ 𝑉) → ((𝑁‘(𝐴 𝐵))↑2) = ((𝐴 𝐵) , (𝐴 𝐵)))
454, 43, 44syl2anc 587 . . 3 (𝜑 → ((𝑁‘(𝐴 𝐵))↑2) = ((𝐴 𝐵) , (𝐴 𝐵)))
4641, 45oveq12d 7153 . 2 (𝜑 → (((𝑁‘(𝐴 + 𝐵))↑2) + ((𝑁‘(𝐴 𝐵))↑2)) = (((𝐴 + 𝐵) , (𝐴 + 𝐵)) + ((𝐴 𝐵) , (𝐴 𝐵))))
472, 1, 39nmsq 23799 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → ((𝑁𝐴)↑2) = (𝐴 , 𝐴))
484, 5, 47syl2anc 587 . . . . 5 (𝜑 → ((𝑁𝐴)↑2) = (𝐴 , 𝐴))
492, 1, 39nmsq 23799 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝐵𝑉) → ((𝑁𝐵)↑2) = (𝐵 , 𝐵))
504, 6, 49syl2anc 587 . . . . 5 (𝜑 → ((𝑁𝐵)↑2) = (𝐵 , 𝐵))
5148, 50oveq12d 7153 . . . 4 (𝜑 → (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)) = ((𝐴 , 𝐴) + (𝐵 , 𝐵)))
5251oveq2d 7151 . . 3 (𝜑 → (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))) = (2 · ((𝐴 , 𝐴) + (𝐵 , 𝐵))))
53252timesd 11868 . . 3 (𝜑 → (2 · ((𝐴 , 𝐴) + (𝐵 , 𝐵))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐴) + (𝐵 , 𝐵))))
5452, 53eqtrd 2833 . 2 (𝜑 → (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐴) + (𝐵 , 𝐵))))
5534, 46, 543eqtr4d 2843 1 (𝜑 → (((𝑁‘(𝐴 + 𝐵))↑2) + ((𝑁‘(𝐴 𝐵))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  wss 3881  cfv 6324  (class class class)co 7135  cc 10524   + caddc 10529   · cmul 10531  cmin 10859  2c2 11680  cexp 13425  Basecbs 16475  +gcplusg 16557  Scalarcsca 16560  ·𝑖cip 16562  -gcsg 18097  LModclmod 19627  PreHilcphl 20313  normcnm 23183  ℂModcclm 23667  ℂPreHilccph 23771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-ghm 18348  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-rnghom 19463  df-drng 19497  df-subrg 19526  df-staf 19609  df-srng 19610  df-lmod 19629  df-lmhm 19787  df-lvec 19868  df-sra 19937  df-rgmod 19938  df-cnfld 20092  df-phl 20315  df-nlm 23193  df-clm 23668  df-cph 23773
This theorem is referenced by:  nmpar  23844
  Copyright terms: Public domain W3C validator