Proof of Theorem nmparlem
Step | Hyp | Ref
| Expression |
1 | | nmpar.h |
. . . . 5
⊢ , =
(·𝑖‘𝑊) |
2 | | nmpar.v |
. . . . 5
⊢ 𝑉 = (Base‘𝑊) |
3 | | nmpar.p |
. . . . 5
⊢ + =
(+g‘𝑊) |
4 | | nmpar.1 |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ ℂPreHil) |
5 | | nmpar.2 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
6 | | nmpar.3 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝑉) |
7 | 1, 2, 3, 4, 5, 6, 5, 6 | cph2di 24371 |
. . . 4
⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴)))) |
8 | | nmpar.m |
. . . . 5
⊢ − =
(-g‘𝑊) |
9 | 1, 2, 8, 4, 5, 6, 5, 6 | cph2subdi 24374 |
. . . 4
⊢ (𝜑 → ((𝐴 − 𝐵) , (𝐴 − 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴)))) |
10 | 7, 9 | oveq12d 7293 |
. . 3
⊢ (𝜑 → (((𝐴 + 𝐵) , (𝐴 + 𝐵)) + ((𝐴 − 𝐵) , (𝐴 − 𝐵))) = ((((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) + (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴))))) |
11 | | cphclm 24353 |
. . . . . . 7
⊢ (𝑊 ∈ ℂPreHil →
𝑊 ∈
ℂMod) |
12 | 4, 11 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ ℂMod) |
13 | | nmpar.f |
. . . . . . 7
⊢ 𝐹 = (Scalar‘𝑊) |
14 | | nmpar.k |
. . . . . . 7
⊢ 𝐾 = (Base‘𝐹) |
15 | 13, 14 | clmsscn 24242 |
. . . . . 6
⊢ (𝑊 ∈ ℂMod → 𝐾 ⊆
ℂ) |
16 | 12, 15 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐾 ⊆ ℂ) |
17 | | cphphl 24335 |
. . . . . . . 8
⊢ (𝑊 ∈ ℂPreHil →
𝑊 ∈
PreHil) |
18 | 4, 17 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ PreHil) |
19 | 13, 1, 2, 14 | ipcl 20838 |
. . . . . . 7
⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐴 , 𝐴) ∈ 𝐾) |
20 | 18, 5, 5, 19 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → (𝐴 , 𝐴) ∈ 𝐾) |
21 | 13, 1, 2, 14 | ipcl 20838 |
. . . . . . 7
⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐵 , 𝐵) ∈ 𝐾) |
22 | 18, 6, 6, 21 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → (𝐵 , 𝐵) ∈ 𝐾) |
23 | 13, 14 | clmacl 24247 |
. . . . . 6
⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 , 𝐴) ∈ 𝐾 ∧ (𝐵 , 𝐵) ∈ 𝐾) → ((𝐴 , 𝐴) + (𝐵 , 𝐵)) ∈ 𝐾) |
24 | 12, 20, 22, 23 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 → ((𝐴 , 𝐴) + (𝐵 , 𝐵)) ∈ 𝐾) |
25 | 16, 24 | sseldd 3922 |
. . . 4
⊢ (𝜑 → ((𝐴 , 𝐴) + (𝐵 , 𝐵)) ∈ ℂ) |
26 | 13, 1, 2, 14 | ipcl 20838 |
. . . . . . 7
⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 , 𝐵) ∈ 𝐾) |
27 | 18, 5, 6, 26 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → (𝐴 , 𝐵) ∈ 𝐾) |
28 | 13, 1, 2, 14 | ipcl 20838 |
. . . . . . 7
⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐵 , 𝐴) ∈ 𝐾) |
29 | 18, 6, 5, 28 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → (𝐵 , 𝐴) ∈ 𝐾) |
30 | 13, 14 | clmacl 24247 |
. . . . . 6
⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 , 𝐵) ∈ 𝐾 ∧ (𝐵 , 𝐴) ∈ 𝐾) → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) ∈ 𝐾) |
31 | 12, 27, 29, 30 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) ∈ 𝐾) |
32 | 16, 31 | sseldd 3922 |
. . . 4
⊢ (𝜑 → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) ∈ ℂ) |
33 | 25, 32, 25 | ppncand 11372 |
. . 3
⊢ (𝜑 → ((((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) + (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴)))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐴) + (𝐵 , 𝐵)))) |
34 | 10, 33 | eqtrd 2778 |
. 2
⊢ (𝜑 → (((𝐴 + 𝐵) , (𝐴 + 𝐵)) + ((𝐴 − 𝐵) , (𝐴 − 𝐵))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐴) + (𝐵 , 𝐵)))) |
35 | | cphlmod 24338 |
. . . . . 6
⊢ (𝑊 ∈ ℂPreHil →
𝑊 ∈
LMod) |
36 | 4, 35 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ LMod) |
37 | 2, 3 | lmodvacl 20137 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 + 𝐵) ∈ 𝑉) |
38 | 36, 5, 6, 37 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → (𝐴 + 𝐵) ∈ 𝑉) |
39 | | nmpar.n |
. . . . 5
⊢ 𝑁 = (norm‘𝑊) |
40 | 2, 1, 39 | nmsq 24358 |
. . . 4
⊢ ((𝑊 ∈ ℂPreHil ∧
(𝐴 + 𝐵) ∈ 𝑉) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵))) |
41 | 4, 38, 40 | syl2anc 584 |
. . 3
⊢ (𝜑 → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵))) |
42 | 2, 8 | lmodvsubcl 20168 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) ∈ 𝑉) |
43 | 36, 5, 6, 42 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → (𝐴 − 𝐵) ∈ 𝑉) |
44 | 2, 1, 39 | nmsq 24358 |
. . . 4
⊢ ((𝑊 ∈ ℂPreHil ∧
(𝐴 − 𝐵) ∈ 𝑉) → ((𝑁‘(𝐴 − 𝐵))↑2) = ((𝐴 − 𝐵) , (𝐴 − 𝐵))) |
45 | 4, 43, 44 | syl2anc 584 |
. . 3
⊢ (𝜑 → ((𝑁‘(𝐴 − 𝐵))↑2) = ((𝐴 − 𝐵) , (𝐴 − 𝐵))) |
46 | 41, 45 | oveq12d 7293 |
. 2
⊢ (𝜑 → (((𝑁‘(𝐴 + 𝐵))↑2) + ((𝑁‘(𝐴 − 𝐵))↑2)) = (((𝐴 + 𝐵) , (𝐴 + 𝐵)) + ((𝐴 − 𝐵) , (𝐴 − 𝐵)))) |
47 | 2, 1, 39 | nmsq 24358 |
. . . . . 6
⊢ ((𝑊 ∈ ℂPreHil ∧
𝐴 ∈ 𝑉) → ((𝑁‘𝐴)↑2) = (𝐴 , 𝐴)) |
48 | 4, 5, 47 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ((𝑁‘𝐴)↑2) = (𝐴 , 𝐴)) |
49 | 2, 1, 39 | nmsq 24358 |
. . . . . 6
⊢ ((𝑊 ∈ ℂPreHil ∧
𝐵 ∈ 𝑉) → ((𝑁‘𝐵)↑2) = (𝐵 , 𝐵)) |
50 | 4, 6, 49 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ((𝑁‘𝐵)↑2) = (𝐵 , 𝐵)) |
51 | 48, 50 | oveq12d 7293 |
. . . 4
⊢ (𝜑 → (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)) = ((𝐴 , 𝐴) + (𝐵 , 𝐵))) |
52 | 51 | oveq2d 7291 |
. . 3
⊢ (𝜑 → (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2))) = (2 · ((𝐴 , 𝐴) + (𝐵 , 𝐵)))) |
53 | 25 | 2timesd 12216 |
. . 3
⊢ (𝜑 → (2 · ((𝐴 , 𝐴) + (𝐵 , 𝐵))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐴) + (𝐵 , 𝐵)))) |
54 | 52, 53 | eqtrd 2778 |
. 2
⊢ (𝜑 → (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐴) + (𝐵 , 𝐵)))) |
55 | 34, 46, 54 | 3eqtr4d 2788 |
1
⊢ (𝜑 → (((𝑁‘(𝐴 + 𝐵))↑2) + ((𝑁‘(𝐴 − 𝐵))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) |