MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmparlem Structured version   Visualization version   GIF version

Theorem nmparlem 24555
Description: Lemma for nmpar 24556. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
nmpar.v 𝑉 = (Base‘𝑊)
nmpar.p + = (+g𝑊)
nmpar.m = (-g𝑊)
nmpar.n 𝑁 = (norm‘𝑊)
nmpar.h , = (·𝑖𝑊)
nmpar.f 𝐹 = (Scalar‘𝑊)
nmpar.k 𝐾 = (Base‘𝐹)
nmpar.1 (𝜑𝑊 ∈ ℂPreHil)
nmpar.2 (𝜑𝐴𝑉)
nmpar.3 (𝜑𝐵𝑉)
Assertion
Ref Expression
nmparlem (𝜑 → (((𝑁‘(𝐴 + 𝐵))↑2) + ((𝑁‘(𝐴 𝐵))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))

Proof of Theorem nmparlem
StepHypRef Expression
1 nmpar.h . . . . 5 , = (·𝑖𝑊)
2 nmpar.v . . . . 5 𝑉 = (Base‘𝑊)
3 nmpar.p . . . . 5 + = (+g𝑊)
4 nmpar.1 . . . . 5 (𝜑𝑊 ∈ ℂPreHil)
5 nmpar.2 . . . . 5 (𝜑𝐴𝑉)
6 nmpar.3 . . . . 5 (𝜑𝐵𝑉)
71, 2, 3, 4, 5, 6, 5, 6cph2di 24523 . . . 4 (𝜑 → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
8 nmpar.m . . . . 5 = (-g𝑊)
91, 2, 8, 4, 5, 6, 5, 6cph2subdi 24526 . . . 4 (𝜑 → ((𝐴 𝐵) , (𝐴 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
107, 9oveq12d 7370 . . 3 (𝜑 → (((𝐴 + 𝐵) , (𝐴 + 𝐵)) + ((𝐴 𝐵) , (𝐴 𝐵))) = ((((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) + (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴)))))
11 cphclm 24505 . . . . . . 7 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
124, 11syl 17 . . . . . 6 (𝜑𝑊 ∈ ℂMod)
13 nmpar.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
14 nmpar.k . . . . . . 7 𝐾 = (Base‘𝐹)
1513, 14clmsscn 24394 . . . . . 6 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
1612, 15syl 17 . . . . 5 (𝜑𝐾 ⊆ ℂ)
17 cphphl 24487 . . . . . . . 8 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
184, 17syl 17 . . . . . . 7 (𝜑𝑊 ∈ PreHil)
1913, 1, 2, 14ipcl 20990 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐴𝑉) → (𝐴 , 𝐴) ∈ 𝐾)
2018, 5, 5, 19syl3anc 1372 . . . . . 6 (𝜑 → (𝐴 , 𝐴) ∈ 𝐾)
2113, 1, 2, 14ipcl 20990 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐵𝑉) → (𝐵 , 𝐵) ∈ 𝐾)
2218, 6, 6, 21syl3anc 1372 . . . . . 6 (𝜑 → (𝐵 , 𝐵) ∈ 𝐾)
2313, 14clmacl 24399 . . . . . 6 ((𝑊 ∈ ℂMod ∧ (𝐴 , 𝐴) ∈ 𝐾 ∧ (𝐵 , 𝐵) ∈ 𝐾) → ((𝐴 , 𝐴) + (𝐵 , 𝐵)) ∈ 𝐾)
2412, 20, 22, 23syl3anc 1372 . . . . 5 (𝜑 → ((𝐴 , 𝐴) + (𝐵 , 𝐵)) ∈ 𝐾)
2516, 24sseldd 3944 . . . 4 (𝜑 → ((𝐴 , 𝐴) + (𝐵 , 𝐵)) ∈ ℂ)
2613, 1, 2, 14ipcl 20990 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ 𝐾)
2718, 5, 6, 26syl3anc 1372 . . . . . 6 (𝜑 → (𝐴 , 𝐵) ∈ 𝐾)
2813, 1, 2, 14ipcl 20990 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐴𝑉) → (𝐵 , 𝐴) ∈ 𝐾)
2918, 6, 5, 28syl3anc 1372 . . . . . 6 (𝜑 → (𝐵 , 𝐴) ∈ 𝐾)
3013, 14clmacl 24399 . . . . . 6 ((𝑊 ∈ ℂMod ∧ (𝐴 , 𝐵) ∈ 𝐾 ∧ (𝐵 , 𝐴) ∈ 𝐾) → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) ∈ 𝐾)
3112, 27, 29, 30syl3anc 1372 . . . . 5 (𝜑 → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) ∈ 𝐾)
3216, 31sseldd 3944 . . . 4 (𝜑 → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) ∈ ℂ)
3325, 32, 25ppncand 11511 . . 3 (𝜑 → ((((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) + (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴)))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐴) + (𝐵 , 𝐵))))
3410, 33eqtrd 2778 . 2 (𝜑 → (((𝐴 + 𝐵) , (𝐴 + 𝐵)) + ((𝐴 𝐵) , (𝐴 𝐵))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐴) + (𝐵 , 𝐵))))
35 cphlmod 24490 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
364, 35syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
372, 3lmodvacl 20289 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 + 𝐵) ∈ 𝑉)
3836, 5, 6, 37syl3anc 1372 . . . 4 (𝜑 → (𝐴 + 𝐵) ∈ 𝑉)
39 nmpar.n . . . . 5 𝑁 = (norm‘𝑊)
402, 1, 39nmsq 24510 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + 𝐵) ∈ 𝑉) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
414, 38, 40syl2anc 585 . . 3 (𝜑 → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
422, 8lmodvsubcl 20320 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 𝐵) ∈ 𝑉)
4336, 5, 6, 42syl3anc 1372 . . . 4 (𝜑 → (𝐴 𝐵) ∈ 𝑉)
442, 1, 39nmsq 24510 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴 𝐵) ∈ 𝑉) → ((𝑁‘(𝐴 𝐵))↑2) = ((𝐴 𝐵) , (𝐴 𝐵)))
454, 43, 44syl2anc 585 . . 3 (𝜑 → ((𝑁‘(𝐴 𝐵))↑2) = ((𝐴 𝐵) , (𝐴 𝐵)))
4641, 45oveq12d 7370 . 2 (𝜑 → (((𝑁‘(𝐴 + 𝐵))↑2) + ((𝑁‘(𝐴 𝐵))↑2)) = (((𝐴 + 𝐵) , (𝐴 + 𝐵)) + ((𝐴 𝐵) , (𝐴 𝐵))))
472, 1, 39nmsq 24510 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → ((𝑁𝐴)↑2) = (𝐴 , 𝐴))
484, 5, 47syl2anc 585 . . . . 5 (𝜑 → ((𝑁𝐴)↑2) = (𝐴 , 𝐴))
492, 1, 39nmsq 24510 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝐵𝑉) → ((𝑁𝐵)↑2) = (𝐵 , 𝐵))
504, 6, 49syl2anc 585 . . . . 5 (𝜑 → ((𝑁𝐵)↑2) = (𝐵 , 𝐵))
5148, 50oveq12d 7370 . . . 4 (𝜑 → (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)) = ((𝐴 , 𝐴) + (𝐵 , 𝐵)))
5251oveq2d 7368 . . 3 (𝜑 → (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))) = (2 · ((𝐴 , 𝐴) + (𝐵 , 𝐵))))
53252timesd 12355 . . 3 (𝜑 → (2 · ((𝐴 , 𝐴) + (𝐵 , 𝐵))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐴) + (𝐵 , 𝐵))))
5452, 53eqtrd 2778 . 2 (𝜑 → (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐴) + (𝐵 , 𝐵))))
5534, 46, 543eqtr4d 2788 1 (𝜑 → (((𝑁‘(𝐴 + 𝐵))↑2) + ((𝑁‘(𝐴 𝐵))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  wss 3909  cfv 6494  (class class class)co 7352  cc 11008   + caddc 11013   · cmul 11015  cmin 11344  2c2 12167  cexp 13922  Basecbs 17043  +gcplusg 17093  Scalarcsca 17096  ·𝑖cip 17098  -gcsg 18710  LModclmod 20275  PreHilcphl 20981  normcnm 23884  ℂModcclm 24377  ℂPreHilccph 24482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7665  ax-cnex 11066  ax-resscn 11067  ax-1cn 11068  ax-icn 11069  ax-addcl 11070  ax-addrcl 11071  ax-mulcl 11072  ax-mulrcl 11073  ax-mulcom 11074  ax-addass 11075  ax-mulass 11076  ax-distr 11077  ax-i2m1 11078  ax-1ne0 11079  ax-1rid 11080  ax-rnegex 11081  ax-rrecex 11082  ax-cnre 11083  ax-pre-lttri 11084  ax-pre-lttrn 11085  ax-pre-ltadd 11086  ax-pre-mulgt0 11087  ax-pre-sup 11088  ax-addf 11089  ax-mulf 11090
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-riota 7308  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7796  df-1st 7914  df-2nd 7915  df-tpos 8150  df-frecs 8205  df-wrecs 8236  df-recs 8310  df-rdg 8349  df-1o 8405  df-er 8607  df-map 8726  df-en 8843  df-dom 8844  df-sdom 8845  df-fin 8846  df-sup 9337  df-pnf 11150  df-mnf 11151  df-xr 11152  df-ltxr 11153  df-le 11154  df-sub 11346  df-neg 11347  df-div 11772  df-nn 12113  df-2 12175  df-3 12176  df-4 12177  df-5 12178  df-6 12179  df-7 12180  df-8 12181  df-9 12182  df-n0 12373  df-z 12459  df-dec 12578  df-uz 12723  df-rp 12871  df-fz 13380  df-seq 13862  df-exp 13923  df-cj 14944  df-re 14945  df-im 14946  df-sqrt 15080  df-abs 15081  df-struct 16979  df-sets 16996  df-slot 17014  df-ndx 17026  df-base 17044  df-ress 17073  df-plusg 17106  df-mulr 17107  df-starv 17108  df-sca 17109  df-vsca 17110  df-ip 17111  df-tset 17112  df-ple 17113  df-ds 17115  df-unif 17116  df-0g 17283  df-mgm 18457  df-sgrp 18506  df-mnd 18517  df-mhm 18561  df-grp 18711  df-minusg 18712  df-sbg 18713  df-subg 18884  df-ghm 18965  df-cmn 19523  df-abl 19524  df-mgp 19856  df-ur 19873  df-ring 19920  df-cring 19921  df-oppr 20002  df-dvdsr 20023  df-unit 20024  df-rnghom 20099  df-drng 20140  df-subrg 20173  df-staf 20257  df-srng 20258  df-lmod 20277  df-lmhm 20436  df-lvec 20517  df-sra 20586  df-rgmod 20587  df-cnfld 20750  df-phl 20983  df-nlm 23894  df-clm 24378  df-cph 24484
This theorem is referenced by:  nmpar  24556
  Copyright terms: Public domain W3C validator