MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmparlem Structured version   Visualization version   GIF version

Theorem nmparlem 23456
Description: Lemma for nmpar 23457. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
nmpar.v 𝑉 = (Base‘𝑊)
nmpar.p + = (+g𝑊)
nmpar.m = (-g𝑊)
nmpar.n 𝑁 = (norm‘𝑊)
nmpar.h , = (·𝑖𝑊)
nmpar.f 𝐹 = (Scalar‘𝑊)
nmpar.k 𝐾 = (Base‘𝐹)
nmpar.1 (𝜑𝑊 ∈ ℂPreHil)
nmpar.2 (𝜑𝐴𝑉)
nmpar.3 (𝜑𝐵𝑉)
Assertion
Ref Expression
nmparlem (𝜑 → (((𝑁‘(𝐴 + 𝐵))↑2) + ((𝑁‘(𝐴 𝐵))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))

Proof of Theorem nmparlem
StepHypRef Expression
1 nmpar.h . . . . 5 , = (·𝑖𝑊)
2 nmpar.v . . . . 5 𝑉 = (Base‘𝑊)
3 nmpar.p . . . . 5 + = (+g𝑊)
4 nmpar.1 . . . . 5 (𝜑𝑊 ∈ ℂPreHil)
5 nmpar.2 . . . . 5 (𝜑𝐴𝑉)
6 nmpar.3 . . . . 5 (𝜑𝐵𝑉)
71, 2, 3, 4, 5, 6, 5, 6cph2di 23425 . . . 4 (𝜑 → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
8 nmpar.m . . . . 5 = (-g𝑊)
91, 2, 8, 4, 5, 6, 5, 6cph2subdi 23428 . . . 4 (𝜑 → ((𝐴 𝐵) , (𝐴 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
107, 9oveq12d 6942 . . 3 (𝜑 → (((𝐴 + 𝐵) , (𝐴 + 𝐵)) + ((𝐴 𝐵) , (𝐴 𝐵))) = ((((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) + (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴)))))
11 cphclm 23407 . . . . . . 7 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
124, 11syl 17 . . . . . 6 (𝜑𝑊 ∈ ℂMod)
13 nmpar.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
14 nmpar.k . . . . . . 7 𝐾 = (Base‘𝐹)
1513, 14clmsscn 23297 . . . . . 6 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
1612, 15syl 17 . . . . 5 (𝜑𝐾 ⊆ ℂ)
17 cphphl 23389 . . . . . . . 8 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
184, 17syl 17 . . . . . . 7 (𝜑𝑊 ∈ PreHil)
1913, 1, 2, 14ipcl 20387 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐴𝑉) → (𝐴 , 𝐴) ∈ 𝐾)
2018, 5, 5, 19syl3anc 1439 . . . . . 6 (𝜑 → (𝐴 , 𝐴) ∈ 𝐾)
2113, 1, 2, 14ipcl 20387 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐵𝑉) → (𝐵 , 𝐵) ∈ 𝐾)
2218, 6, 6, 21syl3anc 1439 . . . . . 6 (𝜑 → (𝐵 , 𝐵) ∈ 𝐾)
2313, 14clmacl 23302 . . . . . 6 ((𝑊 ∈ ℂMod ∧ (𝐴 , 𝐴) ∈ 𝐾 ∧ (𝐵 , 𝐵) ∈ 𝐾) → ((𝐴 , 𝐴) + (𝐵 , 𝐵)) ∈ 𝐾)
2412, 20, 22, 23syl3anc 1439 . . . . 5 (𝜑 → ((𝐴 , 𝐴) + (𝐵 , 𝐵)) ∈ 𝐾)
2516, 24sseldd 3822 . . . 4 (𝜑 → ((𝐴 , 𝐴) + (𝐵 , 𝐵)) ∈ ℂ)
2613, 1, 2, 14ipcl 20387 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ 𝐾)
2718, 5, 6, 26syl3anc 1439 . . . . . 6 (𝜑 → (𝐴 , 𝐵) ∈ 𝐾)
2813, 1, 2, 14ipcl 20387 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐴𝑉) → (𝐵 , 𝐴) ∈ 𝐾)
2918, 6, 5, 28syl3anc 1439 . . . . . 6 (𝜑 → (𝐵 , 𝐴) ∈ 𝐾)
3013, 14clmacl 23302 . . . . . 6 ((𝑊 ∈ ℂMod ∧ (𝐴 , 𝐵) ∈ 𝐾 ∧ (𝐵 , 𝐴) ∈ 𝐾) → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) ∈ 𝐾)
3112, 27, 29, 30syl3anc 1439 . . . . 5 (𝜑 → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) ∈ 𝐾)
3216, 31sseldd 3822 . . . 4 (𝜑 → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) ∈ ℂ)
3325, 32, 25ppncand 10776 . . 3 (𝜑 → ((((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) + (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴)))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐴) + (𝐵 , 𝐵))))
3410, 33eqtrd 2814 . 2 (𝜑 → (((𝐴 + 𝐵) , (𝐴 + 𝐵)) + ((𝐴 𝐵) , (𝐴 𝐵))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐴) + (𝐵 , 𝐵))))
35 cphlmod 23392 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
364, 35syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
372, 3lmodvacl 19280 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 + 𝐵) ∈ 𝑉)
3836, 5, 6, 37syl3anc 1439 . . . 4 (𝜑 → (𝐴 + 𝐵) ∈ 𝑉)
39 nmpar.n . . . . 5 𝑁 = (norm‘𝑊)
402, 1, 39nmsq 23412 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + 𝐵) ∈ 𝑉) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
414, 38, 40syl2anc 579 . . 3 (𝜑 → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
422, 8lmodvsubcl 19311 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 𝐵) ∈ 𝑉)
4336, 5, 6, 42syl3anc 1439 . . . 4 (𝜑 → (𝐴 𝐵) ∈ 𝑉)
442, 1, 39nmsq 23412 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴 𝐵) ∈ 𝑉) → ((𝑁‘(𝐴 𝐵))↑2) = ((𝐴 𝐵) , (𝐴 𝐵)))
454, 43, 44syl2anc 579 . . 3 (𝜑 → ((𝑁‘(𝐴 𝐵))↑2) = ((𝐴 𝐵) , (𝐴 𝐵)))
4641, 45oveq12d 6942 . 2 (𝜑 → (((𝑁‘(𝐴 + 𝐵))↑2) + ((𝑁‘(𝐴 𝐵))↑2)) = (((𝐴 + 𝐵) , (𝐴 + 𝐵)) + ((𝐴 𝐵) , (𝐴 𝐵))))
472, 1, 39nmsq 23412 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → ((𝑁𝐴)↑2) = (𝐴 , 𝐴))
484, 5, 47syl2anc 579 . . . . 5 (𝜑 → ((𝑁𝐴)↑2) = (𝐴 , 𝐴))
492, 1, 39nmsq 23412 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝐵𝑉) → ((𝑁𝐵)↑2) = (𝐵 , 𝐵))
504, 6, 49syl2anc 579 . . . . 5 (𝜑 → ((𝑁𝐵)↑2) = (𝐵 , 𝐵))
5148, 50oveq12d 6942 . . . 4 (𝜑 → (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)) = ((𝐴 , 𝐴) + (𝐵 , 𝐵)))
5251oveq2d 6940 . . 3 (𝜑 → (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))) = (2 · ((𝐴 , 𝐴) + (𝐵 , 𝐵))))
53252timesd 11630 . . 3 (𝜑 → (2 · ((𝐴 , 𝐴) + (𝐵 , 𝐵))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐴) + (𝐵 , 𝐵))))
5452, 53eqtrd 2814 . 2 (𝜑 → (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐴) + (𝐵 , 𝐵))))
5534, 46, 543eqtr4d 2824 1 (𝜑 → (((𝑁‘(𝐴 + 𝐵))↑2) + ((𝑁‘(𝐴 𝐵))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  wss 3792  cfv 6137  (class class class)co 6924  cc 10272   + caddc 10277   · cmul 10279  cmin 10608  2c2 11435  cexp 13183  Basecbs 16266  +gcplusg 16349  Scalarcsca 16352  ·𝑖cip 16354  -gcsg 17822  LModclmod 19266  PreHilcphl 20378  normcnm 22800  ℂModcclm 23280  ℂPreHilccph 23384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352  ax-addf 10353  ax-mulf 10354
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-tpos 7636  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-sup 8638  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11036  df-nn 11380  df-2 11443  df-3 11444  df-4 11445  df-5 11446  df-6 11447  df-7 11448  df-8 11449  df-9 11450  df-n0 11648  df-z 11734  df-dec 11851  df-uz 11998  df-rp 12143  df-fz 12649  df-seq 13125  df-exp 13184  df-cj 14252  df-re 14253  df-im 14254  df-sqrt 14388  df-abs 14389  df-struct 16268  df-ndx 16269  df-slot 16270  df-base 16272  df-sets 16273  df-ress 16274  df-plusg 16362  df-mulr 16363  df-starv 16364  df-sca 16365  df-vsca 16366  df-ip 16367  df-tset 16368  df-ple 16369  df-ds 16371  df-unif 16372  df-0g 16499  df-mgm 17639  df-sgrp 17681  df-mnd 17692  df-mhm 17732  df-grp 17823  df-minusg 17824  df-sbg 17825  df-subg 17986  df-ghm 18053  df-cmn 18592  df-abl 18593  df-mgp 18888  df-ur 18900  df-ring 18947  df-cring 18948  df-oppr 19021  df-dvdsr 19039  df-unit 19040  df-rnghom 19115  df-drng 19152  df-subrg 19181  df-staf 19248  df-srng 19249  df-lmod 19268  df-lmhm 19428  df-lvec 19509  df-sra 19580  df-rgmod 19581  df-cnfld 20154  df-phl 20380  df-nlm 22810  df-clm 23281  df-cph 23386
This theorem is referenced by:  nmpar  23457
  Copyright terms: Public domain W3C validator