MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdnval Structured version   Visualization version   GIF version

Theorem wrdnval 14517
Description: Words of a fixed length are mappings from a fixed half-open integer interval. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Proof shortened by AV, 13-May-2020.)
Assertion
Ref Expression
wrdnval ((𝑉𝑋𝑁 ∈ ℕ0) → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} = (𝑉m (0..^𝑁)))
Distinct variable groups:   𝑤,𝑁   𝑤,𝑉   𝑤,𝑋

Proof of Theorem wrdnval
StepHypRef Expression
1 df-rab 3409 . 2 {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} = {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁)}
2 ovexd 7425 . . . . 5 ((𝑉𝑋𝑁 ∈ ℕ0) → (0..^𝑁) ∈ V)
3 elmapg 8815 . . . . 5 ((𝑉𝑋 ∧ (0..^𝑁) ∈ V) → (𝑤 ∈ (𝑉m (0..^𝑁)) ↔ 𝑤:(0..^𝑁)⟶𝑉))
42, 3syldan 591 . . . 4 ((𝑉𝑋𝑁 ∈ ℕ0) → (𝑤 ∈ (𝑉m (0..^𝑁)) ↔ 𝑤:(0..^𝑁)⟶𝑉))
5 iswrdi 14489 . . . . . . . 8 (𝑤:(0..^𝑁)⟶𝑉𝑤 ∈ Word 𝑉)
65adantl 481 . . . . . . 7 (((𝑉𝑋𝑁 ∈ ℕ0) ∧ 𝑤:(0..^𝑁)⟶𝑉) → 𝑤 ∈ Word 𝑉)
7 fnfzo0hash 14422 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑤:(0..^𝑁)⟶𝑉) → (♯‘𝑤) = 𝑁)
87adantll 714 . . . . . . 7 (((𝑉𝑋𝑁 ∈ ℕ0) ∧ 𝑤:(0..^𝑁)⟶𝑉) → (♯‘𝑤) = 𝑁)
96, 8jca 511 . . . . . 6 (((𝑉𝑋𝑁 ∈ ℕ0) ∧ 𝑤:(0..^𝑁)⟶𝑉) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁))
109ex 412 . . . . 5 ((𝑉𝑋𝑁 ∈ ℕ0) → (𝑤:(0..^𝑁)⟶𝑉 → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁)))
11 wrdf 14490 . . . . . . 7 (𝑤 ∈ Word 𝑉𝑤:(0..^(♯‘𝑤))⟶𝑉)
12 oveq2 7398 . . . . . . . 8 ((♯‘𝑤) = 𝑁 → (0..^(♯‘𝑤)) = (0..^𝑁))
1312feq2d 6675 . . . . . . 7 ((♯‘𝑤) = 𝑁 → (𝑤:(0..^(♯‘𝑤))⟶𝑉𝑤:(0..^𝑁)⟶𝑉))
1411, 13syl5ibcom 245 . . . . . 6 (𝑤 ∈ Word 𝑉 → ((♯‘𝑤) = 𝑁𝑤:(0..^𝑁)⟶𝑉))
1514imp 406 . . . . 5 ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁) → 𝑤:(0..^𝑁)⟶𝑉)
1610, 15impbid1 225 . . . 4 ((𝑉𝑋𝑁 ∈ ℕ0) → (𝑤:(0..^𝑁)⟶𝑉 ↔ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁)))
174, 16bitrd 279 . . 3 ((𝑉𝑋𝑁 ∈ ℕ0) → (𝑤 ∈ (𝑉m (0..^𝑁)) ↔ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁)))
1817eqabdv 2862 . 2 ((𝑉𝑋𝑁 ∈ ℕ0) → (𝑉m (0..^𝑁)) = {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁)})
191, 18eqtr4id 2784 1 ((𝑉𝑋𝑁 ∈ ℕ0) → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} = (𝑉m (0..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  {crab 3408  Vcvv 3450  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  0cc0 11075  0cn0 12449  ..^cfzo 13622  chash 14302  Word cword 14485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486
This theorem is referenced by:  wrdmap  14518  hashwrdn  14519  naryfvalelwrdf  48626
  Copyright terms: Public domain W3C validator