![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wrdnval | Structured version Visualization version GIF version |
Description: Words of a fixed length are mappings from a fixed half-open integer interval. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Proof shortened by AV, 13-May-2020.) |
Ref | Expression |
---|---|
wrdnval | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} = (𝑉 ↑m (0..^𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3432 | . 2 ⊢ {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} = {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁)} | |
2 | ovexd 7447 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (0..^𝑁) ∈ V) | |
3 | elmapg 8839 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ (0..^𝑁) ∈ V) → (𝑤 ∈ (𝑉 ↑m (0..^𝑁)) ↔ 𝑤:(0..^𝑁)⟶𝑉)) | |
4 | 2, 3 | syldan 590 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (𝑤 ∈ (𝑉 ↑m (0..^𝑁)) ↔ 𝑤:(0..^𝑁)⟶𝑉)) |
5 | iswrdi 14475 | . . . . . . . 8 ⊢ (𝑤:(0..^𝑁)⟶𝑉 → 𝑤 ∈ Word 𝑉) | |
6 | 5 | adantl 481 | . . . . . . 7 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) ∧ 𝑤:(0..^𝑁)⟶𝑉) → 𝑤 ∈ Word 𝑉) |
7 | fnfzo0hash 14416 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑤:(0..^𝑁)⟶𝑉) → (♯‘𝑤) = 𝑁) | |
8 | 7 | adantll 711 | . . . . . . 7 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) ∧ 𝑤:(0..^𝑁)⟶𝑉) → (♯‘𝑤) = 𝑁) |
9 | 6, 8 | jca 511 | . . . . . 6 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) ∧ 𝑤:(0..^𝑁)⟶𝑉) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁)) |
10 | 9 | ex 412 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (𝑤:(0..^𝑁)⟶𝑉 → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁))) |
11 | wrdf 14476 | . . . . . . 7 ⊢ (𝑤 ∈ Word 𝑉 → 𝑤:(0..^(♯‘𝑤))⟶𝑉) | |
12 | oveq2 7420 | . . . . . . . 8 ⊢ ((♯‘𝑤) = 𝑁 → (0..^(♯‘𝑤)) = (0..^𝑁)) | |
13 | 12 | feq2d 6703 | . . . . . . 7 ⊢ ((♯‘𝑤) = 𝑁 → (𝑤:(0..^(♯‘𝑤))⟶𝑉 ↔ 𝑤:(0..^𝑁)⟶𝑉)) |
14 | 11, 13 | syl5ibcom 244 | . . . . . 6 ⊢ (𝑤 ∈ Word 𝑉 → ((♯‘𝑤) = 𝑁 → 𝑤:(0..^𝑁)⟶𝑉)) |
15 | 14 | imp 406 | . . . . 5 ⊢ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁) → 𝑤:(0..^𝑁)⟶𝑉) |
16 | 10, 15 | impbid1 224 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (𝑤:(0..^𝑁)⟶𝑉 ↔ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁))) |
17 | 4, 16 | bitrd 279 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (𝑤 ∈ (𝑉 ↑m (0..^𝑁)) ↔ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁))) |
18 | 17 | eqabdv 2866 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (𝑉 ↑m (0..^𝑁)) = {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁)}) |
19 | 1, 18 | eqtr4id 2790 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} = (𝑉 ↑m (0..^𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 {cab 2708 {crab 3431 Vcvv 3473 ⟶wf 6539 ‘cfv 6543 (class class class)co 7412 ↑m cmap 8826 0cc0 11116 ℕ0cn0 12479 ..^cfzo 13634 ♯chash 14297 Word cword 14471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-n0 12480 df-z 12566 df-uz 12830 df-fz 13492 df-fzo 13635 df-hash 14298 df-word 14472 |
This theorem is referenced by: wrdmap 14503 hashwrdn 14504 naryfvalelwrdf 47484 |
Copyright terms: Public domain | W3C validator |