MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovmpowrd Structured version   Visualization version   GIF version

Theorem elovmpowrd 14261
Description: Implications for the value of an operation defined by the maps-to notation with a class abstraction of words as a result having an element. Note that 𝜑 may depend on 𝑧 as well as on 𝑣 and 𝑦. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Hypothesis
Ref Expression
elovmpowrd.o 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣𝜑})
Assertion
Ref Expression
elovmpowrd (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉))
Distinct variable groups:   𝑣,𝑉,𝑦,𝑧   𝑣,𝑌,𝑦,𝑧   𝑧,𝑍
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣)   𝑂(𝑦,𝑧,𝑣)   𝑍(𝑦,𝑣)

Proof of Theorem elovmpowrd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elovmpowrd.o . . . 4 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣𝜑})
2 csbwrdg 14247 . . . . . . . 8 (𝑣 ∈ V → 𝑣 / 𝑥Word 𝑥 = Word 𝑣)
32eqcomd 2744 . . . . . . 7 (𝑣 ∈ V → Word 𝑣 = 𝑣 / 𝑥Word 𝑥)
43adantr 481 . . . . . 6 ((𝑣 ∈ V ∧ 𝑦 ∈ V) → Word 𝑣 = 𝑣 / 𝑥Word 𝑥)
54rabeqdv 3419 . . . . 5 ((𝑣 ∈ V ∧ 𝑦 ∈ V) → {𝑧 ∈ Word 𝑣𝜑} = {𝑧𝑣 / 𝑥Word 𝑥𝜑})
65mpoeq3ia 7353 . . . 4 (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣𝜑}) = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧𝑣 / 𝑥Word 𝑥𝜑})
71, 6eqtri 2766 . . 3 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧𝑣 / 𝑥Word 𝑥𝜑})
8 csbwrdg 14247 . . . . 5 (𝑉 ∈ V → 𝑉 / 𝑥Word 𝑥 = Word 𝑉)
9 wrdexg 14227 . . . . 5 (𝑉 ∈ V → Word 𝑉 ∈ V)
108, 9eqeltrd 2839 . . . 4 (𝑉 ∈ V → 𝑉 / 𝑥Word 𝑥 ∈ V)
1110adantr 481 . . 3 ((𝑉 ∈ V ∧ 𝑌 ∈ V) → 𝑉 / 𝑥Word 𝑥 ∈ V)
127, 11elovmporab1w 7516 . 2 (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑉 / 𝑥Word 𝑥))
138eleq2d 2824 . . . . 5 (𝑉 ∈ V → (𝑍𝑉 / 𝑥Word 𝑥𝑍 ∈ Word 𝑉))
1413adantr 481 . . . 4 ((𝑉 ∈ V ∧ 𝑌 ∈ V) → (𝑍𝑉 / 𝑥Word 𝑥𝑍 ∈ Word 𝑉))
15 id 22 . . . . 5 ((𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉))
16153expia 1120 . . . 4 ((𝑉 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ Word 𝑉 → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)))
1714, 16sylbid 239 . . 3 ((𝑉 ∈ V ∧ 𝑌 ∈ V) → (𝑍𝑉 / 𝑥Word 𝑥 → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)))
18173impia 1116 . 2 ((𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑉 / 𝑥Word 𝑥) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉))
1912, 18syl 17 1 (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  csb 3832  (class class class)co 7275  cmpo 7277  Word cword 14217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-1cn 10929  ax-addcl 10931
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-map 8617  df-nn 11974  df-n0 12234  df-word 14218
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator