![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elovmpowrd | Structured version Visualization version GIF version |
Description: Implications for the value of an operation defined by the maps-to notation with a class abstraction of words as a result having an element. Note that 𝜑 may depend on 𝑧 as well as on 𝑣 and 𝑦. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
Ref | Expression |
---|---|
elovmpowrd.o | ⊢ 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣 ∣ 𝜑}) |
Ref | Expression |
---|---|
elovmpowrd | ⊢ (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elovmpowrd.o | . . . 4 ⊢ 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣 ∣ 𝜑}) | |
2 | csbwrdg 14524 | . . . . . . . 8 ⊢ (𝑣 ∈ V → ⦋𝑣 / 𝑥⦌Word 𝑥 = Word 𝑣) | |
3 | 2 | eqcomd 2731 | . . . . . . 7 ⊢ (𝑣 ∈ V → Word 𝑣 = ⦋𝑣 / 𝑥⦌Word 𝑥) |
4 | 3 | adantr 479 | . . . . . 6 ⊢ ((𝑣 ∈ V ∧ 𝑦 ∈ V) → Word 𝑣 = ⦋𝑣 / 𝑥⦌Word 𝑥) |
5 | 4 | rabeqdv 3435 | . . . . 5 ⊢ ((𝑣 ∈ V ∧ 𝑦 ∈ V) → {𝑧 ∈ Word 𝑣 ∣ 𝜑} = {𝑧 ∈ ⦋𝑣 / 𝑥⦌Word 𝑥 ∣ 𝜑}) |
6 | 5 | mpoeq3ia 7494 | . . . 4 ⊢ (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣 ∣ 𝜑}) = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ ⦋𝑣 / 𝑥⦌Word 𝑥 ∣ 𝜑}) |
7 | 1, 6 | eqtri 2753 | . . 3 ⊢ 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ ⦋𝑣 / 𝑥⦌Word 𝑥 ∣ 𝜑}) |
8 | csbwrdg 14524 | . . . . 5 ⊢ (𝑉 ∈ V → ⦋𝑉 / 𝑥⦌Word 𝑥 = Word 𝑉) | |
9 | wrdexg 14504 | . . . . 5 ⊢ (𝑉 ∈ V → Word 𝑉 ∈ V) | |
10 | 8, 9 | eqeltrd 2825 | . . . 4 ⊢ (𝑉 ∈ V → ⦋𝑉 / 𝑥⦌Word 𝑥 ∈ V) |
11 | 10 | adantr 479 | . . 3 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V) → ⦋𝑉 / 𝑥⦌Word 𝑥 ∈ V) |
12 | 7, 11 | elovmporab1w 7664 | . 2 ⊢ (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑉 / 𝑥⦌Word 𝑥)) |
13 | 8 | eleq2d 2811 | . . . . 5 ⊢ (𝑉 ∈ V → (𝑍 ∈ ⦋𝑉 / 𝑥⦌Word 𝑥 ↔ 𝑍 ∈ Word 𝑉)) |
14 | 13 | adantr 479 | . . . 4 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ ⦋𝑉 / 𝑥⦌Word 𝑥 ↔ 𝑍 ∈ Word 𝑉)) |
15 | id 22 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)) | |
16 | 15 | 3expia 1118 | . . . 4 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ Word 𝑉 → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉))) |
17 | 14, 16 | sylbid 239 | . . 3 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ ⦋𝑉 / 𝑥⦌Word 𝑥 → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉))) |
18 | 17 | 3impia 1114 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑉 / 𝑥⦌Word 𝑥) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)) |
19 | 12, 18 | syl 17 | 1 ⊢ (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 {crab 3419 Vcvv 3463 ⦋csb 3885 (class class class)co 7415 ∈ cmpo 7417 Word cword 14494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-1cn 11194 ax-addcl 11196 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-map 8843 df-nn 12241 df-n0 12501 df-word 14495 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |