Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elovmpowrd | Structured version Visualization version GIF version |
Description: Implications for the value of an operation defined by the maps-to notation with a class abstraction of words as a result having an element. Note that 𝜑 may depend on 𝑧 as well as on 𝑣 and 𝑦. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
Ref | Expression |
---|---|
elovmpowrd.o | ⊢ 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣 ∣ 𝜑}) |
Ref | Expression |
---|---|
elovmpowrd | ⊢ (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elovmpowrd.o | . . . 4 ⊢ 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣 ∣ 𝜑}) | |
2 | csbwrdg 14247 | . . . . . . . 8 ⊢ (𝑣 ∈ V → ⦋𝑣 / 𝑥⦌Word 𝑥 = Word 𝑣) | |
3 | 2 | eqcomd 2744 | . . . . . . 7 ⊢ (𝑣 ∈ V → Word 𝑣 = ⦋𝑣 / 𝑥⦌Word 𝑥) |
4 | 3 | adantr 481 | . . . . . 6 ⊢ ((𝑣 ∈ V ∧ 𝑦 ∈ V) → Word 𝑣 = ⦋𝑣 / 𝑥⦌Word 𝑥) |
5 | 4 | rabeqdv 3419 | . . . . 5 ⊢ ((𝑣 ∈ V ∧ 𝑦 ∈ V) → {𝑧 ∈ Word 𝑣 ∣ 𝜑} = {𝑧 ∈ ⦋𝑣 / 𝑥⦌Word 𝑥 ∣ 𝜑}) |
6 | 5 | mpoeq3ia 7353 | . . . 4 ⊢ (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣 ∣ 𝜑}) = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ ⦋𝑣 / 𝑥⦌Word 𝑥 ∣ 𝜑}) |
7 | 1, 6 | eqtri 2766 | . . 3 ⊢ 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ ⦋𝑣 / 𝑥⦌Word 𝑥 ∣ 𝜑}) |
8 | csbwrdg 14247 | . . . . 5 ⊢ (𝑉 ∈ V → ⦋𝑉 / 𝑥⦌Word 𝑥 = Word 𝑉) | |
9 | wrdexg 14227 | . . . . 5 ⊢ (𝑉 ∈ V → Word 𝑉 ∈ V) | |
10 | 8, 9 | eqeltrd 2839 | . . . 4 ⊢ (𝑉 ∈ V → ⦋𝑉 / 𝑥⦌Word 𝑥 ∈ V) |
11 | 10 | adantr 481 | . . 3 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V) → ⦋𝑉 / 𝑥⦌Word 𝑥 ∈ V) |
12 | 7, 11 | elovmporab1w 7516 | . 2 ⊢ (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑉 / 𝑥⦌Word 𝑥)) |
13 | 8 | eleq2d 2824 | . . . . 5 ⊢ (𝑉 ∈ V → (𝑍 ∈ ⦋𝑉 / 𝑥⦌Word 𝑥 ↔ 𝑍 ∈ Word 𝑉)) |
14 | 13 | adantr 481 | . . . 4 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ ⦋𝑉 / 𝑥⦌Word 𝑥 ↔ 𝑍 ∈ Word 𝑉)) |
15 | id 22 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)) | |
16 | 15 | 3expia 1120 | . . . 4 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ Word 𝑉 → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉))) |
17 | 14, 16 | sylbid 239 | . . 3 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ ⦋𝑉 / 𝑥⦌Word 𝑥 → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉))) |
18 | 17 | 3impia 1116 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑉 / 𝑥⦌Word 𝑥) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)) |
19 | 12, 18 | syl 17 | 1 ⊢ (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3432 ⦋csb 3832 (class class class)co 7275 ∈ cmpo 7277 Word cword 14217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-map 8617 df-nn 11974 df-n0 12234 df-word 14218 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |