MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovmpowrd Structured version   Visualization version   GIF version

Theorem elovmpowrd 14576
Description: Implications for the value of an operation defined by the maps-to notation with a class abstraction of words as a result having an element. Note that 𝜑 may depend on 𝑧 as well as on 𝑣 and 𝑦. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Hypothesis
Ref Expression
elovmpowrd.o 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣𝜑})
Assertion
Ref Expression
elovmpowrd (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉))
Distinct variable groups:   𝑣,𝑉,𝑦,𝑧   𝑣,𝑌,𝑦,𝑧   𝑧,𝑍
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣)   𝑂(𝑦,𝑧,𝑣)   𝑍(𝑦,𝑣)

Proof of Theorem elovmpowrd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elovmpowrd.o . . . 4 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣𝜑})
2 csbwrdg 14562 . . . . . . . 8 (𝑣 ∈ V → 𝑣 / 𝑥Word 𝑥 = Word 𝑣)
32eqcomd 2741 . . . . . . 7 (𝑣 ∈ V → Word 𝑣 = 𝑣 / 𝑥Word 𝑥)
43adantr 480 . . . . . 6 ((𝑣 ∈ V ∧ 𝑦 ∈ V) → Word 𝑣 = 𝑣 / 𝑥Word 𝑥)
54rabeqdv 3431 . . . . 5 ((𝑣 ∈ V ∧ 𝑦 ∈ V) → {𝑧 ∈ Word 𝑣𝜑} = {𝑧𝑣 / 𝑥Word 𝑥𝜑})
65mpoeq3ia 7485 . . . 4 (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣𝜑}) = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧𝑣 / 𝑥Word 𝑥𝜑})
71, 6eqtri 2758 . . 3 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧𝑣 / 𝑥Word 𝑥𝜑})
8 csbwrdg 14562 . . . . 5 (𝑉 ∈ V → 𝑉 / 𝑥Word 𝑥 = Word 𝑉)
9 wrdexg 14542 . . . . 5 (𝑉 ∈ V → Word 𝑉 ∈ V)
108, 9eqeltrd 2834 . . . 4 (𝑉 ∈ V → 𝑉 / 𝑥Word 𝑥 ∈ V)
1110adantr 480 . . 3 ((𝑉 ∈ V ∧ 𝑌 ∈ V) → 𝑉 / 𝑥Word 𝑥 ∈ V)
127, 11elovmporab1w 7654 . 2 (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑉 / 𝑥Word 𝑥))
138eleq2d 2820 . . . . 5 (𝑉 ∈ V → (𝑍𝑉 / 𝑥Word 𝑥𝑍 ∈ Word 𝑉))
1413adantr 480 . . . 4 ((𝑉 ∈ V ∧ 𝑌 ∈ V) → (𝑍𝑉 / 𝑥Word 𝑥𝑍 ∈ Word 𝑉))
15 id 22 . . . . 5 ((𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉))
16153expia 1121 . . . 4 ((𝑉 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ Word 𝑉 → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)))
1714, 16sylbid 240 . . 3 ((𝑉 ∈ V ∧ 𝑌 ∈ V) → (𝑍𝑉 / 𝑥Word 𝑥 → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)))
18173impia 1117 . 2 ((𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑉 / 𝑥Word 𝑥) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉))
1912, 18syl 17 1 (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  csb 3874  (class class class)co 7405  cmpo 7407  Word cword 14531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-1cn 11187  ax-addcl 11189
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-map 8842  df-nn 12241  df-n0 12502  df-word 14532
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator