MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovmpowrd Structured version   Visualization version   GIF version

Theorem elovmpowrd 14578
Description: Implications for the value of an operation defined by the maps-to notation with a class abstraction of words as a result having an element. Note that 𝜑 may depend on 𝑧 as well as on 𝑣 and 𝑦. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Hypothesis
Ref Expression
elovmpowrd.o 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣𝜑})
Assertion
Ref Expression
elovmpowrd (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉))
Distinct variable groups:   𝑣,𝑉,𝑦,𝑧   𝑣,𝑌,𝑦,𝑧   𝑧,𝑍
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣)   𝑂(𝑦,𝑧,𝑣)   𝑍(𝑦,𝑣)

Proof of Theorem elovmpowrd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elovmpowrd.o . . . 4 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣𝜑})
2 csbwrdg 14564 . . . . . . . 8 (𝑣 ∈ V → 𝑣 / 𝑥Word 𝑥 = Word 𝑣)
32eqcomd 2740 . . . . . . 7 (𝑣 ∈ V → Word 𝑣 = 𝑣 / 𝑥Word 𝑥)
43adantr 480 . . . . . 6 ((𝑣 ∈ V ∧ 𝑦 ∈ V) → Word 𝑣 = 𝑣 / 𝑥Word 𝑥)
54rabeqdv 3435 . . . . 5 ((𝑣 ∈ V ∧ 𝑦 ∈ V) → {𝑧 ∈ Word 𝑣𝜑} = {𝑧𝑣 / 𝑥Word 𝑥𝜑})
65mpoeq3ia 7493 . . . 4 (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣𝜑}) = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧𝑣 / 𝑥Word 𝑥𝜑})
71, 6eqtri 2757 . . 3 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧𝑣 / 𝑥Word 𝑥𝜑})
8 csbwrdg 14564 . . . . 5 (𝑉 ∈ V → 𝑉 / 𝑥Word 𝑥 = Word 𝑉)
9 wrdexg 14544 . . . . 5 (𝑉 ∈ V → Word 𝑉 ∈ V)
108, 9eqeltrd 2833 . . . 4 (𝑉 ∈ V → 𝑉 / 𝑥Word 𝑥 ∈ V)
1110adantr 480 . . 3 ((𝑉 ∈ V ∧ 𝑌 ∈ V) → 𝑉 / 𝑥Word 𝑥 ∈ V)
127, 11elovmporab1w 7662 . 2 (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑉 / 𝑥Word 𝑥))
138eleq2d 2819 . . . . 5 (𝑉 ∈ V → (𝑍𝑉 / 𝑥Word 𝑥𝑍 ∈ Word 𝑉))
1413adantr 480 . . . 4 ((𝑉 ∈ V ∧ 𝑌 ∈ V) → (𝑍𝑉 / 𝑥Word 𝑥𝑍 ∈ Word 𝑉))
15 id 22 . . . . 5 ((𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉))
16153expia 1121 . . . 4 ((𝑉 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ Word 𝑉 → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)))
1714, 16sylbid 240 . . 3 ((𝑉 ∈ V ∧ 𝑌 ∈ V) → (𝑍𝑉 / 𝑥Word 𝑥 → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)))
18173impia 1117 . 2 ((𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑉 / 𝑥Word 𝑥) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉))
1912, 18syl 17 1 (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  {crab 3419  Vcvv 3463  csb 3879  (class class class)co 7413  cmpo 7415  Word cword 14534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-1cn 11195  ax-addcl 11197
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-map 8850  df-nn 12249  df-n0 12510  df-word 14535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator