Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmlift2lem4 | Structured version Visualization version GIF version |
Description: Lemma for cvmlift2 33178. (Contributed by Mario Carneiro, 1-Jun-2015.) |
Ref | Expression |
---|---|
cvmlift2.b | ⊢ 𝐵 = ∪ 𝐶 |
cvmlift2.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
cvmlift2.g | ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) |
cvmlift2.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
cvmlift2.i | ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) |
cvmlift2.h | ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) |
cvmlift2.k | ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) |
Ref | Expression |
---|---|
cvmlift2lem4 | ⊢ ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝑋𝐾𝑌) = ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7262 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥𝐺𝑧) = (𝑋𝐺𝑧)) | |
2 | 1 | mpteq2dv 5172 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧))) |
3 | 2 | eqeq2d 2749 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ↔ (𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)))) |
4 | fveq2 6756 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝐻‘𝑥) = (𝐻‘𝑋)) | |
5 | 4 | eqeq2d 2749 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝑓‘0) = (𝐻‘𝑥) ↔ (𝑓‘0) = (𝐻‘𝑋))) |
6 | 3, 5 | anbi12d 630 | . . . 4 ⊢ (𝑥 = 𝑋 → (((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)) ↔ ((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))) |
7 | 6 | riotabidv 7214 | . . 3 ⊢ (𝑥 = 𝑋 → (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥))) = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))) |
8 | 7 | fveq1d 6758 | . 2 ⊢ (𝑥 = 𝑋 → ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦) = ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))‘𝑦)) |
9 | fveq2 6756 | . 2 ⊢ (𝑦 = 𝑌 → ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))‘𝑦) = ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))‘𝑌)) | |
10 | cvmlift2.k | . 2 ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) | |
11 | fvex 6769 | . 2 ⊢ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))‘𝑌) ∈ V | |
12 | 8, 9, 10, 11 | ovmpo 7411 | 1 ⊢ ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝑋𝐾𝑌) = ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∪ cuni 4836 ↦ cmpt 5153 ∘ ccom 5584 ‘cfv 6418 ℩crio 7211 (class class class)co 7255 ∈ cmpo 7257 0cc0 10802 1c1 10803 [,]cicc 13011 Cn ccn 22283 ×t ctx 22619 IIcii 23944 CovMap ccvm 33117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 |
This theorem is referenced by: cvmlift2lem6 33170 cvmlift2lem8 33172 |
Copyright terms: Public domain | W3C validator |