Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem4 Structured version   Visualization version   GIF version

Theorem cvmlift2lem4 34916
Description: Lemma for cvmlift2 34926. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2.k 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
Assertion
Ref Expression
cvmlift2lem4 ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝑋𝐾𝑌) = ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑌))
Distinct variable groups:   𝑥,𝑓,𝑦,𝑧,𝐹   𝜑,𝑓,𝑥,𝑦,𝑧   𝑓,𝐽,𝑥,𝑦,𝑧   𝑓,𝐺,𝑥,𝑦,𝑧   𝑓,𝐻,𝑥,𝑦,𝑧   𝑓,𝑋,𝑥,𝑦,𝑧   𝐶,𝑓,𝑥,𝑦,𝑧   𝑃,𝑓,𝑥,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑓,𝑌,𝑥,𝑦,𝑧   𝑓,𝐾,𝑥,𝑦,𝑧
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem cvmlift2lem4
StepHypRef Expression
1 oveq1 7427 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝐺𝑧) = (𝑋𝐺𝑧))
21mpteq2dv 5250 . . . . . 6 (𝑥 = 𝑋 → (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)))
32eqeq2d 2739 . . . . 5 (𝑥 = 𝑋 → ((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ↔ (𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧))))
4 fveq2 6897 . . . . . 6 (𝑥 = 𝑋 → (𝐻𝑥) = (𝐻𝑋))
54eqeq2d 2739 . . . . 5 (𝑥 = 𝑋 → ((𝑓‘0) = (𝐻𝑥) ↔ (𝑓‘0) = (𝐻𝑋)))
63, 5anbi12d 631 . . . 4 (𝑥 = 𝑋 → (((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)) ↔ ((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋))))
76riotabidv 7378 . . 3 (𝑥 = 𝑋 → (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥))) = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋))))
87fveq1d 6899 . 2 (𝑥 = 𝑋 → ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦) = ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑦))
9 fveq2 6897 . 2 (𝑦 = 𝑌 → ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑦) = ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑌))
10 cvmlift2.k . 2 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
11 fvex 6910 . 2 ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑌) ∈ V
128, 9, 10, 11ovmpo 7581 1 ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝑋𝐾𝑌) = ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099   cuni 4908  cmpt 5231  ccom 5682  cfv 6548  crio 7375  (class class class)co 7420  cmpo 7422  0cc0 11139  1c1 11140  [,]cicc 13360   Cn ccn 23141   ×t ctx 23477  IIcii 24808   CovMap ccvm 34865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6500  df-fun 6550  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425
This theorem is referenced by:  cvmlift2lem6  34918  cvmlift2lem8  34920
  Copyright terms: Public domain W3C validator