| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmlift2lem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for cvmlift2 35296. (Contributed by Mario Carneiro, 1-Jun-2015.) |
| Ref | Expression |
|---|---|
| cvmlift2.b | ⊢ 𝐵 = ∪ 𝐶 |
| cvmlift2.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| cvmlift2.g | ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) |
| cvmlift2.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
| cvmlift2.i | ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) |
| cvmlift2.h | ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) |
| cvmlift2.k | ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) |
| Ref | Expression |
|---|---|
| cvmlift2lem4 | ⊢ ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝑋𝐾𝑌) = ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7420 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥𝐺𝑧) = (𝑋𝐺𝑧)) | |
| 2 | 1 | mpteq2dv 5224 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧))) |
| 3 | 2 | eqeq2d 2745 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ↔ (𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)))) |
| 4 | fveq2 6886 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝐻‘𝑥) = (𝐻‘𝑋)) | |
| 5 | 4 | eqeq2d 2745 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝑓‘0) = (𝐻‘𝑥) ↔ (𝑓‘0) = (𝐻‘𝑋))) |
| 6 | 3, 5 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝑋 → (((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)) ↔ ((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))) |
| 7 | 6 | riotabidv 7372 | . . 3 ⊢ (𝑥 = 𝑋 → (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥))) = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))) |
| 8 | 7 | fveq1d 6888 | . 2 ⊢ (𝑥 = 𝑋 → ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦) = ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))‘𝑦)) |
| 9 | fveq2 6886 | . 2 ⊢ (𝑦 = 𝑌 → ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))‘𝑦) = ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))‘𝑌)) | |
| 10 | cvmlift2.k | . 2 ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) | |
| 11 | fvex 6899 | . 2 ⊢ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))‘𝑌) ∈ V | |
| 12 | 8, 9, 10, 11 | ovmpo 7575 | 1 ⊢ ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝑋𝐾𝑌) = ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∪ cuni 4887 ↦ cmpt 5205 ∘ ccom 5669 ‘cfv 6541 ℩crio 7369 (class class class)co 7413 ∈ cmpo 7415 0cc0 11137 1c1 11138 [,]cicc 13372 Cn ccn 23179 ×t ctx 23515 IIcii 24838 CovMap ccvm 35235 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 |
| This theorem is referenced by: cvmlift2lem6 35288 cvmlift2lem8 35290 |
| Copyright terms: Public domain | W3C validator |