Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem6 Structured version   Visualization version   GIF version

Theorem cvmlift2lem6 32983
Description: Lemma for cvmlift2 32991. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2.k 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
Assertion
Ref Expression
cvmlift2lem6 ((𝜑𝑋 ∈ (0[,]1)) → (𝐾 ↾ ({𝑋} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶))
Distinct variable groups:   𝑥,𝑓,𝑦,𝑧,𝐹   𝜑,𝑓,𝑥,𝑦,𝑧   𝑓,𝐽,𝑥,𝑦,𝑧   𝑓,𝐺,𝑥,𝑦,𝑧   𝑓,𝐻,𝑥,𝑦,𝑧   𝑓,𝑋,𝑥,𝑦,𝑧   𝐶,𝑓,𝑥,𝑦,𝑧   𝑃,𝑓,𝑥,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑓,𝐾,𝑥,𝑦,𝑧
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem cvmlift2lem6
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . . . . . . . 8 𝐵 = 𝐶
2 cvmlift2.f . . . . . . . 8 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
3 cvmlift2.g . . . . . . . 8 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
4 cvmlift2.p . . . . . . . 8 (𝜑𝑃𝐵)
5 cvmlift2.i . . . . . . . 8 (𝜑 → (𝐹𝑃) = (0𝐺0))
6 cvmlift2.h . . . . . . . 8 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
7 cvmlift2.k . . . . . . . 8 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
81, 2, 3, 4, 5, 6, 7cvmlift2lem5 32982 . . . . . . 7 (𝜑𝐾:((0[,]1) × (0[,]1))⟶𝐵)
98adantr 484 . . . . . 6 ((𝜑𝑋 ∈ (0[,]1)) → 𝐾:((0[,]1) × (0[,]1))⟶𝐵)
109ffnd 6546 . . . . 5 ((𝜑𝑋 ∈ (0[,]1)) → 𝐾 Fn ((0[,]1) × (0[,]1)))
11 fnov 7341 . . . . 5 (𝐾 Fn ((0[,]1) × (0[,]1)) ↔ 𝐾 = (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)))
1210, 11sylib 221 . . . 4 ((𝜑𝑋 ∈ (0[,]1)) → 𝐾 = (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)))
1312reseq1d 5850 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → (𝐾 ↾ ({𝑋} × (0[,]1))) = ((𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)) ↾ ({𝑋} × (0[,]1))))
14 simpr 488 . . . . . 6 ((𝜑𝑋 ∈ (0[,]1)) → 𝑋 ∈ (0[,]1))
1514snssd 4722 . . . . 5 ((𝜑𝑋 ∈ (0[,]1)) → {𝑋} ⊆ (0[,]1))
16 ssid 3923 . . . . 5 (0[,]1) ⊆ (0[,]1)
17 resmpo 7330 . . . . 5 (({𝑋} ⊆ (0[,]1) ∧ (0[,]1) ⊆ (0[,]1)) → ((𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)) ↾ ({𝑋} × (0[,]1))) = (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)))
1815, 16, 17sylancl 589 . . . 4 ((𝜑𝑋 ∈ (0[,]1)) → ((𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)) ↾ ({𝑋} × (0[,]1))) = (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)))
19 elsni 4558 . . . . . . . 8 (𝑢 ∈ {𝑋} → 𝑢 = 𝑋)
20193ad2ant2 1136 . . . . . . 7 (((𝜑𝑋 ∈ (0[,]1)) ∧ 𝑢 ∈ {𝑋} ∧ 𝑣 ∈ (0[,]1)) → 𝑢 = 𝑋)
2120oveq1d 7228 . . . . . 6 (((𝜑𝑋 ∈ (0[,]1)) ∧ 𝑢 ∈ {𝑋} ∧ 𝑣 ∈ (0[,]1)) → (𝑢𝐾𝑣) = (𝑋𝐾𝑣))
22 simp1r 1200 . . . . . . 7 (((𝜑𝑋 ∈ (0[,]1)) ∧ 𝑢 ∈ {𝑋} ∧ 𝑣 ∈ (0[,]1)) → 𝑋 ∈ (0[,]1))
23 simp3 1140 . . . . . . 7 (((𝜑𝑋 ∈ (0[,]1)) ∧ 𝑢 ∈ {𝑋} ∧ 𝑣 ∈ (0[,]1)) → 𝑣 ∈ (0[,]1))
241, 2, 3, 4, 5, 6, 7cvmlift2lem4 32981 . . . . . . 7 ((𝑋 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑋𝐾𝑣) = ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑣))
2522, 23, 24syl2anc 587 . . . . . 6 (((𝜑𝑋 ∈ (0[,]1)) ∧ 𝑢 ∈ {𝑋} ∧ 𝑣 ∈ (0[,]1)) → (𝑋𝐾𝑣) = ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑣))
2621, 25eqtrd 2777 . . . . 5 (((𝜑𝑋 ∈ (0[,]1)) ∧ 𝑢 ∈ {𝑋} ∧ 𝑣 ∈ (0[,]1)) → (𝑢𝐾𝑣) = ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑣))
2726mpoeq3dva 7288 . . . 4 ((𝜑𝑋 ∈ (0[,]1)) → (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)) = (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑣)))
2818, 27eqtrd 2777 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → ((𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)) ↾ ({𝑋} × (0[,]1))) = (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑣)))
2913, 28eqtrd 2777 . 2 ((𝜑𝑋 ∈ (0[,]1)) → (𝐾 ↾ ({𝑋} × (0[,]1))) = (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑣)))
30 eqid 2737 . . . 4 (II ↾t {𝑋}) = (II ↾t {𝑋})
31 iitopon 23776 . . . . 5 II ∈ (TopOn‘(0[,]1))
3231a1i 11 . . . 4 ((𝜑𝑋 ∈ (0[,]1)) → II ∈ (TopOn‘(0[,]1)))
33 eqid 2737 . . . 4 (II ↾t (0[,]1)) = (II ↾t (0[,]1))
3416a1i 11 . . . 4 ((𝜑𝑋 ∈ (0[,]1)) → (0[,]1) ⊆ (0[,]1))
3532, 32cnmpt2nd 22566 . . . . 5 ((𝜑𝑋 ∈ (0[,]1)) → (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ 𝑣) ∈ ((II ×t II) Cn II))
36 eqid 2737 . . . . . . 7 (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋))) = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))
371, 2, 3, 4, 5, 6, 36cvmlift2lem3 32980 . . . . . 6 ((𝜑𝑋 ∈ (0[,]1)) → ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋))) ∈ (II Cn 𝐶) ∧ (𝐹 ∘ (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘0) = (𝐻𝑋)))
3837simp1d 1144 . . . . 5 ((𝜑𝑋 ∈ (0[,]1)) → (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋))) ∈ (II Cn 𝐶))
3932, 32, 35, 38cnmpt21f 22569 . . . 4 ((𝜑𝑋 ∈ (0[,]1)) → (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑣)) ∈ ((II ×t II) Cn 𝐶))
4030, 32, 15, 33, 32, 34, 39cnmpt2res 22574 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑣)) ∈ (((II ↾t {𝑋}) ×t (II ↾t (0[,]1))) Cn 𝐶))
41 iitop 23777 . . . . 5 II ∈ Top
42 snex 5324 . . . . 5 {𝑋} ∈ V
43 ovex 7246 . . . . 5 (0[,]1) ∈ V
44 txrest 22528 . . . . 5 (((II ∈ Top ∧ II ∈ Top) ∧ ({𝑋} ∈ V ∧ (0[,]1) ∈ V)) → ((II ×t II) ↾t ({𝑋} × (0[,]1))) = ((II ↾t {𝑋}) ×t (II ↾t (0[,]1))))
4541, 41, 42, 43, 44mp4an 693 . . . 4 ((II ×t II) ↾t ({𝑋} × (0[,]1))) = ((II ↾t {𝑋}) ×t (II ↾t (0[,]1)))
4645oveq1i 7223 . . 3 (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶) = (((II ↾t {𝑋}) ×t (II ↾t (0[,]1))) Cn 𝐶)
4740, 46eleqtrrdi 2849 . 2 ((𝜑𝑋 ∈ (0[,]1)) → (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑣)) ∈ (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶))
4829, 47eqeltrd 2838 1 ((𝜑𝑋 ∈ (0[,]1)) → (𝐾 ↾ ({𝑋} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  Vcvv 3408  wss 3866  {csn 4541   cuni 4819  cmpt 5135   × cxp 5549  cres 5553  ccom 5555   Fn wfn 6375  wf 6376  cfv 6380  crio 7169  (class class class)co 7213  cmpo 7215  0cc0 10729  1c1 10730  [,]cicc 12938  t crest 16925  Topctop 21790  TopOnctopon 21807   Cn ccn 22121   ×t ctx 22457  IIcii 23772   CovMap ccvm 32930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-ec 8393  df-map 8510  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-sum 15250  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-cn 22124  df-cnp 22125  df-cmp 22284  df-conn 22309  df-lly 22363  df-nlly 22364  df-tx 22459  df-hmeo 22652  df-xms 23218  df-ms 23219  df-tms 23220  df-ii 23774  df-htpy 23867  df-phtpy 23868  df-phtpc 23889  df-pconn 32896  df-sconn 32897  df-cvm 32931
This theorem is referenced by:  cvmlift2lem9  32986
  Copyright terms: Public domain W3C validator