Step | Hyp | Ref
| Expression |
1 | | cvmlift2.b |
. . . . . . . 8
β’ π΅ = βͺ
πΆ |
2 | | cvmlift2.f |
. . . . . . . 8
β’ (π β πΉ β (πΆ CovMap π½)) |
3 | | cvmlift2.g |
. . . . . . . 8
β’ (π β πΊ β ((II Γt II) Cn
π½)) |
4 | | cvmlift2.p |
. . . . . . . 8
β’ (π β π β π΅) |
5 | | cvmlift2.i |
. . . . . . . 8
β’ (π β (πΉβπ) = (0πΊ0)) |
6 | | cvmlift2.h |
. . . . . . . 8
β’ π» = (β©π β (II Cn πΆ)((πΉ β π) = (π§ β (0[,]1) β¦ (π§πΊ0)) β§ (πβ0) = π)) |
7 | | cvmlift2.k |
. . . . . . . 8
β’ πΎ = (π₯ β (0[,]1), π¦ β (0[,]1) β¦ ((β©π β (II Cn πΆ)((πΉ β π) = (π§ β (0[,]1) β¦ (π₯πΊπ§)) β§ (πβ0) = (π»βπ₯)))βπ¦)) |
8 | 1, 2, 3, 4, 5, 6, 7 | cvmlift2lem5 34286 |
. . . . . . 7
β’ (π β πΎ:((0[,]1) Γ (0[,]1))βΆπ΅) |
9 | 8 | adantr 481 |
. . . . . 6
β’ ((π β§ π β (0[,]1)) β πΎ:((0[,]1) Γ (0[,]1))βΆπ΅) |
10 | 9 | ffnd 6715 |
. . . . 5
β’ ((π β§ π β (0[,]1)) β πΎ Fn ((0[,]1) Γ
(0[,]1))) |
11 | | fnov 7536 |
. . . . 5
β’ (πΎ Fn ((0[,]1) Γ (0[,]1))
β πΎ = (π’ β (0[,]1), π£ β (0[,]1) β¦ (π’πΎπ£))) |
12 | 10, 11 | sylib 217 |
. . . 4
β’ ((π β§ π β (0[,]1)) β πΎ = (π’ β (0[,]1), π£ β (0[,]1) β¦ (π’πΎπ£))) |
13 | 12 | reseq1d 5978 |
. . 3
β’ ((π β§ π β (0[,]1)) β (πΎ βΎ ({π} Γ (0[,]1))) = ((π’ β (0[,]1), π£ β (0[,]1) β¦ (π’πΎπ£)) βΎ ({π} Γ (0[,]1)))) |
14 | | simpr 485 |
. . . . . 6
β’ ((π β§ π β (0[,]1)) β π β (0[,]1)) |
15 | 14 | snssd 4811 |
. . . . 5
β’ ((π β§ π β (0[,]1)) β {π} β (0[,]1)) |
16 | | ssid 4003 |
. . . . 5
β’ (0[,]1)
β (0[,]1) |
17 | | resmpo 7524 |
. . . . 5
β’ (({π} β (0[,]1) β§ (0[,]1)
β (0[,]1)) β ((π’
β (0[,]1), π£ β
(0[,]1) β¦ (π’πΎπ£)) βΎ ({π} Γ (0[,]1))) = (π’ β {π}, π£ β (0[,]1) β¦ (π’πΎπ£))) |
18 | 15, 16, 17 | sylancl 586 |
. . . 4
β’ ((π β§ π β (0[,]1)) β ((π’ β (0[,]1), π£ β (0[,]1) β¦ (π’πΎπ£)) βΎ ({π} Γ (0[,]1))) = (π’ β {π}, π£ β (0[,]1) β¦ (π’πΎπ£))) |
19 | | elsni 4644 |
. . . . . . . 8
β’ (π’ β {π} β π’ = π) |
20 | 19 | 3ad2ant2 1134 |
. . . . . . 7
β’ (((π β§ π β (0[,]1)) β§ π’ β {π} β§ π£ β (0[,]1)) β π’ = π) |
21 | 20 | oveq1d 7420 |
. . . . . 6
β’ (((π β§ π β (0[,]1)) β§ π’ β {π} β§ π£ β (0[,]1)) β (π’πΎπ£) = (ππΎπ£)) |
22 | | simp1r 1198 |
. . . . . . 7
β’ (((π β§ π β (0[,]1)) β§ π’ β {π} β§ π£ β (0[,]1)) β π β (0[,]1)) |
23 | | simp3 1138 |
. . . . . . 7
β’ (((π β§ π β (0[,]1)) β§ π’ β {π} β§ π£ β (0[,]1)) β π£ β (0[,]1)) |
24 | 1, 2, 3, 4, 5, 6, 7 | cvmlift2lem4 34285 |
. . . . . . 7
β’ ((π β (0[,]1) β§ π£ β (0[,]1)) β (ππΎπ£) = ((β©π β (II Cn πΆ)((πΉ β π) = (π§ β (0[,]1) β¦ (ππΊπ§)) β§ (πβ0) = (π»βπ)))βπ£)) |
25 | 22, 23, 24 | syl2anc 584 |
. . . . . 6
β’ (((π β§ π β (0[,]1)) β§ π’ β {π} β§ π£ β (0[,]1)) β (ππΎπ£) = ((β©π β (II Cn πΆ)((πΉ β π) = (π§ β (0[,]1) β¦ (ππΊπ§)) β§ (πβ0) = (π»βπ)))βπ£)) |
26 | 21, 25 | eqtrd 2772 |
. . . . 5
β’ (((π β§ π β (0[,]1)) β§ π’ β {π} β§ π£ β (0[,]1)) β (π’πΎπ£) = ((β©π β (II Cn πΆ)((πΉ β π) = (π§ β (0[,]1) β¦ (ππΊπ§)) β§ (πβ0) = (π»βπ)))βπ£)) |
27 | 26 | mpoeq3dva 7482 |
. . . 4
β’ ((π β§ π β (0[,]1)) β (π’ β {π}, π£ β (0[,]1) β¦ (π’πΎπ£)) = (π’ β {π}, π£ β (0[,]1) β¦ ((β©π β (II Cn πΆ)((πΉ β π) = (π§ β (0[,]1) β¦ (ππΊπ§)) β§ (πβ0) = (π»βπ)))βπ£))) |
28 | 18, 27 | eqtrd 2772 |
. . 3
β’ ((π β§ π β (0[,]1)) β ((π’ β (0[,]1), π£ β (0[,]1) β¦ (π’πΎπ£)) βΎ ({π} Γ (0[,]1))) = (π’ β {π}, π£ β (0[,]1) β¦ ((β©π β (II Cn πΆ)((πΉ β π) = (π§ β (0[,]1) β¦ (ππΊπ§)) β§ (πβ0) = (π»βπ)))βπ£))) |
29 | 13, 28 | eqtrd 2772 |
. 2
β’ ((π β§ π β (0[,]1)) β (πΎ βΎ ({π} Γ (0[,]1))) = (π’ β {π}, π£ β (0[,]1) β¦ ((β©π β (II Cn πΆ)((πΉ β π) = (π§ β (0[,]1) β¦ (ππΊπ§)) β§ (πβ0) = (π»βπ)))βπ£))) |
30 | | eqid 2732 |
. . . 4
β’ (II
βΎt {π}) =
(II βΎt {π}) |
31 | | iitopon 24386 |
. . . . 5
β’ II β
(TopOnβ(0[,]1)) |
32 | 31 | a1i 11 |
. . . 4
β’ ((π β§ π β (0[,]1)) β II β
(TopOnβ(0[,]1))) |
33 | | eqid 2732 |
. . . 4
β’ (II
βΎt (0[,]1)) = (II βΎt
(0[,]1)) |
34 | 16 | a1i 11 |
. . . 4
β’ ((π β§ π β (0[,]1)) β (0[,]1) β
(0[,]1)) |
35 | 32, 32 | cnmpt2nd 23164 |
. . . . 5
β’ ((π β§ π β (0[,]1)) β (π’ β (0[,]1), π£ β (0[,]1) β¦ π£) β ((II Γt II) Cn
II)) |
36 | | eqid 2732 |
. . . . . . 7
β’
(β©π
β (II Cn πΆ)((πΉ β π) = (π§ β (0[,]1) β¦ (ππΊπ§)) β§ (πβ0) = (π»βπ))) = (β©π β (II Cn πΆ)((πΉ β π) = (π§ β (0[,]1) β¦ (ππΊπ§)) β§ (πβ0) = (π»βπ))) |
37 | 1, 2, 3, 4, 5, 6, 36 | cvmlift2lem3 34284 |
. . . . . 6
β’ ((π β§ π β (0[,]1)) β
((β©π β
(II Cn πΆ)((πΉ β π) = (π§ β (0[,]1) β¦ (ππΊπ§)) β§ (πβ0) = (π»βπ))) β (II Cn πΆ) β§ (πΉ β (β©π β (II Cn πΆ)((πΉ β π) = (π§ β (0[,]1) β¦ (ππΊπ§)) β§ (πβ0) = (π»βπ)))) = (π§ β (0[,]1) β¦ (ππΊπ§)) β§ ((β©π β (II Cn πΆ)((πΉ β π) = (π§ β (0[,]1) β¦ (ππΊπ§)) β§ (πβ0) = (π»βπ)))β0) = (π»βπ))) |
38 | 37 | simp1d 1142 |
. . . . 5
β’ ((π β§ π β (0[,]1)) β (β©π β (II Cn πΆ)((πΉ β π) = (π§ β (0[,]1) β¦ (ππΊπ§)) β§ (πβ0) = (π»βπ))) β (II Cn πΆ)) |
39 | 32, 32, 35, 38 | cnmpt21f 23167 |
. . . 4
β’ ((π β§ π β (0[,]1)) β (π’ β (0[,]1), π£ β (0[,]1) β¦ ((β©π β (II Cn πΆ)((πΉ β π) = (π§ β (0[,]1) β¦ (ππΊπ§)) β§ (πβ0) = (π»βπ)))βπ£)) β ((II Γt II) Cn
πΆ)) |
40 | 30, 32, 15, 33, 32, 34, 39 | cnmpt2res 23172 |
. . 3
β’ ((π β§ π β (0[,]1)) β (π’ β {π}, π£ β (0[,]1) β¦ ((β©π β (II Cn πΆ)((πΉ β π) = (π§ β (0[,]1) β¦ (ππΊπ§)) β§ (πβ0) = (π»βπ)))βπ£)) β (((II βΎt {π}) Γt (II
βΎt (0[,]1))) Cn πΆ)) |
41 | | iitop 24387 |
. . . . 5
β’ II β
Top |
42 | | snex 5430 |
. . . . 5
β’ {π} β V |
43 | | ovex 7438 |
. . . . 5
β’ (0[,]1)
β V |
44 | | txrest 23126 |
. . . . 5
β’ (((II
β Top β§ II β Top) β§ ({π} β V β§ (0[,]1) β V)) β
((II Γt II) βΎt ({π} Γ (0[,]1))) = ((II
βΎt {π})
Γt (II βΎt (0[,]1)))) |
45 | 41, 41, 42, 43, 44 | mp4an 691 |
. . . 4
β’ ((II
Γt II) βΎt ({π} Γ (0[,]1))) = ((II
βΎt {π})
Γt (II βΎt (0[,]1))) |
46 | 45 | oveq1i 7415 |
. . 3
β’ (((II
Γt II) βΎt ({π} Γ (0[,]1))) Cn πΆ) = (((II βΎt {π}) Γt (II
βΎt (0[,]1))) Cn πΆ) |
47 | 40, 46 | eleqtrrdi 2844 |
. 2
β’ ((π β§ π β (0[,]1)) β (π’ β {π}, π£ β (0[,]1) β¦ ((β©π β (II Cn πΆ)((πΉ β π) = (π§ β (0[,]1) β¦ (ππΊπ§)) β§ (πβ0) = (π»βπ)))βπ£)) β (((II Γt II)
βΎt ({π}
Γ (0[,]1))) Cn πΆ)) |
48 | 29, 47 | eqeltrd 2833 |
1
β’ ((π β§ π β (0[,]1)) β (πΎ βΎ ({π} Γ (0[,]1))) β (((II
Γt II) βΎt ({π} Γ (0[,]1))) Cn πΆ)) |