Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem6 Structured version   Visualization version   GIF version

Theorem cvmlift2lem6 33902
Description: Lemma for cvmlift2 33910. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2.k 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
Assertion
Ref Expression
cvmlift2lem6 ((𝜑𝑋 ∈ (0[,]1)) → (𝐾 ↾ ({𝑋} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶))
Distinct variable groups:   𝑥,𝑓,𝑦,𝑧,𝐹   𝜑,𝑓,𝑥,𝑦,𝑧   𝑓,𝐽,𝑥,𝑦,𝑧   𝑓,𝐺,𝑥,𝑦,𝑧   𝑓,𝐻,𝑥,𝑦,𝑧   𝑓,𝑋,𝑥,𝑦,𝑧   𝐶,𝑓,𝑥,𝑦,𝑧   𝑃,𝑓,𝑥,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑓,𝐾,𝑥,𝑦,𝑧
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem cvmlift2lem6
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . . . . . . . 8 𝐵 = 𝐶
2 cvmlift2.f . . . . . . . 8 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
3 cvmlift2.g . . . . . . . 8 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
4 cvmlift2.p . . . . . . . 8 (𝜑𝑃𝐵)
5 cvmlift2.i . . . . . . . 8 (𝜑 → (𝐹𝑃) = (0𝐺0))
6 cvmlift2.h . . . . . . . 8 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
7 cvmlift2.k . . . . . . . 8 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
81, 2, 3, 4, 5, 6, 7cvmlift2lem5 33901 . . . . . . 7 (𝜑𝐾:((0[,]1) × (0[,]1))⟶𝐵)
98adantr 481 . . . . . 6 ((𝜑𝑋 ∈ (0[,]1)) → 𝐾:((0[,]1) × (0[,]1))⟶𝐵)
109ffnd 6669 . . . . 5 ((𝜑𝑋 ∈ (0[,]1)) → 𝐾 Fn ((0[,]1) × (0[,]1)))
11 fnov 7487 . . . . 5 (𝐾 Fn ((0[,]1) × (0[,]1)) ↔ 𝐾 = (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)))
1210, 11sylib 217 . . . 4 ((𝜑𝑋 ∈ (0[,]1)) → 𝐾 = (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)))
1312reseq1d 5936 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → (𝐾 ↾ ({𝑋} × (0[,]1))) = ((𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)) ↾ ({𝑋} × (0[,]1))))
14 simpr 485 . . . . . 6 ((𝜑𝑋 ∈ (0[,]1)) → 𝑋 ∈ (0[,]1))
1514snssd 4769 . . . . 5 ((𝜑𝑋 ∈ (0[,]1)) → {𝑋} ⊆ (0[,]1))
16 ssid 3966 . . . . 5 (0[,]1) ⊆ (0[,]1)
17 resmpo 7476 . . . . 5 (({𝑋} ⊆ (0[,]1) ∧ (0[,]1) ⊆ (0[,]1)) → ((𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)) ↾ ({𝑋} × (0[,]1))) = (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)))
1815, 16, 17sylancl 586 . . . 4 ((𝜑𝑋 ∈ (0[,]1)) → ((𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)) ↾ ({𝑋} × (0[,]1))) = (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)))
19 elsni 4603 . . . . . . . 8 (𝑢 ∈ {𝑋} → 𝑢 = 𝑋)
20193ad2ant2 1134 . . . . . . 7 (((𝜑𝑋 ∈ (0[,]1)) ∧ 𝑢 ∈ {𝑋} ∧ 𝑣 ∈ (0[,]1)) → 𝑢 = 𝑋)
2120oveq1d 7372 . . . . . 6 (((𝜑𝑋 ∈ (0[,]1)) ∧ 𝑢 ∈ {𝑋} ∧ 𝑣 ∈ (0[,]1)) → (𝑢𝐾𝑣) = (𝑋𝐾𝑣))
22 simp1r 1198 . . . . . . 7 (((𝜑𝑋 ∈ (0[,]1)) ∧ 𝑢 ∈ {𝑋} ∧ 𝑣 ∈ (0[,]1)) → 𝑋 ∈ (0[,]1))
23 simp3 1138 . . . . . . 7 (((𝜑𝑋 ∈ (0[,]1)) ∧ 𝑢 ∈ {𝑋} ∧ 𝑣 ∈ (0[,]1)) → 𝑣 ∈ (0[,]1))
241, 2, 3, 4, 5, 6, 7cvmlift2lem4 33900 . . . . . . 7 ((𝑋 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑋𝐾𝑣) = ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑣))
2522, 23, 24syl2anc 584 . . . . . 6 (((𝜑𝑋 ∈ (0[,]1)) ∧ 𝑢 ∈ {𝑋} ∧ 𝑣 ∈ (0[,]1)) → (𝑋𝐾𝑣) = ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑣))
2621, 25eqtrd 2776 . . . . 5 (((𝜑𝑋 ∈ (0[,]1)) ∧ 𝑢 ∈ {𝑋} ∧ 𝑣 ∈ (0[,]1)) → (𝑢𝐾𝑣) = ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑣))
2726mpoeq3dva 7434 . . . 4 ((𝜑𝑋 ∈ (0[,]1)) → (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)) = (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑣)))
2818, 27eqtrd 2776 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → ((𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)) ↾ ({𝑋} × (0[,]1))) = (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑣)))
2913, 28eqtrd 2776 . 2 ((𝜑𝑋 ∈ (0[,]1)) → (𝐾 ↾ ({𝑋} × (0[,]1))) = (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑣)))
30 eqid 2736 . . . 4 (II ↾t {𝑋}) = (II ↾t {𝑋})
31 iitopon 24242 . . . . 5 II ∈ (TopOn‘(0[,]1))
3231a1i 11 . . . 4 ((𝜑𝑋 ∈ (0[,]1)) → II ∈ (TopOn‘(0[,]1)))
33 eqid 2736 . . . 4 (II ↾t (0[,]1)) = (II ↾t (0[,]1))
3416a1i 11 . . . 4 ((𝜑𝑋 ∈ (0[,]1)) → (0[,]1) ⊆ (0[,]1))
3532, 32cnmpt2nd 23020 . . . . 5 ((𝜑𝑋 ∈ (0[,]1)) → (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ 𝑣) ∈ ((II ×t II) Cn II))
36 eqid 2736 . . . . . . 7 (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋))) = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))
371, 2, 3, 4, 5, 6, 36cvmlift2lem3 33899 . . . . . 6 ((𝜑𝑋 ∈ (0[,]1)) → ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋))) ∈ (II Cn 𝐶) ∧ (𝐹 ∘ (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘0) = (𝐻𝑋)))
3837simp1d 1142 . . . . 5 ((𝜑𝑋 ∈ (0[,]1)) → (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋))) ∈ (II Cn 𝐶))
3932, 32, 35, 38cnmpt21f 23023 . . . 4 ((𝜑𝑋 ∈ (0[,]1)) → (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑣)) ∈ ((II ×t II) Cn 𝐶))
4030, 32, 15, 33, 32, 34, 39cnmpt2res 23028 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑣)) ∈ (((II ↾t {𝑋}) ×t (II ↾t (0[,]1))) Cn 𝐶))
41 iitop 24243 . . . . 5 II ∈ Top
42 snex 5388 . . . . 5 {𝑋} ∈ V
43 ovex 7390 . . . . 5 (0[,]1) ∈ V
44 txrest 22982 . . . . 5 (((II ∈ Top ∧ II ∈ Top) ∧ ({𝑋} ∈ V ∧ (0[,]1) ∈ V)) → ((II ×t II) ↾t ({𝑋} × (0[,]1))) = ((II ↾t {𝑋}) ×t (II ↾t (0[,]1))))
4541, 41, 42, 43, 44mp4an 691 . . . 4 ((II ×t II) ↾t ({𝑋} × (0[,]1))) = ((II ↾t {𝑋}) ×t (II ↾t (0[,]1)))
4645oveq1i 7367 . . 3 (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶) = (((II ↾t {𝑋}) ×t (II ↾t (0[,]1))) Cn 𝐶)
4740, 46eleqtrrdi 2849 . 2 ((𝜑𝑋 ∈ (0[,]1)) → (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑣)) ∈ (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶))
4829, 47eqeltrd 2838 1 ((𝜑𝑋 ∈ (0[,]1)) → (𝐾 ↾ ({𝑋} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3445  wss 3910  {csn 4586   cuni 4865  cmpt 5188   × cxp 5631  cres 5635  ccom 5637   Fn wfn 6491  wf 6492  cfv 6496  crio 7312  (class class class)co 7357  cmpo 7359  0cc0 11051  1c1 11052  [,]cicc 13267  t crest 17302  Topctop 22242  TopOnctopon 22259   Cn ccn 22575   ×t ctx 22911  IIcii 24238   CovMap ccvm 33849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-ec 8650  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-cn 22578  df-cnp 22579  df-cmp 22738  df-conn 22763  df-lly 22817  df-nlly 22818  df-tx 22913  df-hmeo 23106  df-xms 23673  df-ms 23674  df-tms 23675  df-ii 24240  df-htpy 24333  df-phtpy 24334  df-phtpc 24355  df-pconn 33815  df-sconn 33816  df-cvm 33850
This theorem is referenced by:  cvmlift2lem9  33905
  Copyright terms: Public domain W3C validator