| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cvmlift2.b | . . . . . . . 8
⊢ 𝐵 = ∪
𝐶 | 
| 2 |  | cvmlift2.f | . . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) | 
| 3 |  | cvmlift2.g | . . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn
𝐽)) | 
| 4 |  | cvmlift2.p | . . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ 𝐵) | 
| 5 |  | cvmlift2.i | . . . . . . . 8
⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) | 
| 6 |  | cvmlift2.h | . . . . . . . 8
⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) | 
| 7 |  | cvmlift2.k | . . . . . . . 8
⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) | 
| 8 | 1, 2, 3, 4, 5, 6, 7 | cvmlift2lem5 35313 | . . . . . . 7
⊢ (𝜑 → 𝐾:((0[,]1) × (0[,]1))⟶𝐵) | 
| 9 | 8 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → 𝐾:((0[,]1) × (0[,]1))⟶𝐵) | 
| 10 | 9 | ffnd 6736 | . . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → 𝐾 Fn ((0[,]1) ×
(0[,]1))) | 
| 11 |  | fnov 7565 | . . . . 5
⊢ (𝐾 Fn ((0[,]1) × (0[,]1))
↔ 𝐾 = (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣))) | 
| 12 | 10, 11 | sylib 218 | . . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → 𝐾 = (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣))) | 
| 13 | 12 | reseq1d 5995 | . . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐾 ↾ ({𝑋} × (0[,]1))) = ((𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)) ↾ ({𝑋} × (0[,]1)))) | 
| 14 |  | simpr 484 | . . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → 𝑋 ∈ (0[,]1)) | 
| 15 | 14 | snssd 4808 | . . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → {𝑋} ⊆ (0[,]1)) | 
| 16 |  | ssid 4005 | . . . . 5
⊢ (0[,]1)
⊆ (0[,]1) | 
| 17 |  | resmpo 7554 | . . . . 5
⊢ (({𝑋} ⊆ (0[,]1) ∧ (0[,]1)
⊆ (0[,]1)) → ((𝑢
∈ (0[,]1), 𝑣 ∈
(0[,]1) ↦ (𝑢𝐾𝑣)) ↾ ({𝑋} × (0[,]1))) = (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣))) | 
| 18 | 15, 16, 17 | sylancl 586 | . . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)) ↾ ({𝑋} × (0[,]1))) = (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣))) | 
| 19 |  | elsni 4642 | . . . . . . . 8
⊢ (𝑢 ∈ {𝑋} → 𝑢 = 𝑋) | 
| 20 | 19 | 3ad2ant2 1134 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (0[,]1)) ∧ 𝑢 ∈ {𝑋} ∧ 𝑣 ∈ (0[,]1)) → 𝑢 = 𝑋) | 
| 21 | 20 | oveq1d 7447 | . . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (0[,]1)) ∧ 𝑢 ∈ {𝑋} ∧ 𝑣 ∈ (0[,]1)) → (𝑢𝐾𝑣) = (𝑋𝐾𝑣)) | 
| 22 |  | simp1r 1198 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (0[,]1)) ∧ 𝑢 ∈ {𝑋} ∧ 𝑣 ∈ (0[,]1)) → 𝑋 ∈ (0[,]1)) | 
| 23 |  | simp3 1138 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (0[,]1)) ∧ 𝑢 ∈ {𝑋} ∧ 𝑣 ∈ (0[,]1)) → 𝑣 ∈ (0[,]1)) | 
| 24 | 1, 2, 3, 4, 5, 6, 7 | cvmlift2lem4 35312 | . . . . . . 7
⊢ ((𝑋 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑋𝐾𝑣) = ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))‘𝑣)) | 
| 25 | 22, 23, 24 | syl2anc 584 | . . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (0[,]1)) ∧ 𝑢 ∈ {𝑋} ∧ 𝑣 ∈ (0[,]1)) → (𝑋𝐾𝑣) = ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))‘𝑣)) | 
| 26 | 21, 25 | eqtrd 2776 | . . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ (0[,]1)) ∧ 𝑢 ∈ {𝑋} ∧ 𝑣 ∈ (0[,]1)) → (𝑢𝐾𝑣) = ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))‘𝑣)) | 
| 27 | 26 | mpoeq3dva 7511 | . . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)) = (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))‘𝑣))) | 
| 28 | 18, 27 | eqtrd 2776 | . . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)) ↾ ({𝑋} × (0[,]1))) = (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))‘𝑣))) | 
| 29 | 13, 28 | eqtrd 2776 | . 2
⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐾 ↾ ({𝑋} × (0[,]1))) = (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))‘𝑣))) | 
| 30 |  | eqid 2736 | . . . 4
⊢ (II
↾t {𝑋}) =
(II ↾t {𝑋}) | 
| 31 |  | iitopon 24906 | . . . . 5
⊢ II ∈
(TopOn‘(0[,]1)) | 
| 32 | 31 | a1i 11 | . . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → II ∈
(TopOn‘(0[,]1))) | 
| 33 |  | eqid 2736 | . . . 4
⊢ (II
↾t (0[,]1)) = (II ↾t
(0[,]1)) | 
| 34 | 16 | a1i 11 | . . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (0[,]1) ⊆
(0[,]1)) | 
| 35 | 32, 32 | cnmpt2nd 23678 | . . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ 𝑣) ∈ ((II ×t II) Cn
II)) | 
| 36 |  | eqid 2736 | . . . . . . 7
⊢
(℩𝑓
∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋))) = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋))) | 
| 37 | 1, 2, 3, 4, 5, 6, 36 | cvmlift2lem3 35311 | . . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) →
((℩𝑓 ∈
(II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋))) ∈ (II Cn 𝐶) ∧ (𝐹 ∘ (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))‘0) = (𝐻‘𝑋))) | 
| 38 | 37 | simp1d 1142 | . . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋))) ∈ (II Cn 𝐶)) | 
| 39 | 32, 32, 35, 38 | cnmpt21f 23681 | . . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))‘𝑣)) ∈ ((II ×t II) Cn
𝐶)) | 
| 40 | 30, 32, 15, 33, 32, 34, 39 | cnmpt2res 23686 | . . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))‘𝑣)) ∈ (((II ↾t {𝑋}) ×t (II
↾t (0[,]1))) Cn 𝐶)) | 
| 41 |  | iitop 24907 | . . . . 5
⊢ II ∈
Top | 
| 42 |  | snex 5435 | . . . . 5
⊢ {𝑋} ∈ V | 
| 43 |  | ovex 7465 | . . . . 5
⊢ (0[,]1)
∈ V | 
| 44 |  | txrest 23640 | . . . . 5
⊢ (((II
∈ Top ∧ II ∈ Top) ∧ ({𝑋} ∈ V ∧ (0[,]1) ∈ V)) →
((II ×t II) ↾t ({𝑋} × (0[,]1))) = ((II
↾t {𝑋})
×t (II ↾t (0[,]1)))) | 
| 45 | 41, 41, 42, 43, 44 | mp4an 693 | . . . 4
⊢ ((II
×t II) ↾t ({𝑋} × (0[,]1))) = ((II
↾t {𝑋})
×t (II ↾t (0[,]1))) | 
| 46 | 45 | oveq1i 7442 | . . 3
⊢ (((II
×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶) = (((II ↾t {𝑋}) ×t (II
↾t (0[,]1))) Cn 𝐶) | 
| 47 | 40, 46 | eleqtrrdi 2851 | . 2
⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))‘𝑣)) ∈ (((II ×t II)
↾t ({𝑋}
× (0[,]1))) Cn 𝐶)) | 
| 48 | 29, 47 | eqeltrd 2840 | 1
⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐾 ↾ ({𝑋} × (0[,]1))) ∈ (((II
×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶)) |