| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmlift2lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for cvmlift2 35310. (Contributed by Mario Carneiro, 7-May-2015.) |
| Ref | Expression |
|---|---|
| cvmlift2.b | ⊢ 𝐵 = ∪ 𝐶 |
| cvmlift2.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| cvmlift2.g | ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) |
| cvmlift2.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
| cvmlift2.i | ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) |
| cvmlift2.h | ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) |
| cvmlift2lem3.1 | ⊢ 𝐾 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋))) |
| Ref | Expression |
|---|---|
| cvmlift2lem3 | ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐾) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝐾‘0) = (𝐻‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvmlift2.b | . 2 ⊢ 𝐵 = ∪ 𝐶 | |
| 2 | cvmlift2lem3.1 | . 2 ⊢ 𝐾 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋))) | |
| 3 | cvmlift2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) | |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| 5 | iitopon 24779 | . . . 4 ⊢ II ∈ (TopOn‘(0[,]1)) | |
| 6 | 5 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → II ∈ (TopOn‘(0[,]1))) |
| 7 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → 𝑋 ∈ (0[,]1)) | |
| 8 | 6, 6, 7 | cnmptc 23556 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝑧 ∈ (0[,]1) ↦ 𝑋) ∈ (II Cn II)) |
| 9 | 6 | cnmptid 23555 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝑧 ∈ (0[,]1) ↦ 𝑧) ∈ (II Cn II)) |
| 10 | cvmlift2.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → 𝐺 ∈ ((II ×t II) Cn 𝐽)) |
| 12 | 6, 8, 9, 11 | cnmpt12f 23560 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∈ (II Cn 𝐽)) |
| 13 | cvmlift2.p | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
| 14 | cvmlift2.i | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) | |
| 15 | cvmlift2.h | . . . . . 6 ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) | |
| 16 | 1, 3, 10, 13, 14, 15 | cvmlift2lem2 35298 | . . . . 5 ⊢ (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝐻‘0) = 𝑃)) |
| 17 | 16 | simp1d 1142 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ (II Cn 𝐶)) |
| 18 | iiuni 24781 | . . . . 5 ⊢ (0[,]1) = ∪ II | |
| 19 | 18, 1 | cnf 23140 | . . . 4 ⊢ (𝐻 ∈ (II Cn 𝐶) → 𝐻:(0[,]1)⟶𝐵) |
| 20 | 17, 19 | syl 17 | . . 3 ⊢ (𝜑 → 𝐻:(0[,]1)⟶𝐵) |
| 21 | 20 | ffvelcdmda 7059 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐻‘𝑋) ∈ 𝐵) |
| 22 | 0elunit 13437 | . . . 4 ⊢ 0 ∈ (0[,]1) | |
| 23 | oveq2 7398 | . . . . 5 ⊢ (𝑧 = 0 → (𝑋𝐺𝑧) = (𝑋𝐺0)) | |
| 24 | eqid 2730 | . . . . 5 ⊢ (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) | |
| 25 | ovex 7423 | . . . . 5 ⊢ (𝑋𝐺0) ∈ V | |
| 26 | 23, 24, 25 | fvmpt 6971 | . . . 4 ⊢ (0 ∈ (0[,]1) → ((𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧))‘0) = (𝑋𝐺0)) |
| 27 | 22, 26 | mp1i 13 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧))‘0) = (𝑋𝐺0)) |
| 28 | 16 | simp2d 1143 | . . . . 5 ⊢ (𝜑 → (𝐹 ∘ 𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))) |
| 29 | 28 | fveq1d 6863 | . . . 4 ⊢ (𝜑 → ((𝐹 ∘ 𝐻)‘𝑋) = ((𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))‘𝑋)) |
| 30 | oveq1 7397 | . . . . 5 ⊢ (𝑧 = 𝑋 → (𝑧𝐺0) = (𝑋𝐺0)) | |
| 31 | eqid 2730 | . . . . 5 ⊢ (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) | |
| 32 | 30, 31, 25 | fvmpt 6971 | . . . 4 ⊢ (𝑋 ∈ (0[,]1) → ((𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))‘𝑋) = (𝑋𝐺0)) |
| 33 | 29, 32 | sylan9eq 2785 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝐹 ∘ 𝐻)‘𝑋) = (𝑋𝐺0)) |
| 34 | fvco3 6963 | . . . 4 ⊢ ((𝐻:(0[,]1)⟶𝐵 ∧ 𝑋 ∈ (0[,]1)) → ((𝐹 ∘ 𝐻)‘𝑋) = (𝐹‘(𝐻‘𝑋))) | |
| 35 | 20, 34 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝐹 ∘ 𝐻)‘𝑋) = (𝐹‘(𝐻‘𝑋))) |
| 36 | 27, 33, 35 | 3eqtr2rd 2772 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐹‘(𝐻‘𝑋)) = ((𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧))‘0)) |
| 37 | 1, 2, 4, 12, 21, 36 | cvmliftiota 35295 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐾) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝐾‘0) = (𝐻‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cuni 4874 ↦ cmpt 5191 ∘ ccom 5645 ⟶wf 6510 ‘cfv 6514 ℩crio 7346 (class class class)co 7390 0cc0 11075 1c1 11076 [,]cicc 13316 TopOnctopon 22804 Cn ccn 23118 ×t ctx 23454 IIcii 24775 CovMap ccvm 35249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-ec 8676 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-cn 23121 df-cnp 23122 df-cmp 23281 df-conn 23306 df-lly 23360 df-nlly 23361 df-tx 23456 df-hmeo 23649 df-xms 24215 df-ms 24216 df-tms 24217 df-ii 24777 df-cncf 24778 df-htpy 24876 df-phtpy 24877 df-phtpc 24898 df-pconn 35215 df-sconn 35216 df-cvm 35250 |
| This theorem is referenced by: cvmlift2lem5 35301 cvmlift2lem6 35302 cvmlift2lem7 35303 cvmlift2lem8 35304 |
| Copyright terms: Public domain | W3C validator |