Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmlift2lem3 | Structured version Visualization version GIF version |
Description: Lemma for cvmlift2 33278. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
cvmlift2.b | ⊢ 𝐵 = ∪ 𝐶 |
cvmlift2.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
cvmlift2.g | ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) |
cvmlift2.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
cvmlift2.i | ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) |
cvmlift2.h | ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) |
cvmlift2lem3.1 | ⊢ 𝐾 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋))) |
Ref | Expression |
---|---|
cvmlift2lem3 | ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐾) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝐾‘0) = (𝐻‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmlift2.b | . 2 ⊢ 𝐵 = ∪ 𝐶 | |
2 | cvmlift2lem3.1 | . 2 ⊢ 𝐾 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋))) | |
3 | cvmlift2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) | |
4 | 3 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
5 | iitopon 24042 | . . . 4 ⊢ II ∈ (TopOn‘(0[,]1)) | |
6 | 5 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → II ∈ (TopOn‘(0[,]1))) |
7 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → 𝑋 ∈ (0[,]1)) | |
8 | 6, 6, 7 | cnmptc 22813 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝑧 ∈ (0[,]1) ↦ 𝑋) ∈ (II Cn II)) |
9 | 6 | cnmptid 22812 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝑧 ∈ (0[,]1) ↦ 𝑧) ∈ (II Cn II)) |
10 | cvmlift2.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) | |
11 | 10 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → 𝐺 ∈ ((II ×t II) Cn 𝐽)) |
12 | 6, 8, 9, 11 | cnmpt12f 22817 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∈ (II Cn 𝐽)) |
13 | cvmlift2.p | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
14 | cvmlift2.i | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) | |
15 | cvmlift2.h | . . . . . 6 ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) | |
16 | 1, 3, 10, 13, 14, 15 | cvmlift2lem2 33266 | . . . . 5 ⊢ (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝐻‘0) = 𝑃)) |
17 | 16 | simp1d 1141 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ (II Cn 𝐶)) |
18 | iiuni 24044 | . . . . 5 ⊢ (0[,]1) = ∪ II | |
19 | 18, 1 | cnf 22397 | . . . 4 ⊢ (𝐻 ∈ (II Cn 𝐶) → 𝐻:(0[,]1)⟶𝐵) |
20 | 17, 19 | syl 17 | . . 3 ⊢ (𝜑 → 𝐻:(0[,]1)⟶𝐵) |
21 | 20 | ffvelrnda 6961 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐻‘𝑋) ∈ 𝐵) |
22 | 0elunit 13201 | . . . 4 ⊢ 0 ∈ (0[,]1) | |
23 | oveq2 7283 | . . . . 5 ⊢ (𝑧 = 0 → (𝑋𝐺𝑧) = (𝑋𝐺0)) | |
24 | eqid 2738 | . . . . 5 ⊢ (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) | |
25 | ovex 7308 | . . . . 5 ⊢ (𝑋𝐺0) ∈ V | |
26 | 23, 24, 25 | fvmpt 6875 | . . . 4 ⊢ (0 ∈ (0[,]1) → ((𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧))‘0) = (𝑋𝐺0)) |
27 | 22, 26 | mp1i 13 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧))‘0) = (𝑋𝐺0)) |
28 | 16 | simp2d 1142 | . . . . 5 ⊢ (𝜑 → (𝐹 ∘ 𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))) |
29 | 28 | fveq1d 6776 | . . . 4 ⊢ (𝜑 → ((𝐹 ∘ 𝐻)‘𝑋) = ((𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))‘𝑋)) |
30 | oveq1 7282 | . . . . 5 ⊢ (𝑧 = 𝑋 → (𝑧𝐺0) = (𝑋𝐺0)) | |
31 | eqid 2738 | . . . . 5 ⊢ (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) | |
32 | 30, 31, 25 | fvmpt 6875 | . . . 4 ⊢ (𝑋 ∈ (0[,]1) → ((𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))‘𝑋) = (𝑋𝐺0)) |
33 | 29, 32 | sylan9eq 2798 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝐹 ∘ 𝐻)‘𝑋) = (𝑋𝐺0)) |
34 | fvco3 6867 | . . . 4 ⊢ ((𝐻:(0[,]1)⟶𝐵 ∧ 𝑋 ∈ (0[,]1)) → ((𝐹 ∘ 𝐻)‘𝑋) = (𝐹‘(𝐻‘𝑋))) | |
35 | 20, 34 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝐹 ∘ 𝐻)‘𝑋) = (𝐹‘(𝐻‘𝑋))) |
36 | 27, 33, 35 | 3eqtr2rd 2785 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐹‘(𝐻‘𝑋)) = ((𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧))‘0)) |
37 | 1, 2, 4, 12, 21, 36 | cvmliftiota 33263 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐾) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝐾‘0) = (𝐻‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∪ cuni 4839 ↦ cmpt 5157 ∘ ccom 5593 ⟶wf 6429 ‘cfv 6433 ℩crio 7231 (class class class)co 7275 0cc0 10871 1c1 10872 [,]cicc 13082 TopOnctopon 22059 Cn ccn 22375 ×t ctx 22711 IIcii 24038 CovMap ccvm 33217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-ec 8500 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-xrs 17213 df-qtop 17218 df-imas 17219 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-mulg 18701 df-cntz 18923 df-cmn 19388 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-nei 22249 df-cn 22378 df-cnp 22379 df-cmp 22538 df-conn 22563 df-lly 22617 df-nlly 22618 df-tx 22713 df-hmeo 22906 df-xms 23473 df-ms 23474 df-tms 23475 df-ii 24040 df-htpy 24133 df-phtpy 24134 df-phtpc 24155 df-pconn 33183 df-sconn 33184 df-cvm 33218 |
This theorem is referenced by: cvmlift2lem5 33269 cvmlift2lem6 33270 cvmlift2lem7 33271 cvmlift2lem8 33272 |
Copyright terms: Public domain | W3C validator |