Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem3 Structured version   Visualization version   GIF version

Theorem cvmlift2lem3 35337
Description: Lemma for cvmlift2 35348. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2lem3.1 𝐾 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))
Assertion
Ref Expression
cvmlift2lem3 ((𝜑𝑋 ∈ (0[,]1)) → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹𝐾) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝐾‘0) = (𝐻𝑋)))
Distinct variable groups:   𝑧,𝑓,𝐹   𝜑,𝑓,𝑧   𝑓,𝐽,𝑧   𝑓,𝐺,𝑧   𝑓,𝐻,𝑧   𝑓,𝑋,𝑧   𝐶,𝑓,𝑧   𝑃,𝑓,𝑧   𝑧,𝐵
Allowed substitution hints:   𝐵(𝑓)   𝐾(𝑧,𝑓)

Proof of Theorem cvmlift2lem3
StepHypRef Expression
1 cvmlift2.b . 2 𝐵 = 𝐶
2 cvmlift2lem3.1 . 2 𝐾 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))
3 cvmlift2.f . . 3 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
43adantr 480 . 2 ((𝜑𝑋 ∈ (0[,]1)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
5 iitopon 24797 . . . 4 II ∈ (TopOn‘(0[,]1))
65a1i 11 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → II ∈ (TopOn‘(0[,]1)))
7 simpr 484 . . . 4 ((𝜑𝑋 ∈ (0[,]1)) → 𝑋 ∈ (0[,]1))
86, 6, 7cnmptc 23575 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → (𝑧 ∈ (0[,]1) ↦ 𝑋) ∈ (II Cn II))
96cnmptid 23574 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → (𝑧 ∈ (0[,]1) ↦ 𝑧) ∈ (II Cn II))
10 cvmlift2.g . . . 4 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
1110adantr 480 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → 𝐺 ∈ ((II ×t II) Cn 𝐽))
126, 8, 9, 11cnmpt12f 23579 . 2 ((𝜑𝑋 ∈ (0[,]1)) → (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∈ (II Cn 𝐽))
13 cvmlift2.p . . . . . 6 (𝜑𝑃𝐵)
14 cvmlift2.i . . . . . 6 (𝜑 → (𝐹𝑃) = (0𝐺0))
15 cvmlift2.h . . . . . 6 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
161, 3, 10, 13, 14, 15cvmlift2lem2 35336 . . . . 5 (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝐻‘0) = 𝑃))
1716simp1d 1142 . . . 4 (𝜑𝐻 ∈ (II Cn 𝐶))
18 iiuni 24799 . . . . 5 (0[,]1) = II
1918, 1cnf 23159 . . . 4 (𝐻 ∈ (II Cn 𝐶) → 𝐻:(0[,]1)⟶𝐵)
2017, 19syl 17 . . 3 (𝜑𝐻:(0[,]1)⟶𝐵)
2120ffvelcdmda 7017 . 2 ((𝜑𝑋 ∈ (0[,]1)) → (𝐻𝑋) ∈ 𝐵)
22 0elunit 13366 . . . 4 0 ∈ (0[,]1)
23 oveq2 7354 . . . . 5 (𝑧 = 0 → (𝑋𝐺𝑧) = (𝑋𝐺0))
24 eqid 2731 . . . . 5 (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧))
25 ovex 7379 . . . . 5 (𝑋𝐺0) ∈ V
2623, 24, 25fvmpt 6929 . . . 4 (0 ∈ (0[,]1) → ((𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧))‘0) = (𝑋𝐺0))
2722, 26mp1i 13 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → ((𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧))‘0) = (𝑋𝐺0))
2816simp2d 1143 . . . . 5 (𝜑 → (𝐹𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)))
2928fveq1d 6824 . . . 4 (𝜑 → ((𝐹𝐻)‘𝑋) = ((𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))‘𝑋))
30 oveq1 7353 . . . . 5 (𝑧 = 𝑋 → (𝑧𝐺0) = (𝑋𝐺0))
31 eqid 2731 . . . . 5 (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))
3230, 31, 25fvmpt 6929 . . . 4 (𝑋 ∈ (0[,]1) → ((𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))‘𝑋) = (𝑋𝐺0))
3329, 32sylan9eq 2786 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → ((𝐹𝐻)‘𝑋) = (𝑋𝐺0))
34 fvco3 6921 . . . 4 ((𝐻:(0[,]1)⟶𝐵𝑋 ∈ (0[,]1)) → ((𝐹𝐻)‘𝑋) = (𝐹‘(𝐻𝑋)))
3520, 34sylan 580 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → ((𝐹𝐻)‘𝑋) = (𝐹‘(𝐻𝑋)))
3627, 33, 353eqtr2rd 2773 . 2 ((𝜑𝑋 ∈ (0[,]1)) → (𝐹‘(𝐻𝑋)) = ((𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧))‘0))
371, 2, 4, 12, 21, 36cvmliftiota 35333 1 ((𝜑𝑋 ∈ (0[,]1)) → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹𝐾) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝐾‘0) = (𝐻𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111   cuni 4859  cmpt 5172  ccom 5620  wf 6477  cfv 6481  crio 7302  (class class class)co 7346  0cc0 11003  1c1 11004  [,]cicc 13245  TopOnctopon 22823   Cn ccn 23137   ×t ctx 23473  IIcii 24793   CovMap ccvm 35287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081  ax-addf 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-ec 8624  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ioo 13246  df-ico 13248  df-icc 13249  df-fz 13405  df-fzo 13552  df-fl 13693  df-seq 13906  df-exp 13966  df-hash 14235  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-clim 15392  df-sum 15591  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-hom 17182  df-cco 17183  df-rest 17323  df-topn 17324  df-0g 17342  df-gsum 17343  df-topgen 17344  df-pt 17345  df-prds 17348  df-xrs 17403  df-qtop 17408  df-imas 17409  df-xps 17411  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-mulg 18978  df-cntz 19227  df-cmn 19692  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cld 22932  df-ntr 22933  df-cls 22934  df-nei 23011  df-cn 23140  df-cnp 23141  df-cmp 23300  df-conn 23325  df-lly 23379  df-nlly 23380  df-tx 23475  df-hmeo 23668  df-xms 24233  df-ms 24234  df-tms 24235  df-ii 24795  df-cncf 24796  df-htpy 24894  df-phtpy 24895  df-phtpc 24916  df-pconn 35253  df-sconn 35254  df-cvm 35288
This theorem is referenced by:  cvmlift2lem5  35339  cvmlift2lem6  35340  cvmlift2lem7  35341  cvmlift2lem8  35342
  Copyright terms: Public domain W3C validator