Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem3 Structured version   Visualization version   GIF version

Theorem cvmlift2lem3 35332
Description: Lemma for cvmlift2 35343. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2lem3.1 𝐾 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))
Assertion
Ref Expression
cvmlift2lem3 ((𝜑𝑋 ∈ (0[,]1)) → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹𝐾) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝐾‘0) = (𝐻𝑋)))
Distinct variable groups:   𝑧,𝑓,𝐹   𝜑,𝑓,𝑧   𝑓,𝐽,𝑧   𝑓,𝐺,𝑧   𝑓,𝐻,𝑧   𝑓,𝑋,𝑧   𝐶,𝑓,𝑧   𝑃,𝑓,𝑧   𝑧,𝐵
Allowed substitution hints:   𝐵(𝑓)   𝐾(𝑧,𝑓)

Proof of Theorem cvmlift2lem3
StepHypRef Expression
1 cvmlift2.b . 2 𝐵 = 𝐶
2 cvmlift2lem3.1 . 2 𝐾 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))
3 cvmlift2.f . . 3 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
43adantr 480 . 2 ((𝜑𝑋 ∈ (0[,]1)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
5 iitopon 24828 . . . 4 II ∈ (TopOn‘(0[,]1))
65a1i 11 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → II ∈ (TopOn‘(0[,]1)))
7 simpr 484 . . . 4 ((𝜑𝑋 ∈ (0[,]1)) → 𝑋 ∈ (0[,]1))
86, 6, 7cnmptc 23605 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → (𝑧 ∈ (0[,]1) ↦ 𝑋) ∈ (II Cn II))
96cnmptid 23604 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → (𝑧 ∈ (0[,]1) ↦ 𝑧) ∈ (II Cn II))
10 cvmlift2.g . . . 4 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
1110adantr 480 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → 𝐺 ∈ ((II ×t II) Cn 𝐽))
126, 8, 9, 11cnmpt12f 23609 . 2 ((𝜑𝑋 ∈ (0[,]1)) → (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∈ (II Cn 𝐽))
13 cvmlift2.p . . . . . 6 (𝜑𝑃𝐵)
14 cvmlift2.i . . . . . 6 (𝜑 → (𝐹𝑃) = (0𝐺0))
15 cvmlift2.h . . . . . 6 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
161, 3, 10, 13, 14, 15cvmlift2lem2 35331 . . . . 5 (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝐻‘0) = 𝑃))
1716simp1d 1142 . . . 4 (𝜑𝐻 ∈ (II Cn 𝐶))
18 iiuni 24830 . . . . 5 (0[,]1) = II
1918, 1cnf 23189 . . . 4 (𝐻 ∈ (II Cn 𝐶) → 𝐻:(0[,]1)⟶𝐵)
2017, 19syl 17 . . 3 (𝜑𝐻:(0[,]1)⟶𝐵)
2120ffvelcdmda 7079 . 2 ((𝜑𝑋 ∈ (0[,]1)) → (𝐻𝑋) ∈ 𝐵)
22 0elunit 13491 . . . 4 0 ∈ (0[,]1)
23 oveq2 7418 . . . . 5 (𝑧 = 0 → (𝑋𝐺𝑧) = (𝑋𝐺0))
24 eqid 2736 . . . . 5 (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧))
25 ovex 7443 . . . . 5 (𝑋𝐺0) ∈ V
2623, 24, 25fvmpt 6991 . . . 4 (0 ∈ (0[,]1) → ((𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧))‘0) = (𝑋𝐺0))
2722, 26mp1i 13 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → ((𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧))‘0) = (𝑋𝐺0))
2816simp2d 1143 . . . . 5 (𝜑 → (𝐹𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)))
2928fveq1d 6883 . . . 4 (𝜑 → ((𝐹𝐻)‘𝑋) = ((𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))‘𝑋))
30 oveq1 7417 . . . . 5 (𝑧 = 𝑋 → (𝑧𝐺0) = (𝑋𝐺0))
31 eqid 2736 . . . . 5 (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))
3230, 31, 25fvmpt 6991 . . . 4 (𝑋 ∈ (0[,]1) → ((𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))‘𝑋) = (𝑋𝐺0))
3329, 32sylan9eq 2791 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → ((𝐹𝐻)‘𝑋) = (𝑋𝐺0))
34 fvco3 6983 . . . 4 ((𝐻:(0[,]1)⟶𝐵𝑋 ∈ (0[,]1)) → ((𝐹𝐻)‘𝑋) = (𝐹‘(𝐻𝑋)))
3520, 34sylan 580 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → ((𝐹𝐻)‘𝑋) = (𝐹‘(𝐻𝑋)))
3627, 33, 353eqtr2rd 2778 . 2 ((𝜑𝑋 ∈ (0[,]1)) → (𝐹‘(𝐻𝑋)) = ((𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧))‘0))
371, 2, 4, 12, 21, 36cvmliftiota 35328 1 ((𝜑𝑋 ∈ (0[,]1)) → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹𝐾) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝐾‘0) = (𝐻𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   cuni 4888  cmpt 5206  ccom 5663  wf 6532  cfv 6536  crio 7366  (class class class)co 7410  0cc0 11134  1c1 11135  [,]cicc 13370  TopOnctopon 22853   Cn ccn 23167   ×t ctx 23503  IIcii 24824   CovMap ccvm 35282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-ec 8726  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-cn 23170  df-cnp 23171  df-cmp 23330  df-conn 23355  df-lly 23409  df-nlly 23410  df-tx 23505  df-hmeo 23698  df-xms 24264  df-ms 24265  df-tms 24266  df-ii 24826  df-cncf 24827  df-htpy 24925  df-phtpy 24926  df-phtpc 24947  df-pconn 35248  df-sconn 35249  df-cvm 35283
This theorem is referenced by:  cvmlift2lem5  35334  cvmlift2lem6  35335  cvmlift2lem7  35336  cvmlift2lem8  35337
  Copyright terms: Public domain W3C validator