Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmlift2lem3 | Structured version Visualization version GIF version |
Description: Lemma for cvmlift2 32861. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
cvmlift2.b | ⊢ 𝐵 = ∪ 𝐶 |
cvmlift2.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
cvmlift2.g | ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) |
cvmlift2.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
cvmlift2.i | ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) |
cvmlift2.h | ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) |
cvmlift2lem3.1 | ⊢ 𝐾 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋))) |
Ref | Expression |
---|---|
cvmlift2lem3 | ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐾) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝐾‘0) = (𝐻‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmlift2.b | . 2 ⊢ 𝐵 = ∪ 𝐶 | |
2 | cvmlift2lem3.1 | . 2 ⊢ 𝐾 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋))) | |
3 | cvmlift2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) | |
4 | 3 | adantr 484 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
5 | iitopon 23643 | . . . 4 ⊢ II ∈ (TopOn‘(0[,]1)) | |
6 | 5 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → II ∈ (TopOn‘(0[,]1))) |
7 | simpr 488 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → 𝑋 ∈ (0[,]1)) | |
8 | 6, 6, 7 | cnmptc 22425 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝑧 ∈ (0[,]1) ↦ 𝑋) ∈ (II Cn II)) |
9 | 6 | cnmptid 22424 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝑧 ∈ (0[,]1) ↦ 𝑧) ∈ (II Cn II)) |
10 | cvmlift2.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) | |
11 | 10 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → 𝐺 ∈ ((II ×t II) Cn 𝐽)) |
12 | 6, 8, 9, 11 | cnmpt12f 22429 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∈ (II Cn 𝐽)) |
13 | cvmlift2.p | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
14 | cvmlift2.i | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) | |
15 | cvmlift2.h | . . . . . 6 ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) | |
16 | 1, 3, 10, 13, 14, 15 | cvmlift2lem2 32849 | . . . . 5 ⊢ (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝐻‘0) = 𝑃)) |
17 | 16 | simp1d 1143 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ (II Cn 𝐶)) |
18 | iiuni 23645 | . . . . 5 ⊢ (0[,]1) = ∪ II | |
19 | 18, 1 | cnf 22009 | . . . 4 ⊢ (𝐻 ∈ (II Cn 𝐶) → 𝐻:(0[,]1)⟶𝐵) |
20 | 17, 19 | syl 17 | . . 3 ⊢ (𝜑 → 𝐻:(0[,]1)⟶𝐵) |
21 | 20 | ffvelrnda 6873 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐻‘𝑋) ∈ 𝐵) |
22 | 0elunit 12955 | . . . 4 ⊢ 0 ∈ (0[,]1) | |
23 | oveq2 7190 | . . . . 5 ⊢ (𝑧 = 0 → (𝑋𝐺𝑧) = (𝑋𝐺0)) | |
24 | eqid 2739 | . . . . 5 ⊢ (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) | |
25 | ovex 7215 | . . . . 5 ⊢ (𝑋𝐺0) ∈ V | |
26 | 23, 24, 25 | fvmpt 6787 | . . . 4 ⊢ (0 ∈ (0[,]1) → ((𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧))‘0) = (𝑋𝐺0)) |
27 | 22, 26 | mp1i 13 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧))‘0) = (𝑋𝐺0)) |
28 | 16 | simp2d 1144 | . . . . 5 ⊢ (𝜑 → (𝐹 ∘ 𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))) |
29 | 28 | fveq1d 6688 | . . . 4 ⊢ (𝜑 → ((𝐹 ∘ 𝐻)‘𝑋) = ((𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))‘𝑋)) |
30 | oveq1 7189 | . . . . 5 ⊢ (𝑧 = 𝑋 → (𝑧𝐺0) = (𝑋𝐺0)) | |
31 | eqid 2739 | . . . . 5 ⊢ (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) | |
32 | 30, 31, 25 | fvmpt 6787 | . . . 4 ⊢ (𝑋 ∈ (0[,]1) → ((𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))‘𝑋) = (𝑋𝐺0)) |
33 | 29, 32 | sylan9eq 2794 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝐹 ∘ 𝐻)‘𝑋) = (𝑋𝐺0)) |
34 | fvco3 6779 | . . . 4 ⊢ ((𝐻:(0[,]1)⟶𝐵 ∧ 𝑋 ∈ (0[,]1)) → ((𝐹 ∘ 𝐻)‘𝑋) = (𝐹‘(𝐻‘𝑋))) | |
35 | 20, 34 | sylan 583 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝐹 ∘ 𝐻)‘𝑋) = (𝐹‘(𝐻‘𝑋))) |
36 | 27, 33, 35 | 3eqtr2rd 2781 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐹‘(𝐻‘𝑋)) = ((𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧))‘0)) |
37 | 1, 2, 4, 12, 21, 36 | cvmliftiota 32846 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐾) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝐾‘0) = (𝐻‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ∪ cuni 4806 ↦ cmpt 5120 ∘ ccom 5539 ⟶wf 6345 ‘cfv 6349 ℩crio 7138 (class class class)co 7182 0cc0 10627 1c1 10628 [,]cicc 12836 TopOnctopon 21673 Cn ccn 21987 ×t ctx 22323 IIcii 23639 CovMap ccvm 32800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 ax-inf2 9189 ax-cnex 10683 ax-resscn 10684 ax-1cn 10685 ax-icn 10686 ax-addcl 10687 ax-addrcl 10688 ax-mulcl 10689 ax-mulrcl 10690 ax-mulcom 10691 ax-addass 10692 ax-mulass 10693 ax-distr 10694 ax-i2m1 10695 ax-1ne0 10696 ax-1rid 10697 ax-rnegex 10698 ax-rrecex 10699 ax-cnre 10700 ax-pre-lttri 10701 ax-pre-lttrn 10702 ax-pre-ltadd 10703 ax-pre-mulgt0 10704 ax-pre-sup 10705 ax-addf 10706 ax-mulf 10707 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-int 4847 df-iun 4893 df-iin 4894 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-se 5494 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6185 df-on 6186 df-lim 6187 df-suc 6188 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-isom 6358 df-riota 7139 df-ov 7185 df-oprab 7186 df-mpo 7187 df-of 7437 df-om 7612 df-1st 7726 df-2nd 7727 df-supp 7869 df-wrecs 7988 df-recs 8049 df-rdg 8087 df-1o 8143 df-2o 8144 df-er 8332 df-ec 8334 df-map 8451 df-ixp 8520 df-en 8568 df-dom 8569 df-sdom 8570 df-fin 8571 df-fsupp 8919 df-fi 8960 df-sup 8991 df-inf 8992 df-oi 9059 df-card 9453 df-pnf 10767 df-mnf 10768 df-xr 10769 df-ltxr 10770 df-le 10771 df-sub 10962 df-neg 10963 df-div 11388 df-nn 11729 df-2 11791 df-3 11792 df-4 11793 df-5 11794 df-6 11795 df-7 11796 df-8 11797 df-9 11798 df-n0 11989 df-z 12075 df-dec 12192 df-uz 12337 df-q 12443 df-rp 12485 df-xneg 12602 df-xadd 12603 df-xmul 12604 df-ioo 12837 df-ico 12839 df-icc 12840 df-fz 12994 df-fzo 13137 df-fl 13265 df-seq 13473 df-exp 13534 df-hash 13795 df-cj 14560 df-re 14561 df-im 14562 df-sqrt 14696 df-abs 14697 df-clim 14947 df-sum 15148 df-struct 16600 df-ndx 16601 df-slot 16602 df-base 16604 df-sets 16605 df-ress 16606 df-plusg 16693 df-mulr 16694 df-starv 16695 df-sca 16696 df-vsca 16697 df-ip 16698 df-tset 16699 df-ple 16700 df-ds 16702 df-unif 16703 df-hom 16704 df-cco 16705 df-rest 16811 df-topn 16812 df-0g 16830 df-gsum 16831 df-topgen 16832 df-pt 16833 df-prds 16836 df-xrs 16890 df-qtop 16895 df-imas 16896 df-xps 16898 df-mre 16972 df-mrc 16973 df-acs 16975 df-mgm 17980 df-sgrp 18029 df-mnd 18040 df-submnd 18085 df-mulg 18355 df-cntz 18577 df-cmn 19038 df-psmet 20221 df-xmet 20222 df-met 20223 df-bl 20224 df-mopn 20225 df-cnfld 20230 df-top 21657 df-topon 21674 df-topsp 21696 df-bases 21709 df-cld 21782 df-ntr 21783 df-cls 21784 df-nei 21861 df-cn 21990 df-cnp 21991 df-cmp 22150 df-conn 22175 df-lly 22229 df-nlly 22230 df-tx 22325 df-hmeo 22518 df-xms 23085 df-ms 23086 df-tms 23087 df-ii 23641 df-htpy 23734 df-phtpy 23735 df-phtpc 23756 df-pconn 32766 df-sconn 32767 df-cvm 32801 |
This theorem is referenced by: cvmlift2lem5 32852 cvmlift2lem6 32853 cvmlift2lem7 32854 cvmlift2lem8 32855 |
Copyright terms: Public domain | W3C validator |