Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmlift2lem3 | Structured version Visualization version GIF version |
Description: Lemma for cvmlift2 33178. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
cvmlift2.b | ⊢ 𝐵 = ∪ 𝐶 |
cvmlift2.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
cvmlift2.g | ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) |
cvmlift2.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
cvmlift2.i | ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) |
cvmlift2.h | ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) |
cvmlift2lem3.1 | ⊢ 𝐾 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋))) |
Ref | Expression |
---|---|
cvmlift2lem3 | ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐾) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝐾‘0) = (𝐻‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmlift2.b | . 2 ⊢ 𝐵 = ∪ 𝐶 | |
2 | cvmlift2lem3.1 | . 2 ⊢ 𝐾 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋))) | |
3 | cvmlift2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) | |
4 | 3 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
5 | iitopon 23948 | . . . 4 ⊢ II ∈ (TopOn‘(0[,]1)) | |
6 | 5 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → II ∈ (TopOn‘(0[,]1))) |
7 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → 𝑋 ∈ (0[,]1)) | |
8 | 6, 6, 7 | cnmptc 22721 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝑧 ∈ (0[,]1) ↦ 𝑋) ∈ (II Cn II)) |
9 | 6 | cnmptid 22720 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝑧 ∈ (0[,]1) ↦ 𝑧) ∈ (II Cn II)) |
10 | cvmlift2.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) | |
11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → 𝐺 ∈ ((II ×t II) Cn 𝐽)) |
12 | 6, 8, 9, 11 | cnmpt12f 22725 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∈ (II Cn 𝐽)) |
13 | cvmlift2.p | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
14 | cvmlift2.i | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) | |
15 | cvmlift2.h | . . . . . 6 ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) | |
16 | 1, 3, 10, 13, 14, 15 | cvmlift2lem2 33166 | . . . . 5 ⊢ (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝐻‘0) = 𝑃)) |
17 | 16 | simp1d 1140 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ (II Cn 𝐶)) |
18 | iiuni 23950 | . . . . 5 ⊢ (0[,]1) = ∪ II | |
19 | 18, 1 | cnf 22305 | . . . 4 ⊢ (𝐻 ∈ (II Cn 𝐶) → 𝐻:(0[,]1)⟶𝐵) |
20 | 17, 19 | syl 17 | . . 3 ⊢ (𝜑 → 𝐻:(0[,]1)⟶𝐵) |
21 | 20 | ffvelrnda 6943 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐻‘𝑋) ∈ 𝐵) |
22 | 0elunit 13130 | . . . 4 ⊢ 0 ∈ (0[,]1) | |
23 | oveq2 7263 | . . . . 5 ⊢ (𝑧 = 0 → (𝑋𝐺𝑧) = (𝑋𝐺0)) | |
24 | eqid 2738 | . . . . 5 ⊢ (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) | |
25 | ovex 7288 | . . . . 5 ⊢ (𝑋𝐺0) ∈ V | |
26 | 23, 24, 25 | fvmpt 6857 | . . . 4 ⊢ (0 ∈ (0[,]1) → ((𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧))‘0) = (𝑋𝐺0)) |
27 | 22, 26 | mp1i 13 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧))‘0) = (𝑋𝐺0)) |
28 | 16 | simp2d 1141 | . . . . 5 ⊢ (𝜑 → (𝐹 ∘ 𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))) |
29 | 28 | fveq1d 6758 | . . . 4 ⊢ (𝜑 → ((𝐹 ∘ 𝐻)‘𝑋) = ((𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))‘𝑋)) |
30 | oveq1 7262 | . . . . 5 ⊢ (𝑧 = 𝑋 → (𝑧𝐺0) = (𝑋𝐺0)) | |
31 | eqid 2738 | . . . . 5 ⊢ (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) | |
32 | 30, 31, 25 | fvmpt 6857 | . . . 4 ⊢ (𝑋 ∈ (0[,]1) → ((𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))‘𝑋) = (𝑋𝐺0)) |
33 | 29, 32 | sylan9eq 2799 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝐹 ∘ 𝐻)‘𝑋) = (𝑋𝐺0)) |
34 | fvco3 6849 | . . . 4 ⊢ ((𝐻:(0[,]1)⟶𝐵 ∧ 𝑋 ∈ (0[,]1)) → ((𝐹 ∘ 𝐻)‘𝑋) = (𝐹‘(𝐻‘𝑋))) | |
35 | 20, 34 | sylan 579 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝐹 ∘ 𝐻)‘𝑋) = (𝐹‘(𝐻‘𝑋))) |
36 | 27, 33, 35 | 3eqtr2rd 2785 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐹‘(𝐻‘𝑋)) = ((𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧))‘0)) |
37 | 1, 2, 4, 12, 21, 36 | cvmliftiota 33163 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐾) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝐾‘0) = (𝐻‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∪ cuni 4836 ↦ cmpt 5153 ∘ ccom 5584 ⟶wf 6414 ‘cfv 6418 ℩crio 7211 (class class class)co 7255 0cc0 10802 1c1 10803 [,]cicc 13011 TopOnctopon 21967 Cn ccn 22283 ×t ctx 22619 IIcii 23944 CovMap ccvm 33117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-ec 8458 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-cn 22286 df-cnp 22287 df-cmp 22446 df-conn 22471 df-lly 22525 df-nlly 22526 df-tx 22621 df-hmeo 22814 df-xms 23381 df-ms 23382 df-tms 23383 df-ii 23946 df-htpy 24039 df-phtpy 24040 df-phtpc 24061 df-pconn 33083 df-sconn 33084 df-cvm 33118 |
This theorem is referenced by: cvmlift2lem5 33169 cvmlift2lem6 33170 cvmlift2lem7 33171 cvmlift2lem8 33172 |
Copyright terms: Public domain | W3C validator |