![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmlift2lem3 | Structured version Visualization version GIF version |
Description: Lemma for cvmlift2 34602. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
cvmlift2.b | β’ π΅ = βͺ πΆ |
cvmlift2.f | β’ (π β πΉ β (πΆ CovMap π½)) |
cvmlift2.g | β’ (π β πΊ β ((II Γt II) Cn π½)) |
cvmlift2.p | β’ (π β π β π΅) |
cvmlift2.i | β’ (π β (πΉβπ) = (0πΊ0)) |
cvmlift2.h | β’ π» = (β©π β (II Cn πΆ)((πΉ β π) = (π§ β (0[,]1) β¦ (π§πΊ0)) β§ (πβ0) = π)) |
cvmlift2lem3.1 | β’ πΎ = (β©π β (II Cn πΆ)((πΉ β π) = (π§ β (0[,]1) β¦ (ππΊπ§)) β§ (πβ0) = (π»βπ))) |
Ref | Expression |
---|---|
cvmlift2lem3 | β’ ((π β§ π β (0[,]1)) β (πΎ β (II Cn πΆ) β§ (πΉ β πΎ) = (π§ β (0[,]1) β¦ (ππΊπ§)) β§ (πΎβ0) = (π»βπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmlift2.b | . 2 β’ π΅ = βͺ πΆ | |
2 | cvmlift2lem3.1 | . 2 β’ πΎ = (β©π β (II Cn πΆ)((πΉ β π) = (π§ β (0[,]1) β¦ (ππΊπ§)) β§ (πβ0) = (π»βπ))) | |
3 | cvmlift2.f | . . 3 β’ (π β πΉ β (πΆ CovMap π½)) | |
4 | 3 | adantr 480 | . 2 β’ ((π β§ π β (0[,]1)) β πΉ β (πΆ CovMap π½)) |
5 | iitopon 24620 | . . . 4 β’ II β (TopOnβ(0[,]1)) | |
6 | 5 | a1i 11 | . . 3 β’ ((π β§ π β (0[,]1)) β II β (TopOnβ(0[,]1))) |
7 | simpr 484 | . . . 4 β’ ((π β§ π β (0[,]1)) β π β (0[,]1)) | |
8 | 6, 6, 7 | cnmptc 23387 | . . 3 β’ ((π β§ π β (0[,]1)) β (π§ β (0[,]1) β¦ π) β (II Cn II)) |
9 | 6 | cnmptid 23386 | . . 3 β’ ((π β§ π β (0[,]1)) β (π§ β (0[,]1) β¦ π§) β (II Cn II)) |
10 | cvmlift2.g | . . . 4 β’ (π β πΊ β ((II Γt II) Cn π½)) | |
11 | 10 | adantr 480 | . . 3 β’ ((π β§ π β (0[,]1)) β πΊ β ((II Γt II) Cn π½)) |
12 | 6, 8, 9, 11 | cnmpt12f 23391 | . 2 β’ ((π β§ π β (0[,]1)) β (π§ β (0[,]1) β¦ (ππΊπ§)) β (II Cn π½)) |
13 | cvmlift2.p | . . . . . 6 β’ (π β π β π΅) | |
14 | cvmlift2.i | . . . . . 6 β’ (π β (πΉβπ) = (0πΊ0)) | |
15 | cvmlift2.h | . . . . . 6 β’ π» = (β©π β (II Cn πΆ)((πΉ β π) = (π§ β (0[,]1) β¦ (π§πΊ0)) β§ (πβ0) = π)) | |
16 | 1, 3, 10, 13, 14, 15 | cvmlift2lem2 34590 | . . . . 5 β’ (π β (π» β (II Cn πΆ) β§ (πΉ β π») = (π§ β (0[,]1) β¦ (π§πΊ0)) β§ (π»β0) = π)) |
17 | 16 | simp1d 1141 | . . . 4 β’ (π β π» β (II Cn πΆ)) |
18 | iiuni 24622 | . . . . 5 β’ (0[,]1) = βͺ II | |
19 | 18, 1 | cnf 22971 | . . . 4 β’ (π» β (II Cn πΆ) β π»:(0[,]1)βΆπ΅) |
20 | 17, 19 | syl 17 | . . 3 β’ (π β π»:(0[,]1)βΆπ΅) |
21 | 20 | ffvelcdmda 7087 | . 2 β’ ((π β§ π β (0[,]1)) β (π»βπ) β π΅) |
22 | 0elunit 13451 | . . . 4 β’ 0 β (0[,]1) | |
23 | oveq2 7420 | . . . . 5 β’ (π§ = 0 β (ππΊπ§) = (ππΊ0)) | |
24 | eqid 2731 | . . . . 5 β’ (π§ β (0[,]1) β¦ (ππΊπ§)) = (π§ β (0[,]1) β¦ (ππΊπ§)) | |
25 | ovex 7445 | . . . . 5 β’ (ππΊ0) β V | |
26 | 23, 24, 25 | fvmpt 6999 | . . . 4 β’ (0 β (0[,]1) β ((π§ β (0[,]1) β¦ (ππΊπ§))β0) = (ππΊ0)) |
27 | 22, 26 | mp1i 13 | . . 3 β’ ((π β§ π β (0[,]1)) β ((π§ β (0[,]1) β¦ (ππΊπ§))β0) = (ππΊ0)) |
28 | 16 | simp2d 1142 | . . . . 5 β’ (π β (πΉ β π») = (π§ β (0[,]1) β¦ (π§πΊ0))) |
29 | 28 | fveq1d 6894 | . . . 4 β’ (π β ((πΉ β π»)βπ) = ((π§ β (0[,]1) β¦ (π§πΊ0))βπ)) |
30 | oveq1 7419 | . . . . 5 β’ (π§ = π β (π§πΊ0) = (ππΊ0)) | |
31 | eqid 2731 | . . . . 5 β’ (π§ β (0[,]1) β¦ (π§πΊ0)) = (π§ β (0[,]1) β¦ (π§πΊ0)) | |
32 | 30, 31, 25 | fvmpt 6999 | . . . 4 β’ (π β (0[,]1) β ((π§ β (0[,]1) β¦ (π§πΊ0))βπ) = (ππΊ0)) |
33 | 29, 32 | sylan9eq 2791 | . . 3 β’ ((π β§ π β (0[,]1)) β ((πΉ β π»)βπ) = (ππΊ0)) |
34 | fvco3 6991 | . . . 4 β’ ((π»:(0[,]1)βΆπ΅ β§ π β (0[,]1)) β ((πΉ β π»)βπ) = (πΉβ(π»βπ))) | |
35 | 20, 34 | sylan 579 | . . 3 β’ ((π β§ π β (0[,]1)) β ((πΉ β π»)βπ) = (πΉβ(π»βπ))) |
36 | 27, 33, 35 | 3eqtr2rd 2778 | . 2 β’ ((π β§ π β (0[,]1)) β (πΉβ(π»βπ)) = ((π§ β (0[,]1) β¦ (ππΊπ§))β0)) |
37 | 1, 2, 4, 12, 21, 36 | cvmliftiota 34587 | 1 β’ ((π β§ π β (0[,]1)) β (πΎ β (II Cn πΆ) β§ (πΉ β πΎ) = (π§ β (0[,]1) β¦ (ππΊπ§)) β§ (πΎβ0) = (π»βπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 βͺ cuni 4909 β¦ cmpt 5232 β ccom 5681 βΆwf 6540 βcfv 6544 β©crio 7367 (class class class)co 7412 0cc0 11113 1c1 11114 [,]cicc 13332 TopOnctopon 22633 Cn ccn 22949 Γt ctx 23285 IIcii 24616 CovMap ccvm 34541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-inf2 9639 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 ax-addf 11192 ax-mulf 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7673 df-om 7859 df-1st 7978 df-2nd 7979 df-supp 8150 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-2o 8470 df-er 8706 df-ec 8708 df-map 8825 df-ixp 8895 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-fsupp 9365 df-fi 9409 df-sup 9440 df-inf 9441 df-oi 9508 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-ioo 13333 df-ico 13335 df-icc 13336 df-fz 13490 df-fzo 13633 df-fl 13762 df-seq 13972 df-exp 14033 df-hash 14296 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-clim 15437 df-sum 15638 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-hom 17226 df-cco 17227 df-rest 17373 df-topn 17374 df-0g 17392 df-gsum 17393 df-topgen 17394 df-pt 17395 df-prds 17398 df-xrs 17453 df-qtop 17458 df-imas 17459 df-xps 17461 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-submnd 18707 df-mulg 18988 df-cntz 19223 df-cmn 19692 df-psmet 21137 df-xmet 21138 df-met 21139 df-bl 21140 df-mopn 21141 df-cnfld 21146 df-top 22617 df-topon 22634 df-topsp 22656 df-bases 22670 df-cld 22744 df-ntr 22745 df-cls 22746 df-nei 22823 df-cn 22952 df-cnp 22953 df-cmp 23112 df-conn 23137 df-lly 23191 df-nlly 23192 df-tx 23287 df-hmeo 23480 df-xms 24047 df-ms 24048 df-tms 24049 df-ii 24618 df-htpy 24717 df-phtpy 24718 df-phtpc 24739 df-pconn 34507 df-sconn 34508 df-cvm 34542 |
This theorem is referenced by: cvmlift2lem5 34593 cvmlift2lem6 34594 cvmlift2lem7 34595 cvmlift2lem8 34596 |
Copyright terms: Public domain | W3C validator |