Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmsrcl | Structured version Visualization version GIF version |
Description: Reverse closure for an even covering. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
cvmcov.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
Ref | Expression |
---|---|
cvmsrcl | ⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑈 ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmcov.1 | . . 3 ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
2 | 1 | dmmptss 6104 | . 2 ⊢ dom 𝑆 ⊆ 𝐽 |
3 | elfvdm 6749 | . 2 ⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑈 ∈ dom 𝑆) | |
4 | 2, 3 | sseldi 3899 | 1 ⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑈 ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 {crab 3065 ∖ cdif 3863 ∩ cin 3865 ∅c0 4237 𝒫 cpw 4513 {csn 4541 ∪ cuni 4819 ↦ cmpt 5135 ◡ccnv 5550 dom cdm 5551 ↾ cres 5553 “ cima 5554 ‘cfv 6380 (class class class)co 7213 ↾t crest 16925 Homeochmeo 22650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-xp 5557 df-rel 5558 df-cnv 5559 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fv 6388 |
This theorem is referenced by: cvmsi 32940 cvmsf1o 32947 cvmsss2 32949 cvmopnlem 32953 cvmliftlem8 32967 cvmlift2lem9 32986 cvmlift2lem10 32987 cvmlift3lem6 32999 cvmlift3lem8 33001 |
Copyright terms: Public domain | W3C validator |