| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmsrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for an even covering. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| cvmcov.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
| Ref | Expression |
|---|---|
| cvmsrcl | ⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑈 ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvmcov.1 | . . 3 ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
| 2 | 1 | dmmptss 6216 | . 2 ⊢ dom 𝑆 ⊆ 𝐽 |
| 3 | elfvdm 6897 | . 2 ⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑈 ∈ dom 𝑆) | |
| 4 | 2, 3 | sselid 3946 | 1 ⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑈 ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 ∖ cdif 3913 ∩ cin 3915 ∅c0 4298 𝒫 cpw 4565 {csn 4591 ∪ cuni 4873 ↦ cmpt 5190 ◡ccnv 5639 dom cdm 5640 ↾ cres 5642 “ cima 5643 ‘cfv 6513 (class class class)co 7389 ↾t crest 17389 Homeochmeo 23646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-xp 5646 df-rel 5647 df-cnv 5648 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fv 6521 |
| This theorem is referenced by: cvmsi 35252 cvmsf1o 35259 cvmsss2 35261 cvmopnlem 35265 cvmliftlem8 35279 cvmlift2lem9 35298 cvmlift2lem10 35299 cvmlift3lem6 35311 cvmlift3lem8 35313 |
| Copyright terms: Public domain | W3C validator |