| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmsrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for an even covering. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| cvmcov.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
| Ref | Expression |
|---|---|
| cvmsrcl | ⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑈 ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvmcov.1 | . . 3 ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
| 2 | 1 | dmmptss 6190 | . 2 ⊢ dom 𝑆 ⊆ 𝐽 |
| 3 | elfvdm 6857 | . 2 ⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑈 ∈ dom 𝑆) | |
| 4 | 2, 3 | sselid 3933 | 1 ⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑈 ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3394 ∖ cdif 3900 ∩ cin 3902 ∅c0 4284 𝒫 cpw 4551 {csn 4577 ∪ cuni 4858 ↦ cmpt 5173 ◡ccnv 5618 dom cdm 5619 ↾ cres 5621 “ cima 5622 ‘cfv 6482 (class class class)co 7349 ↾t crest 17324 Homeochmeo 23638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fv 6490 |
| This theorem is referenced by: cvmsi 35248 cvmsf1o 35255 cvmsss2 35257 cvmopnlem 35261 cvmliftlem8 35275 cvmlift2lem9 35294 cvmlift2lem10 35295 cvmlift3lem6 35307 cvmlift3lem8 35309 |
| Copyright terms: Public domain | W3C validator |