![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmcov | Structured version Visualization version GIF version |
Description: Property of a covering map. In order to make the covering property more manageable, we define here the set 𝑆(𝑘) of all even coverings of an open set 𝑘 in the range. Then the covering property states that every point has a neighborhood which has an even covering. (Contributed by Mario Carneiro, 13-Feb-2015.) |
Ref | Expression |
---|---|
cvmcov.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
cvmcov.2 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cvmcov | ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃 ∈ 𝑋) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmcov.1 | . . . . 5 ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
2 | cvmcov.2 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 1, 2 | iscvm 34939 | . . . 4 ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) ↔ ((𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ (𝐶 Cn 𝐽)) ∧ ∀𝑥 ∈ 𝑋 ∃𝑘 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅))) |
4 | 3 | simprbi 495 | . . 3 ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → ∀𝑥 ∈ 𝑋 ∃𝑘 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅)) |
5 | eleq1 2813 | . . . . . 6 ⊢ (𝑥 = 𝑃 → (𝑥 ∈ 𝑘 ↔ 𝑃 ∈ 𝑘)) | |
6 | 5 | anbi1d 629 | . . . . 5 ⊢ (𝑥 = 𝑃 → ((𝑥 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅) ↔ (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅))) |
7 | 6 | rexbidv 3169 | . . . 4 ⊢ (𝑥 = 𝑃 → (∃𝑘 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅) ↔ ∃𝑘 ∈ 𝐽 (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅))) |
8 | 7 | rspcv 3603 | . . 3 ⊢ (𝑃 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 ∃𝑘 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅) → ∃𝑘 ∈ 𝐽 (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅))) |
9 | 4, 8 | mpan9 505 | . 2 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃 ∈ 𝑋) → ∃𝑘 ∈ 𝐽 (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅)) |
10 | nfv 1909 | . . . 4 ⊢ Ⅎ𝑘 𝑃 ∈ 𝑥 | |
11 | nfmpt1 5256 | . . . . . . 7 ⊢ Ⅎ𝑘(𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
12 | 1, 11 | nfcxfr 2890 | . . . . . 6 ⊢ Ⅎ𝑘𝑆 |
13 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑘𝑥 | |
14 | 12, 13 | nffv 6904 | . . . . 5 ⊢ Ⅎ𝑘(𝑆‘𝑥) |
15 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑘∅ | |
16 | 14, 15 | nfne 3033 | . . . 4 ⊢ Ⅎ𝑘(𝑆‘𝑥) ≠ ∅ |
17 | 10, 16 | nfan 1894 | . . 3 ⊢ Ⅎ𝑘(𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅) |
18 | nfv 1909 | . . 3 ⊢ Ⅎ𝑥(𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅) | |
19 | eleq2w 2809 | . . . 4 ⊢ (𝑥 = 𝑘 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑘)) | |
20 | fveq2 6894 | . . . . 5 ⊢ (𝑥 = 𝑘 → (𝑆‘𝑥) = (𝑆‘𝑘)) | |
21 | 20 | neeq1d 2990 | . . . 4 ⊢ (𝑥 = 𝑘 → ((𝑆‘𝑥) ≠ ∅ ↔ (𝑆‘𝑘) ≠ ∅)) |
22 | 19, 21 | anbi12d 630 | . . 3 ⊢ (𝑥 = 𝑘 → ((𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅) ↔ (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅))) |
23 | 17, 18, 22 | cbvrexw 3295 | . 2 ⊢ (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅) ↔ ∃𝑘 ∈ 𝐽 (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅)) |
24 | 9, 23 | sylibr 233 | 1 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃 ∈ 𝑋) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 ∀wral 3051 ∃wrex 3060 {crab 3419 ∖ cdif 3942 ∩ cin 3944 ∅c0 4323 𝒫 cpw 4603 {csn 4629 ∪ cuni 4908 ↦ cmpt 5231 ◡ccnv 5676 ↾ cres 5679 “ cima 5680 ‘cfv 6547 (class class class)co 7417 ↾t crest 17401 Topctop 22825 Cn ccn 23158 Homeochmeo 23687 CovMap ccvm 34935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fv 6555 df-ov 7420 df-oprab 7421 df-mpo 7422 df-cvm 34936 |
This theorem is referenced by: cvmcov2 34955 cvmopnlem 34958 cvmfolem 34959 cvmliftmolem2 34962 cvmliftlem15 34978 cvmlift2lem10 34992 cvmlift3lem8 35006 |
Copyright terms: Public domain | W3C validator |