Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmcov Structured version   Visualization version   GIF version

Theorem cvmcov 33125
Description: Property of a covering map. In order to make the covering property more manageable, we define here the set 𝑆(𝑘) of all even coverings of an open set 𝑘 in the range. Then the covering property states that every point has a neighborhood which has an even covering. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypotheses
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmcov.2 𝑋 = 𝐽
Assertion
Ref Expression
cvmcov ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃𝑋) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅))
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝑥,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣,𝑥   𝑃,𝑘,𝑥   𝑘,𝐽,𝑠,𝑢,𝑣,𝑥   𝑥,𝑆   𝑥,𝑋
Allowed substitution hints:   𝑃(𝑣,𝑢,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)   𝑋(𝑣,𝑢,𝑘,𝑠)

Proof of Theorem cvmcov
StepHypRef Expression
1 cvmcov.1 . . . . 5 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
2 cvmcov.2 . . . . 5 𝑋 = 𝐽
31, 2iscvm 33121 . . . 4 (𝐹 ∈ (𝐶 CovMap 𝐽) ↔ ((𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ (𝐶 Cn 𝐽)) ∧ ∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅)))
43simprbi 496 . . 3 (𝐹 ∈ (𝐶 CovMap 𝐽) → ∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅))
5 eleq1 2826 . . . . . 6 (𝑥 = 𝑃 → (𝑥𝑘𝑃𝑘))
65anbi1d 629 . . . . 5 (𝑥 = 𝑃 → ((𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅) ↔ (𝑃𝑘 ∧ (𝑆𝑘) ≠ ∅)))
76rexbidv 3225 . . . 4 (𝑥 = 𝑃 → (∃𝑘𝐽 (𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅) ↔ ∃𝑘𝐽 (𝑃𝑘 ∧ (𝑆𝑘) ≠ ∅)))
87rspcv 3547 . . 3 (𝑃𝑋 → (∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅) → ∃𝑘𝐽 (𝑃𝑘 ∧ (𝑆𝑘) ≠ ∅)))
94, 8mpan9 506 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃𝑋) → ∃𝑘𝐽 (𝑃𝑘 ∧ (𝑆𝑘) ≠ ∅))
10 nfv 1918 . . . 4 𝑘 𝑃𝑥
11 nfmpt1 5178 . . . . . . 7 𝑘(𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
121, 11nfcxfr 2904 . . . . . 6 𝑘𝑆
13 nfcv 2906 . . . . . 6 𝑘𝑥
1412, 13nffv 6766 . . . . 5 𝑘(𝑆𝑥)
15 nfcv 2906 . . . . 5 𝑘
1614, 15nfne 3044 . . . 4 𝑘(𝑆𝑥) ≠ ∅
1710, 16nfan 1903 . . 3 𝑘(𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅)
18 nfv 1918 . . 3 𝑥(𝑃𝑘 ∧ (𝑆𝑘) ≠ ∅)
19 eleq2w 2822 . . . 4 (𝑥 = 𝑘 → (𝑃𝑥𝑃𝑘))
20 fveq2 6756 . . . . 5 (𝑥 = 𝑘 → (𝑆𝑥) = (𝑆𝑘))
2120neeq1d 3002 . . . 4 (𝑥 = 𝑘 → ((𝑆𝑥) ≠ ∅ ↔ (𝑆𝑘) ≠ ∅))
2219, 21anbi12d 630 . . 3 (𝑥 = 𝑘 → ((𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅) ↔ (𝑃𝑘 ∧ (𝑆𝑘) ≠ ∅)))
2317, 18, 22cbvrexw 3364 . 2 (∃𝑥𝐽 (𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅) ↔ ∃𝑘𝐽 (𝑃𝑘 ∧ (𝑆𝑘) ≠ ∅))
249, 23sylibr 233 1 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃𝑋) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  cdif 3880  cin 3882  c0 4253  𝒫 cpw 4530  {csn 4558   cuni 4836  cmpt 5153  ccnv 5579  cres 5582  cima 5583  cfv 6418  (class class class)co 7255  t crest 17048  Topctop 21950   Cn ccn 22283  Homeochmeo 22812   CovMap ccvm 33117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-cvm 33118
This theorem is referenced by:  cvmcov2  33137  cvmopnlem  33140  cvmfolem  33141  cvmliftmolem2  33144  cvmliftlem15  33160  cvmlift2lem10  33174  cvmlift3lem8  33188
  Copyright terms: Public domain W3C validator