| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmcov | Structured version Visualization version GIF version | ||
| Description: Property of a covering map. In order to make the covering property more manageable, we define here the set 𝑆(𝑘) of all even coverings of an open set 𝑘 in the range. Then the covering property states that every point has a neighborhood which has an even covering. (Contributed by Mario Carneiro, 13-Feb-2015.) |
| Ref | Expression |
|---|---|
| cvmcov.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
| cvmcov.2 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| cvmcov | ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃 ∈ 𝑋) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvmcov.1 | . . . . 5 ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
| 2 | cvmcov.2 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 1, 2 | iscvm 35231 | . . . 4 ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) ↔ ((𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ (𝐶 Cn 𝐽)) ∧ ∀𝑥 ∈ 𝑋 ∃𝑘 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅))) |
| 4 | 3 | simprbi 496 | . . 3 ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → ∀𝑥 ∈ 𝑋 ∃𝑘 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅)) |
| 5 | eleq1 2816 | . . . . . 6 ⊢ (𝑥 = 𝑃 → (𝑥 ∈ 𝑘 ↔ 𝑃 ∈ 𝑘)) | |
| 6 | 5 | anbi1d 631 | . . . . 5 ⊢ (𝑥 = 𝑃 → ((𝑥 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅) ↔ (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅))) |
| 7 | 6 | rexbidv 3153 | . . . 4 ⊢ (𝑥 = 𝑃 → (∃𝑘 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅) ↔ ∃𝑘 ∈ 𝐽 (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅))) |
| 8 | 7 | rspcv 3575 | . . 3 ⊢ (𝑃 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 ∃𝑘 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅) → ∃𝑘 ∈ 𝐽 (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅))) |
| 9 | 4, 8 | mpan9 506 | . 2 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃 ∈ 𝑋) → ∃𝑘 ∈ 𝐽 (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅)) |
| 10 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑘 𝑃 ∈ 𝑥 | |
| 11 | nfmpt1 5194 | . . . . . . 7 ⊢ Ⅎ𝑘(𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
| 12 | 1, 11 | nfcxfr 2889 | . . . . . 6 ⊢ Ⅎ𝑘𝑆 |
| 13 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑘𝑥 | |
| 14 | 12, 13 | nffv 6836 | . . . . 5 ⊢ Ⅎ𝑘(𝑆‘𝑥) |
| 15 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑘∅ | |
| 16 | 14, 15 | nfne 3026 | . . . 4 ⊢ Ⅎ𝑘(𝑆‘𝑥) ≠ ∅ |
| 17 | 10, 16 | nfan 1899 | . . 3 ⊢ Ⅎ𝑘(𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅) |
| 18 | nfv 1914 | . . 3 ⊢ Ⅎ𝑥(𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅) | |
| 19 | eleq2w 2812 | . . . 4 ⊢ (𝑥 = 𝑘 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑘)) | |
| 20 | fveq2 6826 | . . . . 5 ⊢ (𝑥 = 𝑘 → (𝑆‘𝑥) = (𝑆‘𝑘)) | |
| 21 | 20 | neeq1d 2984 | . . . 4 ⊢ (𝑥 = 𝑘 → ((𝑆‘𝑥) ≠ ∅ ↔ (𝑆‘𝑘) ≠ ∅)) |
| 22 | 19, 21 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑘 → ((𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅) ↔ (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅))) |
| 23 | 17, 18, 22 | cbvrexw 3273 | . 2 ⊢ (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅) ↔ ∃𝑘 ∈ 𝐽 (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅)) |
| 24 | 9, 23 | sylibr 234 | 1 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃 ∈ 𝑋) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3396 ∖ cdif 3902 ∩ cin 3904 ∅c0 4286 𝒫 cpw 4553 {csn 4579 ∪ cuni 4861 ↦ cmpt 5176 ◡ccnv 5622 ↾ cres 5625 “ cima 5626 ‘cfv 6486 (class class class)co 7353 ↾t crest 17342 Topctop 22796 Cn ccn 23127 Homeochmeo 23656 CovMap ccvm 35227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-cvm 35228 |
| This theorem is referenced by: cvmcov2 35247 cvmopnlem 35250 cvmfolem 35251 cvmliftmolem2 35254 cvmliftlem15 35270 cvmlift2lem10 35284 cvmlift3lem8 35298 |
| Copyright terms: Public domain | W3C validator |