![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmcov | Structured version Visualization version GIF version |
Description: Property of a covering map. In order to make the covering property more manageable, we define here the set 𝑆(𝑘) of all even coverings of an open set 𝑘 in the range. Then the covering property states that every point has a neighborhood which has an even covering. (Contributed by Mario Carneiro, 13-Feb-2015.) |
Ref | Expression |
---|---|
cvmcov.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
cvmcov.2 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cvmcov | ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃 ∈ 𝑋) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmcov.1 | . . . . 5 ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
2 | cvmcov.2 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 1, 2 | iscvm 34281 | . . . 4 ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) ↔ ((𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ (𝐶 Cn 𝐽)) ∧ ∀𝑥 ∈ 𝑋 ∃𝑘 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅))) |
4 | 3 | simprbi 498 | . . 3 ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → ∀𝑥 ∈ 𝑋 ∃𝑘 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅)) |
5 | eleq1 2822 | . . . . . 6 ⊢ (𝑥 = 𝑃 → (𝑥 ∈ 𝑘 ↔ 𝑃 ∈ 𝑘)) | |
6 | 5 | anbi1d 631 | . . . . 5 ⊢ (𝑥 = 𝑃 → ((𝑥 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅) ↔ (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅))) |
7 | 6 | rexbidv 3179 | . . . 4 ⊢ (𝑥 = 𝑃 → (∃𝑘 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅) ↔ ∃𝑘 ∈ 𝐽 (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅))) |
8 | 7 | rspcv 3609 | . . 3 ⊢ (𝑃 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 ∃𝑘 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅) → ∃𝑘 ∈ 𝐽 (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅))) |
9 | 4, 8 | mpan9 508 | . 2 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃 ∈ 𝑋) → ∃𝑘 ∈ 𝐽 (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅)) |
10 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑘 𝑃 ∈ 𝑥 | |
11 | nfmpt1 5257 | . . . . . . 7 ⊢ Ⅎ𝑘(𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
12 | 1, 11 | nfcxfr 2902 | . . . . . 6 ⊢ Ⅎ𝑘𝑆 |
13 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑘𝑥 | |
14 | 12, 13 | nffv 6902 | . . . . 5 ⊢ Ⅎ𝑘(𝑆‘𝑥) |
15 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑘∅ | |
16 | 14, 15 | nfne 3044 | . . . 4 ⊢ Ⅎ𝑘(𝑆‘𝑥) ≠ ∅ |
17 | 10, 16 | nfan 1903 | . . 3 ⊢ Ⅎ𝑘(𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅) |
18 | nfv 1918 | . . 3 ⊢ Ⅎ𝑥(𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅) | |
19 | eleq2w 2818 | . . . 4 ⊢ (𝑥 = 𝑘 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑘)) | |
20 | fveq2 6892 | . . . . 5 ⊢ (𝑥 = 𝑘 → (𝑆‘𝑥) = (𝑆‘𝑘)) | |
21 | 20 | neeq1d 3001 | . . . 4 ⊢ (𝑥 = 𝑘 → ((𝑆‘𝑥) ≠ ∅ ↔ (𝑆‘𝑘) ≠ ∅)) |
22 | 19, 21 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑘 → ((𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅) ↔ (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅))) |
23 | 17, 18, 22 | cbvrexw 3305 | . 2 ⊢ (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅) ↔ ∃𝑘 ∈ 𝐽 (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅)) |
24 | 9, 23 | sylibr 233 | 1 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃 ∈ 𝑋) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 {crab 3433 ∖ cdif 3946 ∩ cin 3948 ∅c0 4323 𝒫 cpw 4603 {csn 4629 ∪ cuni 4909 ↦ cmpt 5232 ◡ccnv 5676 ↾ cres 5679 “ cima 5680 ‘cfv 6544 (class class class)co 7409 ↾t crest 17366 Topctop 22395 Cn ccn 22728 Homeochmeo 23257 CovMap ccvm 34277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-cvm 34278 |
This theorem is referenced by: cvmcov2 34297 cvmopnlem 34300 cvmfolem 34301 cvmliftmolem2 34304 cvmliftlem15 34320 cvmlift2lem10 34334 cvmlift3lem8 34348 |
Copyright terms: Public domain | W3C validator |