Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmcov Structured version   Visualization version   GIF version

Theorem cvmcov 35295
Description: Property of a covering map. In order to make the covering property more manageable, we define here the set 𝑆(𝑘) of all even coverings of an open set 𝑘 in the range. Then the covering property states that every point has a neighborhood which has an even covering. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypotheses
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmcov.2 𝑋 = 𝐽
Assertion
Ref Expression
cvmcov ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃𝑋) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅))
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝑥,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣,𝑥   𝑃,𝑘,𝑥   𝑘,𝐽,𝑠,𝑢,𝑣,𝑥   𝑥,𝑆   𝑥,𝑋
Allowed substitution hints:   𝑃(𝑣,𝑢,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)   𝑋(𝑣,𝑢,𝑘,𝑠)

Proof of Theorem cvmcov
StepHypRef Expression
1 cvmcov.1 . . . . 5 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
2 cvmcov.2 . . . . 5 𝑋 = 𝐽
31, 2iscvm 35291 . . . 4 (𝐹 ∈ (𝐶 CovMap 𝐽) ↔ ((𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ (𝐶 Cn 𝐽)) ∧ ∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅)))
43simprbi 496 . . 3 (𝐹 ∈ (𝐶 CovMap 𝐽) → ∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅))
5 eleq1 2819 . . . . . 6 (𝑥 = 𝑃 → (𝑥𝑘𝑃𝑘))
65anbi1d 631 . . . . 5 (𝑥 = 𝑃 → ((𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅) ↔ (𝑃𝑘 ∧ (𝑆𝑘) ≠ ∅)))
76rexbidv 3156 . . . 4 (𝑥 = 𝑃 → (∃𝑘𝐽 (𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅) ↔ ∃𝑘𝐽 (𝑃𝑘 ∧ (𝑆𝑘) ≠ ∅)))
87rspcv 3573 . . 3 (𝑃𝑋 → (∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅) → ∃𝑘𝐽 (𝑃𝑘 ∧ (𝑆𝑘) ≠ ∅)))
94, 8mpan9 506 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃𝑋) → ∃𝑘𝐽 (𝑃𝑘 ∧ (𝑆𝑘) ≠ ∅))
10 nfv 1915 . . . 4 𝑘 𝑃𝑥
11 nfmpt1 5190 . . . . . . 7 𝑘(𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
121, 11nfcxfr 2892 . . . . . 6 𝑘𝑆
13 nfcv 2894 . . . . . 6 𝑘𝑥
1412, 13nffv 6832 . . . . 5 𝑘(𝑆𝑥)
15 nfcv 2894 . . . . 5 𝑘
1614, 15nfne 3029 . . . 4 𝑘(𝑆𝑥) ≠ ∅
1710, 16nfan 1900 . . 3 𝑘(𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅)
18 nfv 1915 . . 3 𝑥(𝑃𝑘 ∧ (𝑆𝑘) ≠ ∅)
19 eleq2w 2815 . . . 4 (𝑥 = 𝑘 → (𝑃𝑥𝑃𝑘))
20 fveq2 6822 . . . . 5 (𝑥 = 𝑘 → (𝑆𝑥) = (𝑆𝑘))
2120neeq1d 2987 . . . 4 (𝑥 = 𝑘 → ((𝑆𝑥) ≠ ∅ ↔ (𝑆𝑘) ≠ ∅))
2219, 21anbi12d 632 . . 3 (𝑥 = 𝑘 → ((𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅) ↔ (𝑃𝑘 ∧ (𝑆𝑘) ≠ ∅)))
2317, 18, 22cbvrexw 3275 . 2 (∃𝑥𝐽 (𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅) ↔ ∃𝑘𝐽 (𝑃𝑘 ∧ (𝑆𝑘) ≠ ∅))
249, 23sylibr 234 1 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃𝑋) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  cdif 3899  cin 3901  c0 4283  𝒫 cpw 4550  {csn 4576   cuni 4859  cmpt 5172  ccnv 5615  cres 5618  cima 5619  cfv 6481  (class class class)co 7346  t crest 17321  Topctop 22806   Cn ccn 23137  Homeochmeo 23666   CovMap ccvm 35287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-cvm 35288
This theorem is referenced by:  cvmcov2  35307  cvmopnlem  35310  cvmfolem  35311  cvmliftmolem2  35314  cvmliftlem15  35330  cvmlift2lem10  35344  cvmlift3lem8  35358
  Copyright terms: Public domain W3C validator