![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmcov | Structured version Visualization version GIF version |
Description: Property of a covering map. In order to make the covering property more manageable, we define here the set 𝑆(𝑘) of all even coverings of an open set 𝑘 in the range. Then the covering property states that every point has a neighborhood which has an even covering. (Contributed by Mario Carneiro, 13-Feb-2015.) |
Ref | Expression |
---|---|
cvmcov.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
cvmcov.2 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cvmcov | ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃 ∈ 𝑋) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmcov.1 | . . . . 5 ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
2 | cvmcov.2 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 1, 2 | iscvm 35227 | . . . 4 ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) ↔ ((𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ (𝐶 Cn 𝐽)) ∧ ∀𝑥 ∈ 𝑋 ∃𝑘 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅))) |
4 | 3 | simprbi 496 | . . 3 ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → ∀𝑥 ∈ 𝑋 ∃𝑘 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅)) |
5 | eleq1 2832 | . . . . . 6 ⊢ (𝑥 = 𝑃 → (𝑥 ∈ 𝑘 ↔ 𝑃 ∈ 𝑘)) | |
6 | 5 | anbi1d 630 | . . . . 5 ⊢ (𝑥 = 𝑃 → ((𝑥 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅) ↔ (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅))) |
7 | 6 | rexbidv 3185 | . . . 4 ⊢ (𝑥 = 𝑃 → (∃𝑘 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅) ↔ ∃𝑘 ∈ 𝐽 (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅))) |
8 | 7 | rspcv 3631 | . . 3 ⊢ (𝑃 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 ∃𝑘 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅) → ∃𝑘 ∈ 𝐽 (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅))) |
9 | 4, 8 | mpan9 506 | . 2 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃 ∈ 𝑋) → ∃𝑘 ∈ 𝐽 (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅)) |
10 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑘 𝑃 ∈ 𝑥 | |
11 | nfmpt1 5274 | . . . . . . 7 ⊢ Ⅎ𝑘(𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
12 | 1, 11 | nfcxfr 2906 | . . . . . 6 ⊢ Ⅎ𝑘𝑆 |
13 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑘𝑥 | |
14 | 12, 13 | nffv 6930 | . . . . 5 ⊢ Ⅎ𝑘(𝑆‘𝑥) |
15 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑘∅ | |
16 | 14, 15 | nfne 3049 | . . . 4 ⊢ Ⅎ𝑘(𝑆‘𝑥) ≠ ∅ |
17 | 10, 16 | nfan 1898 | . . 3 ⊢ Ⅎ𝑘(𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅) |
18 | nfv 1913 | . . 3 ⊢ Ⅎ𝑥(𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅) | |
19 | eleq2w 2828 | . . . 4 ⊢ (𝑥 = 𝑘 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑘)) | |
20 | fveq2 6920 | . . . . 5 ⊢ (𝑥 = 𝑘 → (𝑆‘𝑥) = (𝑆‘𝑘)) | |
21 | 20 | neeq1d 3006 | . . . 4 ⊢ (𝑥 = 𝑘 → ((𝑆‘𝑥) ≠ ∅ ↔ (𝑆‘𝑘) ≠ ∅)) |
22 | 19, 21 | anbi12d 631 | . . 3 ⊢ (𝑥 = 𝑘 → ((𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅) ↔ (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅))) |
23 | 17, 18, 22 | cbvrexw 3313 | . 2 ⊢ (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅) ↔ ∃𝑘 ∈ 𝐽 (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅)) |
24 | 9, 23 | sylibr 234 | 1 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃 ∈ 𝑋) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 {crab 3443 ∖ cdif 3973 ∩ cin 3975 ∅c0 4352 𝒫 cpw 4622 {csn 4648 ∪ cuni 4931 ↦ cmpt 5249 ◡ccnv 5699 ↾ cres 5702 “ cima 5703 ‘cfv 6573 (class class class)co 7448 ↾t crest 17480 Topctop 22920 Cn ccn 23253 Homeochmeo 23782 CovMap ccvm 35223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-cvm 35224 |
This theorem is referenced by: cvmcov2 35243 cvmopnlem 35246 cvmfolem 35247 cvmliftmolem2 35250 cvmliftlem15 35266 cvmlift2lem10 35280 cvmlift3lem8 35294 |
Copyright terms: Public domain | W3C validator |