Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmcov | Structured version Visualization version GIF version |
Description: Property of a covering map. In order to make the covering property more manageable, we define here the set 𝑆(𝑘) of all even coverings of an open set 𝑘 in the range. Then the covering property states that every point has a neighborhood which has an even covering. (Contributed by Mario Carneiro, 13-Feb-2015.) |
Ref | Expression |
---|---|
cvmcov.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
cvmcov.2 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cvmcov | ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃 ∈ 𝑋) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmcov.1 | . . . . 5 ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
2 | cvmcov.2 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 1, 2 | iscvm 33221 | . . . 4 ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) ↔ ((𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ (𝐶 Cn 𝐽)) ∧ ∀𝑥 ∈ 𝑋 ∃𝑘 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅))) |
4 | 3 | simprbi 497 | . . 3 ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → ∀𝑥 ∈ 𝑋 ∃𝑘 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅)) |
5 | eleq1 2826 | . . . . . 6 ⊢ (𝑥 = 𝑃 → (𝑥 ∈ 𝑘 ↔ 𝑃 ∈ 𝑘)) | |
6 | 5 | anbi1d 630 | . . . . 5 ⊢ (𝑥 = 𝑃 → ((𝑥 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅) ↔ (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅))) |
7 | 6 | rexbidv 3226 | . . . 4 ⊢ (𝑥 = 𝑃 → (∃𝑘 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅) ↔ ∃𝑘 ∈ 𝐽 (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅))) |
8 | 7 | rspcv 3557 | . . 3 ⊢ (𝑃 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 ∃𝑘 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅) → ∃𝑘 ∈ 𝐽 (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅))) |
9 | 4, 8 | mpan9 507 | . 2 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃 ∈ 𝑋) → ∃𝑘 ∈ 𝐽 (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅)) |
10 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑘 𝑃 ∈ 𝑥 | |
11 | nfmpt1 5182 | . . . . . . 7 ⊢ Ⅎ𝑘(𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
12 | 1, 11 | nfcxfr 2905 | . . . . . 6 ⊢ Ⅎ𝑘𝑆 |
13 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑘𝑥 | |
14 | 12, 13 | nffv 6784 | . . . . 5 ⊢ Ⅎ𝑘(𝑆‘𝑥) |
15 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑘∅ | |
16 | 14, 15 | nfne 3045 | . . . 4 ⊢ Ⅎ𝑘(𝑆‘𝑥) ≠ ∅ |
17 | 10, 16 | nfan 1902 | . . 3 ⊢ Ⅎ𝑘(𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅) |
18 | nfv 1917 | . . 3 ⊢ Ⅎ𝑥(𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅) | |
19 | eleq2w 2822 | . . . 4 ⊢ (𝑥 = 𝑘 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑘)) | |
20 | fveq2 6774 | . . . . 5 ⊢ (𝑥 = 𝑘 → (𝑆‘𝑥) = (𝑆‘𝑘)) | |
21 | 20 | neeq1d 3003 | . . . 4 ⊢ (𝑥 = 𝑘 → ((𝑆‘𝑥) ≠ ∅ ↔ (𝑆‘𝑘) ≠ ∅)) |
22 | 19, 21 | anbi12d 631 | . . 3 ⊢ (𝑥 = 𝑘 → ((𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅) ↔ (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅))) |
23 | 17, 18, 22 | cbvrexw 3374 | . 2 ⊢ (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅) ↔ ∃𝑘 ∈ 𝐽 (𝑃 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅)) |
24 | 9, 23 | sylibr 233 | 1 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃 ∈ 𝑋) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 {crab 3068 ∖ cdif 3884 ∩ cin 3886 ∅c0 4256 𝒫 cpw 4533 {csn 4561 ∪ cuni 4839 ↦ cmpt 5157 ◡ccnv 5588 ↾ cres 5591 “ cima 5592 ‘cfv 6433 (class class class)co 7275 ↾t crest 17131 Topctop 22042 Cn ccn 22375 Homeochmeo 22904 CovMap ccvm 33217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-cvm 33218 |
This theorem is referenced by: cvmcov2 33237 cvmopnlem 33240 cvmfolem 33241 cvmliftmolem2 33244 cvmliftlem15 33260 cvmlift2lem10 33274 cvmlift3lem8 33288 |
Copyright terms: Public domain | W3C validator |