Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmopnlem Structured version   Visualization version   GIF version

Theorem cvmopnlem 34257
Description: Lemma for cvmopn 34259. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmseu.1 𝐵 = 𝐶
Assertion
Ref Expression
cvmopnlem ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) → (𝐹𝐴) ∈ 𝐽)
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣   𝑘,𝐽,𝑠,𝑢,𝑣   𝑢,𝐴,𝑣   𝑣,𝐵
Allowed substitution hints:   𝐴(𝑘,𝑠)   𝐵(𝑢,𝑘,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)

Proof of Theorem cvmopnlem
Dummy variables 𝑡 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 765 . . . . . 6 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) → 𝐹 ∈ (𝐶 CovMap 𝐽))
2 cvmcn 34241 . . . . . . . . . 10 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
32adantr 481 . . . . . . . . 9 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) → 𝐹 ∈ (𝐶 Cn 𝐽))
4 cvmseu.1 . . . . . . . . . 10 𝐵 = 𝐶
5 eqid 2732 . . . . . . . . . 10 𝐽 = 𝐽
64, 5cnf 22741 . . . . . . . . 9 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵 𝐽)
73, 6syl 17 . . . . . . . 8 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) → 𝐹:𝐵 𝐽)
87adantr 481 . . . . . . 7 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) → 𝐹:𝐵 𝐽)
9 elssuni 4940 . . . . . . . . . 10 (𝐴𝐶𝐴 𝐶)
109, 4sseqtrrdi 4032 . . . . . . . . 9 (𝐴𝐶𝐴𝐵)
1110adantl 482 . . . . . . . 8 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) → 𝐴𝐵)
1211sselda 3981 . . . . . . 7 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) → 𝑧𝐵)
138, 12ffvelcdmd 7084 . . . . . 6 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ 𝐽)
14 cvmcov.1 . . . . . . 7 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
1514, 5cvmcov 34242 . . . . . 6 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐹𝑧) ∈ 𝐽) → ∃𝑡𝐽 ((𝐹𝑧) ∈ 𝑡 ∧ (𝑆𝑡) ≠ ∅))
161, 13, 15syl2anc 584 . . . . 5 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) → ∃𝑡𝐽 ((𝐹𝑧) ∈ 𝑡 ∧ (𝑆𝑡) ≠ ∅))
17 n0 4345 . . . . . . . 8 ((𝑆𝑡) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝑆𝑡))
18 inss2 4228 . . . . . . . . . . . . . . 15 (𝐴 ∩ (𝑥𝑤 𝑧𝑥)) ⊆ (𝑥𝑤 𝑧𝑥)
19 resima2 6014 . . . . . . . . . . . . . . 15 ((𝐴 ∩ (𝑥𝑤 𝑧𝑥)) ⊆ (𝑥𝑤 𝑧𝑥) → ((𝐹 ↾ (𝑥𝑤 𝑧𝑥)) “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))) = (𝐹 “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))))
2018, 19ax-mp 5 . . . . . . . . . . . . . 14 ((𝐹 ↾ (𝑥𝑤 𝑧𝑥)) “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))) = (𝐹 “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥)))
21 simprr 771 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ ((𝐹𝑧) ∈ 𝑡𝑤 ∈ (𝑆𝑡))) → 𝑤 ∈ (𝑆𝑡))
221adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ ((𝐹𝑧) ∈ 𝑡𝑤 ∈ (𝑆𝑡))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
2312adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ ((𝐹𝑧) ∈ 𝑡𝑤 ∈ (𝑆𝑡))) → 𝑧𝐵)
24 simprl 769 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ ((𝐹𝑧) ∈ 𝑡𝑤 ∈ (𝑆𝑡))) → (𝐹𝑧) ∈ 𝑡)
25 eqid 2732 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑤 𝑧𝑥) = (𝑥𝑤 𝑧𝑥)
2614, 4, 25cvmsiota 34256 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑤 ∈ (𝑆𝑡) ∧ 𝑧𝐵 ∧ (𝐹𝑧) ∈ 𝑡)) → ((𝑥𝑤 𝑧𝑥) ∈ 𝑤𝑧 ∈ (𝑥𝑤 𝑧𝑥)))
2722, 21, 23, 24, 26syl13anc 1372 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ ((𝐹𝑧) ∈ 𝑡𝑤 ∈ (𝑆𝑡))) → ((𝑥𝑤 𝑧𝑥) ∈ 𝑤𝑧 ∈ (𝑥𝑤 𝑧𝑥)))
2827simpld 495 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ ((𝐹𝑧) ∈ 𝑡𝑤 ∈ (𝑆𝑡))) → (𝑥𝑤 𝑧𝑥) ∈ 𝑤)
2914cvmshmeo 34250 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ (𝑆𝑡) ∧ (𝑥𝑤 𝑧𝑥) ∈ 𝑤) → (𝐹 ↾ (𝑥𝑤 𝑧𝑥)) ∈ ((𝐶t (𝑥𝑤 𝑧𝑥))Homeo(𝐽t 𝑡)))
3021, 28, 29syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ ((𝐹𝑧) ∈ 𝑡𝑤 ∈ (𝑆𝑡))) → (𝐹 ↾ (𝑥𝑤 𝑧𝑥)) ∈ ((𝐶t (𝑥𝑤 𝑧𝑥))Homeo(𝐽t 𝑡)))
31 cvmtop1 34239 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
3222, 31syl 17 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ ((𝐹𝑧) ∈ 𝑡𝑤 ∈ (𝑆𝑡))) → 𝐶 ∈ Top)
33 simpllr 774 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ ((𝐹𝑧) ∈ 𝑡𝑤 ∈ (𝑆𝑡))) → 𝐴𝐶)
34 elrestr 17370 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ Top ∧ (𝑥𝑤 𝑧𝑥) ∈ 𝑤𝐴𝐶) → (𝐴 ∩ (𝑥𝑤 𝑧𝑥)) ∈ (𝐶t (𝑥𝑤 𝑧𝑥)))
3532, 28, 33, 34syl3anc 1371 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ ((𝐹𝑧) ∈ 𝑡𝑤 ∈ (𝑆𝑡))) → (𝐴 ∩ (𝑥𝑤 𝑧𝑥)) ∈ (𝐶t (𝑥𝑤 𝑧𝑥)))
36 hmeoima 23260 . . . . . . . . . . . . . . 15 (((𝐹 ↾ (𝑥𝑤 𝑧𝑥)) ∈ ((𝐶t (𝑥𝑤 𝑧𝑥))Homeo(𝐽t 𝑡)) ∧ (𝐴 ∩ (𝑥𝑤 𝑧𝑥)) ∈ (𝐶t (𝑥𝑤 𝑧𝑥))) → ((𝐹 ↾ (𝑥𝑤 𝑧𝑥)) “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))) ∈ (𝐽t 𝑡))
3730, 35, 36syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ ((𝐹𝑧) ∈ 𝑡𝑤 ∈ (𝑆𝑡))) → ((𝐹 ↾ (𝑥𝑤 𝑧𝑥)) “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))) ∈ (𝐽t 𝑡))
3820, 37eqeltrrid 2838 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ ((𝐹𝑧) ∈ 𝑡𝑤 ∈ (𝑆𝑡))) → (𝐹 “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))) ∈ (𝐽t 𝑡))
39 cvmtop2 34240 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top)
4039adantr 481 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) → 𝐽 ∈ Top)
4140ad2antrr 724 . . . . . . . . . . . . . 14 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ ((𝐹𝑧) ∈ 𝑡𝑤 ∈ (𝑆𝑡))) → 𝐽 ∈ Top)
4214cvmsrcl 34243 . . . . . . . . . . . . . . 15 (𝑤 ∈ (𝑆𝑡) → 𝑡𝐽)
4342ad2antll 727 . . . . . . . . . . . . . 14 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ ((𝐹𝑧) ∈ 𝑡𝑤 ∈ (𝑆𝑡))) → 𝑡𝐽)
44 restopn2 22672 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑡𝐽) → ((𝐹 “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))) ∈ (𝐽t 𝑡) ↔ ((𝐹 “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))) ∈ 𝐽 ∧ (𝐹 “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))) ⊆ 𝑡)))
4541, 43, 44syl2anc 584 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ ((𝐹𝑧) ∈ 𝑡𝑤 ∈ (𝑆𝑡))) → ((𝐹 “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))) ∈ (𝐽t 𝑡) ↔ ((𝐹 “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))) ∈ 𝐽 ∧ (𝐹 “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))) ⊆ 𝑡)))
4638, 45mpbid 231 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ ((𝐹𝑧) ∈ 𝑡𝑤 ∈ (𝑆𝑡))) → ((𝐹 “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))) ∈ 𝐽 ∧ (𝐹 “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))) ⊆ 𝑡))
4746simpld 495 . . . . . . . . . . 11 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ ((𝐹𝑧) ∈ 𝑡𝑤 ∈ (𝑆𝑡))) → (𝐹 “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))) ∈ 𝐽)
487ffnd 6715 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) → 𝐹 Fn 𝐵)
4948ad2antrr 724 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ ((𝐹𝑧) ∈ 𝑡𝑤 ∈ (𝑆𝑡))) → 𝐹 Fn 𝐵)
50 inss1 4227 . . . . . . . . . . . . 13 (𝐴 ∩ (𝑥𝑤 𝑧𝑥)) ⊆ 𝐴
5133, 10syl 17 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ ((𝐹𝑧) ∈ 𝑡𝑤 ∈ (𝑆𝑡))) → 𝐴𝐵)
5250, 51sstrid 3992 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ ((𝐹𝑧) ∈ 𝑡𝑤 ∈ (𝑆𝑡))) → (𝐴 ∩ (𝑥𝑤 𝑧𝑥)) ⊆ 𝐵)
53 simplr 767 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ ((𝐹𝑧) ∈ 𝑡𝑤 ∈ (𝑆𝑡))) → 𝑧𝐴)
5427simprd 496 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ ((𝐹𝑧) ∈ 𝑡𝑤 ∈ (𝑆𝑡))) → 𝑧 ∈ (𝑥𝑤 𝑧𝑥))
5553, 54elind 4193 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ ((𝐹𝑧) ∈ 𝑡𝑤 ∈ (𝑆𝑡))) → 𝑧 ∈ (𝐴 ∩ (𝑥𝑤 𝑧𝑥)))
56 fnfvima 7231 . . . . . . . . . . . 12 ((𝐹 Fn 𝐵 ∧ (𝐴 ∩ (𝑥𝑤 𝑧𝑥)) ⊆ 𝐵𝑧 ∈ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))) → (𝐹𝑧) ∈ (𝐹 “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))))
5749, 52, 55, 56syl3anc 1371 . . . . . . . . . . 11 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ ((𝐹𝑧) ∈ 𝑡𝑤 ∈ (𝑆𝑡))) → (𝐹𝑧) ∈ (𝐹 “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))))
58 imass2 6098 . . . . . . . . . . . 12 ((𝐴 ∩ (𝑥𝑤 𝑧𝑥)) ⊆ 𝐴 → (𝐹 “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))) ⊆ (𝐹𝐴))
5950, 58mp1i 13 . . . . . . . . . . 11 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ ((𝐹𝑧) ∈ 𝑡𝑤 ∈ (𝑆𝑡))) → (𝐹 “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))) ⊆ (𝐹𝐴))
60 eleq2 2822 . . . . . . . . . . . . 13 (𝑦 = (𝐹 “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))) → ((𝐹𝑧) ∈ 𝑦 ↔ (𝐹𝑧) ∈ (𝐹 “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥)))))
61 sseq1 4006 . . . . . . . . . . . . 13 (𝑦 = (𝐹 “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))) → (𝑦 ⊆ (𝐹𝐴) ↔ (𝐹 “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))) ⊆ (𝐹𝐴)))
6260, 61anbi12d 631 . . . . . . . . . . . 12 (𝑦 = (𝐹 “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))) → (((𝐹𝑧) ∈ 𝑦𝑦 ⊆ (𝐹𝐴)) ↔ ((𝐹𝑧) ∈ (𝐹 “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))) ∧ (𝐹 “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))) ⊆ (𝐹𝐴))))
6362rspcev 3612 . . . . . . . . . . 11 (((𝐹 “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))) ∈ 𝐽 ∧ ((𝐹𝑧) ∈ (𝐹 “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))) ∧ (𝐹 “ (𝐴 ∩ (𝑥𝑤 𝑧𝑥))) ⊆ (𝐹𝐴))) → ∃𝑦𝐽 ((𝐹𝑧) ∈ 𝑦𝑦 ⊆ (𝐹𝐴)))
6447, 57, 59, 63syl12anc 835 . . . . . . . . . 10 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ ((𝐹𝑧) ∈ 𝑡𝑤 ∈ (𝑆𝑡))) → ∃𝑦𝐽 ((𝐹𝑧) ∈ 𝑦𝑦 ⊆ (𝐹𝐴)))
6564expr 457 . . . . . . . . 9 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ (𝐹𝑧) ∈ 𝑡) → (𝑤 ∈ (𝑆𝑡) → ∃𝑦𝐽 ((𝐹𝑧) ∈ 𝑦𝑦 ⊆ (𝐹𝐴))))
6665exlimdv 1936 . . . . . . . 8 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ (𝐹𝑧) ∈ 𝑡) → (∃𝑤 𝑤 ∈ (𝑆𝑡) → ∃𝑦𝐽 ((𝐹𝑧) ∈ 𝑦𝑦 ⊆ (𝐹𝐴))))
6717, 66biimtrid 241 . . . . . . 7 ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) ∧ (𝐹𝑧) ∈ 𝑡) → ((𝑆𝑡) ≠ ∅ → ∃𝑦𝐽 ((𝐹𝑧) ∈ 𝑦𝑦 ⊆ (𝐹𝐴))))
6867expimpd 454 . . . . . 6 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) → (((𝐹𝑧) ∈ 𝑡 ∧ (𝑆𝑡) ≠ ∅) → ∃𝑦𝐽 ((𝐹𝑧) ∈ 𝑦𝑦 ⊆ (𝐹𝐴))))
6968rexlimdvw 3160 . . . . 5 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) → (∃𝑡𝐽 ((𝐹𝑧) ∈ 𝑡 ∧ (𝑆𝑡) ≠ ∅) → ∃𝑦𝐽 ((𝐹𝑧) ∈ 𝑦𝑦 ⊆ (𝐹𝐴))))
7016, 69mpd 15 . . . 4 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) ∧ 𝑧𝐴) → ∃𝑦𝐽 ((𝐹𝑧) ∈ 𝑦𝑦 ⊆ (𝐹𝐴)))
7170ralrimiva 3146 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) → ∀𝑧𝐴𝑦𝐽 ((𝐹𝑧) ∈ 𝑦𝑦 ⊆ (𝐹𝐴)))
72 eleq1 2821 . . . . . . 7 (𝑥 = (𝐹𝑧) → (𝑥𝑦 ↔ (𝐹𝑧) ∈ 𝑦))
7372anbi1d 630 . . . . . 6 (𝑥 = (𝐹𝑧) → ((𝑥𝑦𝑦 ⊆ (𝐹𝐴)) ↔ ((𝐹𝑧) ∈ 𝑦𝑦 ⊆ (𝐹𝐴))))
7473rexbidv 3178 . . . . 5 (𝑥 = (𝐹𝑧) → (∃𝑦𝐽 (𝑥𝑦𝑦 ⊆ (𝐹𝐴)) ↔ ∃𝑦𝐽 ((𝐹𝑧) ∈ 𝑦𝑦 ⊆ (𝐹𝐴))))
7574ralima 7236 . . . 4 ((𝐹 Fn 𝐵𝐴𝐵) → (∀𝑥 ∈ (𝐹𝐴)∃𝑦𝐽 (𝑥𝑦𝑦 ⊆ (𝐹𝐴)) ↔ ∀𝑧𝐴𝑦𝐽 ((𝐹𝑧) ∈ 𝑦𝑦 ⊆ (𝐹𝐴))))
7648, 11, 75syl2anc 584 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) → (∀𝑥 ∈ (𝐹𝐴)∃𝑦𝐽 (𝑥𝑦𝑦 ⊆ (𝐹𝐴)) ↔ ∀𝑧𝐴𝑦𝐽 ((𝐹𝑧) ∈ 𝑦𝑦 ⊆ (𝐹𝐴))))
7771, 76mpbird 256 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) → ∀𝑥 ∈ (𝐹𝐴)∃𝑦𝐽 (𝑥𝑦𝑦 ⊆ (𝐹𝐴)))
78 eltop2 22469 . . 3 (𝐽 ∈ Top → ((𝐹𝐴) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝐹𝐴)∃𝑦𝐽 (𝑥𝑦𝑦 ⊆ (𝐹𝐴))))
7940, 78syl 17 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) → ((𝐹𝐴) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝐹𝐴)∃𝑦𝐽 (𝑥𝑦𝑦 ⊆ (𝐹𝐴))))
8077, 79mpbird 256 1 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) → (𝐹𝐴) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2940  wral 3061  wrex 3070  {crab 3432  cdif 3944  cin 3946  wss 3947  c0 4321  𝒫 cpw 4601  {csn 4627   cuni 4907  cmpt 5230  ccnv 5674  cres 5677  cima 5678   Fn wfn 6535  wf 6536  cfv 6540  crio 7360  (class class class)co 7405  t crest 17362  Topctop 22386   Cn ccn 22719  Homeochmeo 23248   CovMap ccvm 34234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-map 8818  df-en 8936  df-fin 8939  df-fi 9402  df-rest 17364  df-topgen 17385  df-top 22387  df-topon 22404  df-bases 22440  df-cn 22722  df-hmeo 23250  df-cvm 34235
This theorem is referenced by:  cvmopn  34259
  Copyright terms: Public domain W3C validator