Step | Hyp | Ref
| Expression |
1 | | simpll 764 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
2 | | cvmcn 33224 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
3 | 2 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
4 | | cvmseu.1 |
. . . . . . . . . 10
⊢ 𝐵 = ∪
𝐶 |
5 | | eqid 2738 |
. . . . . . . . . 10
⊢ ∪ 𝐽 =
∪ 𝐽 |
6 | 4, 5 | cnf 22397 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵⟶∪ 𝐽) |
7 | 3, 6 | syl 17 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → 𝐹:𝐵⟶∪ 𝐽) |
8 | 7 | adantr 481 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) → 𝐹:𝐵⟶∪ 𝐽) |
9 | | elssuni 4871 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝐶 → 𝐴 ⊆ ∪ 𝐶) |
10 | 9, 4 | sseqtrrdi 3972 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝐶 → 𝐴 ⊆ 𝐵) |
11 | 10 | adantl 482 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → 𝐴 ⊆ 𝐵) |
12 | 11 | sselda 3921 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐵) |
13 | 8, 12 | ffvelrnd 6962 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ ∪ 𝐽) |
14 | | cvmcov.1 |
. . . . . . 7
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
15 | 14, 5 | cvmcov 33225 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐹‘𝑧) ∈ ∪ 𝐽) → ∃𝑡 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑡 ∧ (𝑆‘𝑡) ≠ ∅)) |
16 | 1, 13, 15 | syl2anc 584 |
. . . . 5
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) → ∃𝑡 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑡 ∧ (𝑆‘𝑡) ≠ ∅)) |
17 | | n0 4280 |
. . . . . . . 8
⊢ ((𝑆‘𝑡) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝑆‘𝑡)) |
18 | | inss2 4163 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ⊆ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥) |
19 | | resima2 5926 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ⊆ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥) → ((𝐹 ↾ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) = (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)))) |
20 | 18, 19 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ↾ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) = (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) |
21 | | simprr 770 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝑤 ∈ (𝑆‘𝑡)) |
22 | 1 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
23 | 12 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝑧 ∈ 𝐵) |
24 | | simprl 768 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → (𝐹‘𝑧) ∈ 𝑡) |
25 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢
(℩𝑥
∈ 𝑤 𝑧 ∈ 𝑥) = (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥) |
26 | 14, 4, 25 | cvmsiota 33239 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑤 ∈ (𝑆‘𝑡) ∧ 𝑧 ∈ 𝐵 ∧ (𝐹‘𝑧) ∈ 𝑡)) → ((℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥) ∈ 𝑤 ∧ 𝑧 ∈ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) |
27 | 22, 21, 23, 24, 26 | syl13anc 1371 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → ((℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥) ∈ 𝑤 ∧ 𝑧 ∈ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) |
28 | 27 | simpld 495 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥) ∈ 𝑤) |
29 | 14 | cvmshmeo 33233 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ (𝑆‘𝑡) ∧ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥) ∈ 𝑤) → (𝐹 ↾ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ∈ ((𝐶 ↾t (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))Homeo(𝐽 ↾t 𝑡))) |
30 | 21, 28, 29 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → (𝐹 ↾ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ∈ ((𝐶 ↾t (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))Homeo(𝐽 ↾t 𝑡))) |
31 | | cvmtop1 33222 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top) |
32 | 22, 31 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝐶 ∈ Top) |
33 | | simpllr 773 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝐴 ∈ 𝐶) |
34 | | elrestr 17139 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∈ Top ∧
(℩𝑥 ∈
𝑤 𝑧 ∈ 𝑥) ∈ 𝑤 ∧ 𝐴 ∈ 𝐶) → (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ∈ (𝐶 ↾t (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) |
35 | 32, 28, 33, 34 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ∈ (𝐶 ↾t (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) |
36 | | hmeoima 22916 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ↾ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ∈ ((𝐶 ↾t (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))Homeo(𝐽 ↾t 𝑡)) ∧ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ∈ (𝐶 ↾t (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) → ((𝐹 ↾ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ (𝐽 ↾t 𝑡)) |
37 | 30, 35, 36 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → ((𝐹 ↾ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ (𝐽 ↾t 𝑡)) |
38 | 20, 37 | eqeltrrid 2844 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ (𝐽 ↾t 𝑡)) |
39 | | cvmtop2 33223 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top) |
40 | 39 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → 𝐽 ∈ Top) |
41 | 40 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝐽 ∈ Top) |
42 | 14 | cvmsrcl 33226 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ (𝑆‘𝑡) → 𝑡 ∈ 𝐽) |
43 | 42 | ad2antll 726 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝑡 ∈ 𝐽) |
44 | | restopn2 22328 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝐽) → ((𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ (𝐽 ↾t 𝑡) ↔ ((𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ 𝐽 ∧ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ⊆ 𝑡))) |
45 | 41, 43, 44 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → ((𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ (𝐽 ↾t 𝑡) ↔ ((𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ 𝐽 ∧ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ⊆ 𝑡))) |
46 | 38, 45 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → ((𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ 𝐽 ∧ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ⊆ 𝑡)) |
47 | 46 | simpld 495 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ 𝐽) |
48 | 7 | ffnd 6601 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → 𝐹 Fn 𝐵) |
49 | 48 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝐹 Fn 𝐵) |
50 | | inss1 4162 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ⊆ 𝐴 |
51 | 33, 10 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝐴 ⊆ 𝐵) |
52 | 50, 51 | sstrid 3932 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ⊆ 𝐵) |
53 | | simplr 766 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝑧 ∈ 𝐴) |
54 | 27 | simprd 496 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝑧 ∈ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) |
55 | 53, 54 | elind 4128 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝑧 ∈ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) |
56 | | fnfvima 7109 |
. . . . . . . . . . . 12
⊢ ((𝐹 Fn 𝐵 ∧ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ⊆ 𝐵 ∧ 𝑧 ∈ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) → (𝐹‘𝑧) ∈ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)))) |
57 | 49, 52, 55, 56 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → (𝐹‘𝑧) ∈ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)))) |
58 | | imass2 6010 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ⊆ 𝐴 → (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ⊆ (𝐹 “ 𝐴)) |
59 | 50, 58 | mp1i 13 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ⊆ (𝐹 “ 𝐴)) |
60 | | eleq2 2827 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) → ((𝐹‘𝑧) ∈ 𝑦 ↔ (𝐹‘𝑧) ∈ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))))) |
61 | | sseq1 3946 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) → (𝑦 ⊆ (𝐹 “ 𝐴) ↔ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ⊆ (𝐹 “ 𝐴))) |
62 | 60, 61 | anbi12d 631 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) → (((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)) ↔ ((𝐹‘𝑧) ∈ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∧ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ⊆ (𝐹 “ 𝐴)))) |
63 | 62 | rspcev 3561 |
. . . . . . . . . . 11
⊢ (((𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ 𝐽 ∧ ((𝐹‘𝑧) ∈ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∧ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ⊆ (𝐹 “ 𝐴))) → ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴))) |
64 | 47, 57, 59, 63 | syl12anc 834 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴))) |
65 | 64 | expr 457 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ (𝐹‘𝑧) ∈ 𝑡) → (𝑤 ∈ (𝑆‘𝑡) → ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
66 | 65 | exlimdv 1936 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ (𝐹‘𝑧) ∈ 𝑡) → (∃𝑤 𝑤 ∈ (𝑆‘𝑡) → ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
67 | 17, 66 | syl5bi 241 |
. . . . . . 7
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ (𝐹‘𝑧) ∈ 𝑡) → ((𝑆‘𝑡) ≠ ∅ → ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
68 | 67 | expimpd 454 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) → (((𝐹‘𝑧) ∈ 𝑡 ∧ (𝑆‘𝑡) ≠ ∅) → ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
69 | 68 | rexlimdvw 3219 |
. . . . 5
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) → (∃𝑡 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑡 ∧ (𝑆‘𝑡) ≠ ∅) → ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
70 | 16, 69 | mpd 15 |
. . . 4
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) → ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴))) |
71 | 70 | ralrimiva 3103 |
. . 3
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → ∀𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴))) |
72 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝑧) → (𝑥 ∈ 𝑦 ↔ (𝐹‘𝑧) ∈ 𝑦)) |
73 | 72 | anbi1d 630 |
. . . . . 6
⊢ (𝑥 = (𝐹‘𝑧) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)) ↔ ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
74 | 73 | rexbidv 3226 |
. . . . 5
⊢ (𝑥 = (𝐹‘𝑧) → (∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)) ↔ ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
75 | 74 | ralima 7114 |
. . . 4
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ 𝐵) → (∀𝑥 ∈ (𝐹 “ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)) ↔ ∀𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
76 | 48, 11, 75 | syl2anc 584 |
. . 3
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → (∀𝑥 ∈ (𝐹 “ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)) ↔ ∀𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
77 | 71, 76 | mpbird 256 |
. 2
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → ∀𝑥 ∈ (𝐹 “ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴))) |
78 | | eltop2 22125 |
. . 3
⊢ (𝐽 ∈ Top → ((𝐹 “ 𝐴) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝐹 “ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
79 | 40, 78 | syl 17 |
. 2
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → ((𝐹 “ 𝐴) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝐹 “ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
80 | 77, 79 | mpbird 256 |
1
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → (𝐹 “ 𝐴) ∈ 𝐽) |