| Step | Hyp | Ref
| Expression |
| 1 | | simpll 767 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| 2 | | cvmcn 35267 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
| 3 | 2 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
| 4 | | cvmseu.1 |
. . . . . . . . . 10
⊢ 𝐵 = ∪
𝐶 |
| 5 | | eqid 2737 |
. . . . . . . . . 10
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 6 | 4, 5 | cnf 23254 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵⟶∪ 𝐽) |
| 7 | 3, 6 | syl 17 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → 𝐹:𝐵⟶∪ 𝐽) |
| 8 | 7 | adantr 480 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) → 𝐹:𝐵⟶∪ 𝐽) |
| 9 | | elssuni 4937 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝐶 → 𝐴 ⊆ ∪ 𝐶) |
| 10 | 9, 4 | sseqtrrdi 4025 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝐶 → 𝐴 ⊆ 𝐵) |
| 11 | 10 | adantl 481 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → 𝐴 ⊆ 𝐵) |
| 12 | 11 | sselda 3983 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐵) |
| 13 | 8, 12 | ffvelcdmd 7105 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ ∪ 𝐽) |
| 14 | | cvmcov.1 |
. . . . . . 7
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
| 15 | 14, 5 | cvmcov 35268 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐹‘𝑧) ∈ ∪ 𝐽) → ∃𝑡 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑡 ∧ (𝑆‘𝑡) ≠ ∅)) |
| 16 | 1, 13, 15 | syl2anc 584 |
. . . . 5
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) → ∃𝑡 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑡 ∧ (𝑆‘𝑡) ≠ ∅)) |
| 17 | | n0 4353 |
. . . . . . . 8
⊢ ((𝑆‘𝑡) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝑆‘𝑡)) |
| 18 | | inss2 4238 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ⊆ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥) |
| 19 | | resima2 6034 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ⊆ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥) → ((𝐹 ↾ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) = (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)))) |
| 20 | 18, 19 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ↾ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) = (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) |
| 21 | | simprr 773 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝑤 ∈ (𝑆‘𝑡)) |
| 22 | 1 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| 23 | 12 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝑧 ∈ 𝐵) |
| 24 | | simprl 771 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → (𝐹‘𝑧) ∈ 𝑡) |
| 25 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . 19
⊢
(℩𝑥
∈ 𝑤 𝑧 ∈ 𝑥) = (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥) |
| 26 | 14, 4, 25 | cvmsiota 35282 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑤 ∈ (𝑆‘𝑡) ∧ 𝑧 ∈ 𝐵 ∧ (𝐹‘𝑧) ∈ 𝑡)) → ((℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥) ∈ 𝑤 ∧ 𝑧 ∈ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) |
| 27 | 22, 21, 23, 24, 26 | syl13anc 1374 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → ((℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥) ∈ 𝑤 ∧ 𝑧 ∈ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) |
| 28 | 27 | simpld 494 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥) ∈ 𝑤) |
| 29 | 14 | cvmshmeo 35276 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ (𝑆‘𝑡) ∧ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥) ∈ 𝑤) → (𝐹 ↾ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ∈ ((𝐶 ↾t (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))Homeo(𝐽 ↾t 𝑡))) |
| 30 | 21, 28, 29 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → (𝐹 ↾ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ∈ ((𝐶 ↾t (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))Homeo(𝐽 ↾t 𝑡))) |
| 31 | | cvmtop1 35265 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top) |
| 32 | 22, 31 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝐶 ∈ Top) |
| 33 | | simpllr 776 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝐴 ∈ 𝐶) |
| 34 | | elrestr 17473 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∈ Top ∧
(℩𝑥 ∈
𝑤 𝑧 ∈ 𝑥) ∈ 𝑤 ∧ 𝐴 ∈ 𝐶) → (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ∈ (𝐶 ↾t (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) |
| 35 | 32, 28, 33, 34 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ∈ (𝐶 ↾t (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) |
| 36 | | hmeoima 23773 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ↾ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ∈ ((𝐶 ↾t (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))Homeo(𝐽 ↾t 𝑡)) ∧ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ∈ (𝐶 ↾t (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) → ((𝐹 ↾ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ (𝐽 ↾t 𝑡)) |
| 37 | 30, 35, 36 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → ((𝐹 ↾ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ (𝐽 ↾t 𝑡)) |
| 38 | 20, 37 | eqeltrrid 2846 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ (𝐽 ↾t 𝑡)) |
| 39 | | cvmtop2 35266 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top) |
| 40 | 39 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → 𝐽 ∈ Top) |
| 41 | 40 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝐽 ∈ Top) |
| 42 | 14 | cvmsrcl 35269 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ (𝑆‘𝑡) → 𝑡 ∈ 𝐽) |
| 43 | 42 | ad2antll 729 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝑡 ∈ 𝐽) |
| 44 | | restopn2 23185 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝐽) → ((𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ (𝐽 ↾t 𝑡) ↔ ((𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ 𝐽 ∧ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ⊆ 𝑡))) |
| 45 | 41, 43, 44 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → ((𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ (𝐽 ↾t 𝑡) ↔ ((𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ 𝐽 ∧ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ⊆ 𝑡))) |
| 46 | 38, 45 | mpbid 232 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → ((𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ 𝐽 ∧ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ⊆ 𝑡)) |
| 47 | 46 | simpld 494 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ 𝐽) |
| 48 | 7 | ffnd 6737 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → 𝐹 Fn 𝐵) |
| 49 | 48 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝐹 Fn 𝐵) |
| 50 | | inss1 4237 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ⊆ 𝐴 |
| 51 | 33, 10 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝐴 ⊆ 𝐵) |
| 52 | 50, 51 | sstrid 3995 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ⊆ 𝐵) |
| 53 | | simplr 769 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝑧 ∈ 𝐴) |
| 54 | 27 | simprd 495 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝑧 ∈ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) |
| 55 | 53, 54 | elind 4200 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝑧 ∈ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) |
| 56 | | fnfvima 7253 |
. . . . . . . . . . . 12
⊢ ((𝐹 Fn 𝐵 ∧ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ⊆ 𝐵 ∧ 𝑧 ∈ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) → (𝐹‘𝑧) ∈ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)))) |
| 57 | 49, 52, 55, 56 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → (𝐹‘𝑧) ∈ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)))) |
| 58 | | imass2 6120 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ⊆ 𝐴 → (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ⊆ (𝐹 “ 𝐴)) |
| 59 | 50, 58 | mp1i 13 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ⊆ (𝐹 “ 𝐴)) |
| 60 | | eleq2 2830 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) → ((𝐹‘𝑧) ∈ 𝑦 ↔ (𝐹‘𝑧) ∈ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))))) |
| 61 | | sseq1 4009 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) → (𝑦 ⊆ (𝐹 “ 𝐴) ↔ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ⊆ (𝐹 “ 𝐴))) |
| 62 | 60, 61 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) → (((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)) ↔ ((𝐹‘𝑧) ∈ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∧ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ⊆ (𝐹 “ 𝐴)))) |
| 63 | 62 | rspcev 3622 |
. . . . . . . . . . 11
⊢ (((𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ 𝐽 ∧ ((𝐹‘𝑧) ∈ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∧ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ⊆ (𝐹 “ 𝐴))) → ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴))) |
| 64 | 47, 57, 59, 63 | syl12anc 837 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴))) |
| 65 | 64 | expr 456 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ (𝐹‘𝑧) ∈ 𝑡) → (𝑤 ∈ (𝑆‘𝑡) → ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
| 66 | 65 | exlimdv 1933 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ (𝐹‘𝑧) ∈ 𝑡) → (∃𝑤 𝑤 ∈ (𝑆‘𝑡) → ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
| 67 | 17, 66 | biimtrid 242 |
. . . . . . 7
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ (𝐹‘𝑧) ∈ 𝑡) → ((𝑆‘𝑡) ≠ ∅ → ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
| 68 | 67 | expimpd 453 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) → (((𝐹‘𝑧) ∈ 𝑡 ∧ (𝑆‘𝑡) ≠ ∅) → ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
| 69 | 68 | rexlimdvw 3160 |
. . . . 5
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) → (∃𝑡 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑡 ∧ (𝑆‘𝑡) ≠ ∅) → ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
| 70 | 16, 69 | mpd 15 |
. . . 4
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) → ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴))) |
| 71 | 70 | ralrimiva 3146 |
. . 3
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → ∀𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴))) |
| 72 | | eleq1 2829 |
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝑧) → (𝑥 ∈ 𝑦 ↔ (𝐹‘𝑧) ∈ 𝑦)) |
| 73 | 72 | anbi1d 631 |
. . . . . 6
⊢ (𝑥 = (𝐹‘𝑧) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)) ↔ ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
| 74 | 73 | rexbidv 3179 |
. . . . 5
⊢ (𝑥 = (𝐹‘𝑧) → (∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)) ↔ ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
| 75 | 74 | ralima 7257 |
. . . 4
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ 𝐵) → (∀𝑥 ∈ (𝐹 “ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)) ↔ ∀𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
| 76 | 48, 11, 75 | syl2anc 584 |
. . 3
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → (∀𝑥 ∈ (𝐹 “ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)) ↔ ∀𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
| 77 | 71, 76 | mpbird 257 |
. 2
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → ∀𝑥 ∈ (𝐹 “ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴))) |
| 78 | | eltop2 22982 |
. . 3
⊢ (𝐽 ∈ Top → ((𝐹 “ 𝐴) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝐹 “ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
| 79 | 40, 78 | syl 17 |
. 2
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → ((𝐹 “ 𝐴) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝐹 “ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
| 80 | 77, 79 | mpbird 257 |
1
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → (𝐹 “ 𝐴) ∈ 𝐽) |