Step | Hyp | Ref
| Expression |
1 | | elfznn 13526 |
. . 3
β’ (π β (1...π) β π β β) |
2 | | cvmliftlem.1 |
. . . 4
β’ π = (π β π½ β¦ {π β (π« πΆ β {β
}) β£ (βͺ π =
(β‘πΉ β π) β§ βπ’ β π (βπ£ β (π β {π’})(π’ β© π£) = β
β§ (πΉ βΎ π’) β ((πΆ βΎt π’)Homeo(π½ βΎt π))))}) |
3 | | cvmliftlem.b |
. . . 4
β’ π΅ = βͺ
πΆ |
4 | | cvmliftlem.x |
. . . 4
β’ π = βͺ
π½ |
5 | | cvmliftlem.f |
. . . 4
β’ (π β πΉ β (πΆ CovMap π½)) |
6 | | cvmliftlem.g |
. . . 4
β’ (π β πΊ β (II Cn π½)) |
7 | | cvmliftlem.p |
. . . 4
β’ (π β π β π΅) |
8 | | cvmliftlem.e |
. . . 4
β’ (π β (πΉβπ) = (πΊβ0)) |
9 | | cvmliftlem.n |
. . . 4
β’ (π β π β β) |
10 | | cvmliftlem.t |
. . . 4
β’ (π β π:(1...π)βΆβͺ
π β π½ ({π} Γ (πβπ))) |
11 | | cvmliftlem.a |
. . . 4
β’ (π β βπ β (1...π)(πΊ β (((π β 1) / π)[,](π / π))) β (1st β(πβπ))) |
12 | | cvmliftlem.l |
. . . 4
β’ πΏ = (topGenβran
(,)) |
13 | | cvmliftlem.q |
. . . 4
β’ π = seq0((π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§)))), (( I βΎ β) βͺ {β¨0,
{β¨0, πβ©}β©})) |
14 | | cvmliftlem5.3 |
. . . 4
β’ π = (((π β 1) / π)[,](π / π)) |
15 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | cvmliftlem5 34268 |
. . 3
β’ ((π β§ π β β) β (πβπ) = (π§ β π β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π))β(πΊβπ§)))) |
16 | 1, 15 | sylan2 593 |
. 2
β’ ((π β§ π β (1...π)) β (πβπ) = (π§ β π β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π))β(πΊβπ§)))) |
17 | 5 | adantr 481 |
. . . 4
β’ ((π β§ π β (1...π)) β πΉ β (πΆ CovMap π½)) |
18 | | cvmtop1 34239 |
. . . 4
β’ (πΉ β (πΆ CovMap π½) β πΆ β Top) |
19 | | cnrest2r 22782 |
. . . 4
β’ (πΆ β Top β ((πΏ βΎt π) Cn (πΆ βΎt (β©π β (2nd
β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π))) β ((πΏ βΎt π) Cn πΆ)) |
20 | 17, 18, 19 | 3syl 18 |
. . 3
β’ ((π β§ π β (1...π)) β ((πΏ βΎt π) Cn (πΆ βΎt (β©π β (2nd
β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π))) β ((πΏ βΎt π) Cn πΆ)) |
21 | | retopon 24271 |
. . . . . 6
β’
(topGenβran (,)) β (TopOnββ) |
22 | 12, 21 | eqeltri 2829 |
. . . . 5
β’ πΏ β
(TopOnββ) |
23 | | simpr 485 |
. . . . . . 7
β’ ((π β§ π β (1...π)) β π β (1...π)) |
24 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 14 | cvmliftlem2 34265 |
. . . . . 6
β’ ((π β§ π β (1...π)) β π β (0[,]1)) |
25 | | unitssre 13472 |
. . . . . 6
β’ (0[,]1)
β β |
26 | 24, 25 | sstrdi 3993 |
. . . . 5
β’ ((π β§ π β (1...π)) β π β β) |
27 | | resttopon 22656 |
. . . . 5
β’ ((πΏ β (TopOnββ)
β§ π β β)
β (πΏ
βΎt π)
β (TopOnβπ)) |
28 | 22, 26, 27 | sylancr 587 |
. . . 4
β’ ((π β§ π β (1...π)) β (πΏ βΎt π) β (TopOnβπ)) |
29 | | eqid 2732 |
. . . . . . 7
β’ (II
βΎt π) =
(II βΎt π) |
30 | | iitopon 24386 |
. . . . . . . 8
β’ II β
(TopOnβ(0[,]1)) |
31 | 30 | a1i 11 |
. . . . . . 7
β’ ((π β§ π β (1...π)) β II β
(TopOnβ(0[,]1))) |
32 | 6 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ π β (1...π)) β πΊ β (II Cn π½)) |
33 | | iiuni 24388 |
. . . . . . . . . . 11
β’ (0[,]1) =
βͺ II |
34 | 33, 4 | cnf 22741 |
. . . . . . . . . 10
β’ (πΊ β (II Cn π½) β πΊ:(0[,]1)βΆπ) |
35 | 32, 34 | syl 17 |
. . . . . . . . 9
β’ ((π β§ π β (1...π)) β πΊ:(0[,]1)βΆπ) |
36 | 35 | feqmptd 6957 |
. . . . . . . 8
β’ ((π β§ π β (1...π)) β πΊ = (π§ β (0[,]1) β¦ (πΊβπ§))) |
37 | 36, 32 | eqeltrrd 2834 |
. . . . . . 7
β’ ((π β§ π β (1...π)) β (π§ β (0[,]1) β¦ (πΊβπ§)) β (II Cn π½)) |
38 | 29, 31, 24, 37 | cnmpt1res 23171 |
. . . . . 6
β’ ((π β§ π β (1...π)) β (π§ β π β¦ (πΊβπ§)) β ((II βΎt π) Cn π½)) |
39 | | dfii2 24389 |
. . . . . . . . . 10
β’ II =
((topGenβran (,)) βΎt (0[,]1)) |
40 | 12 | oveq1i 7415 |
. . . . . . . . . 10
β’ (πΏ βΎt (0[,]1)) =
((topGenβran (,)) βΎt (0[,]1)) |
41 | 39, 40 | eqtr4i 2763 |
. . . . . . . . 9
β’ II =
(πΏ βΎt
(0[,]1)) |
42 | 41 | oveq1i 7415 |
. . . . . . . 8
β’ (II
βΎt π) =
((πΏ βΎt
(0[,]1)) βΎt π) |
43 | | retop 24269 |
. . . . . . . . . . 11
β’
(topGenβran (,)) β Top |
44 | 12, 43 | eqeltri 2829 |
. . . . . . . . . 10
β’ πΏ β Top |
45 | 44 | a1i 11 |
. . . . . . . . 9
β’ ((π β§ π β (1...π)) β πΏ β Top) |
46 | | ovexd 7440 |
. . . . . . . . 9
β’ ((π β§ π β (1...π)) β (0[,]1) β V) |
47 | | restabs 22660 |
. . . . . . . . 9
β’ ((πΏ β Top β§ π β (0[,]1) β§ (0[,]1)
β V) β ((πΏ
βΎt (0[,]1)) βΎt π) = (πΏ βΎt π)) |
48 | 45, 24, 46, 47 | syl3anc 1371 |
. . . . . . . 8
β’ ((π β§ π β (1...π)) β ((πΏ βΎt (0[,]1))
βΎt π) =
(πΏ βΎt
π)) |
49 | 42, 48 | eqtrid 2784 |
. . . . . . 7
β’ ((π β§ π β (1...π)) β (II βΎt π) = (πΏ βΎt π)) |
50 | 49 | oveq1d 7420 |
. . . . . 6
β’ ((π β§ π β (1...π)) β ((II βΎt π) Cn π½) = ((πΏ βΎt π) Cn π½)) |
51 | 38, 50 | eleqtrd 2835 |
. . . . 5
β’ ((π β§ π β (1...π)) β (π§ β π β¦ (πΊβπ§)) β ((πΏ βΎt π) Cn π½)) |
52 | | cvmtop2 34240 |
. . . . . . . 8
β’ (πΉ β (πΆ CovMap π½) β π½ β Top) |
53 | 17, 52 | syl 17 |
. . . . . . 7
β’ ((π β§ π β (1...π)) β π½ β Top) |
54 | 4 | toptopon 22410 |
. . . . . . 7
β’ (π½ β Top β π½ β (TopOnβπ)) |
55 | 53, 54 | sylib 217 |
. . . . . 6
β’ ((π β§ π β (1...π)) β π½ β (TopOnβπ)) |
56 | | simprl 769 |
. . . . . . . . . 10
β’ ((π β§ (π β (1...π) β§ π§ β π)) β π β (1...π)) |
57 | | simprr 771 |
. . . . . . . . . 10
β’ ((π β§ (π β (1...π) β§ π§ β π)) β π§ β π) |
58 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 56, 14, 57 | cvmliftlem3 34266 |
. . . . . . . . 9
β’ ((π β§ (π β (1...π) β§ π§ β π)) β (πΊβπ§) β (1st β(πβπ))) |
59 | 58 | anassrs 468 |
. . . . . . . 8
β’ (((π β§ π β (1...π)) β§ π§ β π) β (πΊβπ§) β (1st β(πβπ))) |
60 | 59 | fmpttd 7111 |
. . . . . . 7
β’ ((π β§ π β (1...π)) β (π§ β π β¦ (πΊβπ§)):πβΆ(1st β(πβπ))) |
61 | 60 | frnd 6722 |
. . . . . 6
β’ ((π β§ π β (1...π)) β ran (π§ β π β¦ (πΊβπ§)) β (1st β(πβπ))) |
62 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23 | cvmliftlem1 34264 |
. . . . . . . 8
β’ ((π β§ π β (1...π)) β (2nd β(πβπ)) β (πβ(1st β(πβπ)))) |
63 | 2 | cvmsrcl 34243 |
. . . . . . . 8
β’
((2nd β(πβπ)) β (πβ(1st β(πβπ))) β (1st β(πβπ)) β π½) |
64 | | elssuni 4940 |
. . . . . . . 8
β’
((1st β(πβπ)) β π½ β (1st β(πβπ)) β βͺ
π½) |
65 | 62, 63, 64 | 3syl 18 |
. . . . . . 7
β’ ((π β§ π β (1...π)) β (1st β(πβπ)) β βͺ
π½) |
66 | 65, 4 | sseqtrrdi 4032 |
. . . . . 6
β’ ((π β§ π β (1...π)) β (1st β(πβπ)) β π) |
67 | | cnrest2 22781 |
. . . . . 6
β’ ((π½ β (TopOnβπ) β§ ran (π§ β π β¦ (πΊβπ§)) β (1st β(πβπ)) β§ (1st β(πβπ)) β π) β ((π§ β π β¦ (πΊβπ§)) β ((πΏ βΎt π) Cn π½) β (π§ β π β¦ (πΊβπ§)) β ((πΏ βΎt π) Cn (π½ βΎt (1st
β(πβπ)))))) |
68 | 55, 61, 66, 67 | syl3anc 1371 |
. . . . 5
β’ ((π β§ π β (1...π)) β ((π§ β π β¦ (πΊβπ§)) β ((πΏ βΎt π) Cn π½) β (π§ β π β¦ (πΊβπ§)) β ((πΏ βΎt π) Cn (π½ βΎt (1st
β(πβπ)))))) |
69 | 51, 68 | mpbid 231 |
. . . 4
β’ ((π β§ π β (1...π)) β (π§ β π β¦ (πΊβπ§)) β ((πΏ βΎt π) Cn (π½ βΎt (1st
β(πβπ))))) |
70 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | cvmliftlem7 34270 |
. . . . . . . . . 10
β’ ((π β§ π β (1...π)) β ((πβ(π β 1))β((π β 1) / π)) β (β‘πΉ β {(πΊβ((π β 1) / π))})) |
71 | | cvmcn 34241 |
. . . . . . . . . . . 12
β’ (πΉ β (πΆ CovMap π½) β πΉ β (πΆ Cn π½)) |
72 | 3, 4 | cnf 22741 |
. . . . . . . . . . . 12
β’ (πΉ β (πΆ Cn π½) β πΉ:π΅βΆπ) |
73 | 17, 71, 72 | 3syl 18 |
. . . . . . . . . . 11
β’ ((π β§ π β (1...π)) β πΉ:π΅βΆπ) |
74 | | ffn 6714 |
. . . . . . . . . . 11
β’ (πΉ:π΅βΆπ β πΉ Fn π΅) |
75 | | fniniseg 7058 |
. . . . . . . . . . 11
β’ (πΉ Fn π΅ β (((πβ(π β 1))β((π β 1) / π)) β (β‘πΉ β {(πΊβ((π β 1) / π))}) β (((πβ(π β 1))β((π β 1) / π)) β π΅ β§ (πΉβ((πβ(π β 1))β((π β 1) / π))) = (πΊβ((π β 1) / π))))) |
76 | 73, 74, 75 | 3syl 18 |
. . . . . . . . . 10
β’ ((π β§ π β (1...π)) β (((πβ(π β 1))β((π β 1) / π)) β (β‘πΉ β {(πΊβ((π β 1) / π))}) β (((πβ(π β 1))β((π β 1) / π)) β π΅ β§ (πΉβ((πβ(π β 1))β((π β 1) / π))) = (πΊβ((π β 1) / π))))) |
77 | 70, 76 | mpbid 231 |
. . . . . . . . 9
β’ ((π β§ π β (1...π)) β (((πβ(π β 1))β((π β 1) / π)) β π΅ β§ (πΉβ((πβ(π β 1))β((π β 1) / π))) = (πΊβ((π β 1) / π)))) |
78 | 77 | simpld 495 |
. . . . . . . 8
β’ ((π β§ π β (1...π)) β ((πβ(π β 1))β((π β 1) / π)) β π΅) |
79 | 77 | simprd 496 |
. . . . . . . . 9
β’ ((π β§ π β (1...π)) β (πΉβ((πβ(π β 1))β((π β 1) / π))) = (πΊβ((π β 1) / π))) |
80 | 1 | adantl 482 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β (1...π)) β π β β) |
81 | 80 | nnred 12223 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β (1...π)) β π β β) |
82 | | peano2rem 11523 |
. . . . . . . . . . . . . . 15
β’ (π β β β (π β 1) β
β) |
83 | 81, 82 | syl 17 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β (1...π)) β (π β 1) β β) |
84 | 9 | adantr 481 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β (1...π)) β π β β) |
85 | 83, 84 | nndivred 12262 |
. . . . . . . . . . . . 13
β’ ((π β§ π β (1...π)) β ((π β 1) / π) β β) |
86 | 85 | rexrd 11260 |
. . . . . . . . . . . 12
β’ ((π β§ π β (1...π)) β ((π β 1) / π) β
β*) |
87 | 81, 84 | nndivred 12262 |
. . . . . . . . . . . . 13
β’ ((π β§ π β (1...π)) β (π / π) β β) |
88 | 87 | rexrd 11260 |
. . . . . . . . . . . 12
β’ ((π β§ π β (1...π)) β (π / π) β
β*) |
89 | 81 | ltm1d 12142 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β (1...π)) β (π β 1) < π) |
90 | 84 | nnred 12223 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β (1...π)) β π β β) |
91 | 84 | nngt0d 12257 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β (1...π)) β 0 < π) |
92 | | ltdiv1 12074 |
. . . . . . . . . . . . . . 15
β’ (((π β 1) β β β§
π β β β§
(π β β β§ 0
< π)) β ((π β 1) < π β ((π β 1) / π) < (π / π))) |
93 | 83, 81, 90, 91, 92 | syl112anc 1374 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β (1...π)) β ((π β 1) < π β ((π β 1) / π) < (π / π))) |
94 | 89, 93 | mpbid 231 |
. . . . . . . . . . . . 13
β’ ((π β§ π β (1...π)) β ((π β 1) / π) < (π / π)) |
95 | 85, 87, 94 | ltled 11358 |
. . . . . . . . . . . 12
β’ ((π β§ π β (1...π)) β ((π β 1) / π) β€ (π / π)) |
96 | | lbicc2 13437 |
. . . . . . . . . . . 12
β’ ((((π β 1) / π) β β* β§ (π / π) β β* β§ ((π β 1) / π) β€ (π / π)) β ((π β 1) / π) β (((π β 1) / π)[,](π / π))) |
97 | 86, 88, 95, 96 | syl3anc 1371 |
. . . . . . . . . . 11
β’ ((π β§ π β (1...π)) β ((π β 1) / π) β (((π β 1) / π)[,](π / π))) |
98 | 97, 14 | eleqtrrdi 2844 |
. . . . . . . . . 10
β’ ((π β§ π β (1...π)) β ((π β 1) / π) β π) |
99 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 14, 98 | cvmliftlem3 34266 |
. . . . . . . . 9
β’ ((π β§ π β (1...π)) β (πΊβ((π β 1) / π)) β (1st β(πβπ))) |
100 | 79, 99 | eqeltrd 2833 |
. . . . . . . 8
β’ ((π β§ π β (1...π)) β (πΉβ((πβ(π β 1))β((π β 1) / π))) β (1st β(πβπ))) |
101 | | eqid 2732 |
. . . . . . . . 9
β’
(β©π
β (2nd β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π) = (β©π β (2nd β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π) |
102 | 2, 3, 101 | cvmsiota 34256 |
. . . . . . . 8
β’ ((πΉ β (πΆ CovMap π½) β§ ((2nd β(πβπ)) β (πβ(1st β(πβπ))) β§ ((πβ(π β 1))β((π β 1) / π)) β π΅ β§ (πΉβ((πβ(π β 1))β((π β 1) / π))) β (1st β(πβπ)))) β ((β©π β (2nd
β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π) β (2nd β(πβπ)) β§ ((πβ(π β 1))β((π β 1) / π)) β (β©π β (2nd β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π))) |
103 | 17, 62, 78, 100, 102 | syl13anc 1372 |
. . . . . . 7
β’ ((π β§ π β (1...π)) β ((β©π β (2nd β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π) β (2nd β(πβπ)) β§ ((πβ(π β 1))β((π β 1) / π)) β (β©π β (2nd β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π))) |
104 | 103 | simpld 495 |
. . . . . 6
β’ ((π β§ π β (1...π)) β (β©π β (2nd β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π) β (2nd β(πβπ))) |
105 | 2 | cvmshmeo 34250 |
. . . . . 6
β’
(((2nd β(πβπ)) β (πβ(1st β(πβπ))) β§ (β©π β (2nd β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π) β (2nd β(πβπ))) β (πΉ βΎ (β©π β (2nd β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π)) β ((πΆ βΎt (β©π β (2nd
β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π))Homeo(π½ βΎt (1st
β(πβπ))))) |
106 | 62, 104, 105 | syl2anc 584 |
. . . . 5
β’ ((π β§ π β (1...π)) β (πΉ βΎ (β©π β (2nd β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π)) β ((πΆ βΎt (β©π β (2nd
β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π))Homeo(π½ βΎt (1st
β(πβπ))))) |
107 | | hmeocnvcn 23256 |
. . . . 5
β’ ((πΉ βΎ (β©π β (2nd
β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π)) β ((πΆ βΎt (β©π β (2nd
β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π))Homeo(π½ βΎt (1st
β(πβπ)))) β β‘(πΉ βΎ (β©π β (2nd β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π)) β ((π½ βΎt (1st
β(πβπ))) Cn (πΆ βΎt (β©π β (2nd
β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π)))) |
108 | 106, 107 | syl 17 |
. . . 4
β’ ((π β§ π β (1...π)) β β‘(πΉ βΎ (β©π β (2nd β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π)) β ((π½ βΎt (1st
β(πβπ))) Cn (πΆ βΎt (β©π β (2nd
β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π)))) |
109 | 28, 69, 108 | cnmpt11f 23159 |
. . 3
β’ ((π β§ π β (1...π)) β (π§ β π β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π))β(πΊβπ§))) β ((πΏ βΎt π) Cn (πΆ βΎt (β©π β (2nd
β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π)))) |
110 | 20, 109 | sseldd 3982 |
. 2
β’ ((π β§ π β (1...π)) β (π§ β π β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π))β(πΊβπ§))) β ((πΏ βΎt π) Cn πΆ)) |
111 | 16, 110 | eqeltrd 2833 |
1
β’ ((π β§ π β (1...π)) β (πβπ) β ((πΏ βΎt π) Cn πΆ)) |