Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem8 Structured version   Visualization version   GIF version

Theorem cvmliftlem8 35334
Description: Lemma for cvmlift 35341. The functions 𝑄 are continuous functions because they are defined as (𝐹𝐼) ∘ 𝐺 where 𝐺 is continuous and (𝐹𝐼) is a homeomorphism. (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem.q 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
cvmliftlem5.3 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
Assertion
Ref Expression
cvmliftlem8 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑄𝑀) ∈ ((𝐿t 𝑊) Cn 𝐶))
Distinct variable groups:   𝑣,𝑏,𝑧,𝐵   𝑗,𝑏,𝑘,𝑚,𝑠,𝑢,𝑥,𝐹,𝑣,𝑧   𝑧,𝐿   𝑀,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑃,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝐶,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑧   𝜑,𝑗,𝑠,𝑥,𝑧   𝑁,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑆,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑗,𝑋   𝐺,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑇,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝐽,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑄,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑘,𝑊,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘,𝑚,𝑏)   𝐵(𝑥,𝑢,𝑗,𝑘,𝑚,𝑠)   𝐶(𝑥,𝑚)   𝑃(𝑗,𝑠)   𝑄(𝑗,𝑠)   𝑆(𝑚)   𝐽(𝑚)   𝐿(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝑁(𝑗,𝑠)   𝑊(𝑣,𝑢,𝑗,𝑠,𝑏)   𝑋(𝑥,𝑧,𝑣,𝑢,𝑘,𝑚,𝑠,𝑏)

Proof of Theorem cvmliftlem8
StepHypRef Expression
1 elfznn 13453 . . 3 (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℕ)
2 cvmliftlem.1 . . . 4 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
3 cvmliftlem.b . . . 4 𝐵 = 𝐶
4 cvmliftlem.x . . . 4 𝑋 = 𝐽
5 cvmliftlem.f . . . 4 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
6 cvmliftlem.g . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
7 cvmliftlem.p . . . 4 (𝜑𝑃𝐵)
8 cvmliftlem.e . . . 4 (𝜑 → (𝐹𝑃) = (𝐺‘0))
9 cvmliftlem.n . . . 4 (𝜑𝑁 ∈ ℕ)
10 cvmliftlem.t . . . 4 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
11 cvmliftlem.a . . . 4 (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
12 cvmliftlem.l . . . 4 𝐿 = (topGen‘ran (,))
13 cvmliftlem.q . . . 4 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
14 cvmliftlem5.3 . . . 4 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
152, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14cvmliftlem5 35331 . . 3 ((𝜑𝑀 ∈ ℕ) → (𝑄𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
161, 15sylan2 593 . 2 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑄𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
175adantr 480 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
18 cvmtop1 35302 . . . 4 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
19 cnrest2r 23203 . . . 4 (𝐶 ∈ Top → ((𝐿t 𝑊) Cn (𝐶t (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))) ⊆ ((𝐿t 𝑊) Cn 𝐶))
2017, 18, 193syl 18 . . 3 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝐿t 𝑊) Cn (𝐶t (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))) ⊆ ((𝐿t 𝑊) Cn 𝐶))
21 retopon 24679 . . . . . 6 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
2212, 21eqeltri 2827 . . . . 5 𝐿 ∈ (TopOn‘ℝ)
23 simpr 484 . . . . . . 7 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑀 ∈ (1...𝑁))
242, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 14cvmliftlem2 35328 . . . . . 6 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑊 ⊆ (0[,]1))
25 unitssre 13399 . . . . . 6 (0[,]1) ⊆ ℝ
2624, 25sstrdi 3947 . . . . 5 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑊 ⊆ ℝ)
27 resttopon 23077 . . . . 5 ((𝐿 ∈ (TopOn‘ℝ) ∧ 𝑊 ⊆ ℝ) → (𝐿t 𝑊) ∈ (TopOn‘𝑊))
2822, 26, 27sylancr 587 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → (𝐿t 𝑊) ∈ (TopOn‘𝑊))
29 eqid 2731 . . . . . . 7 (II ↾t 𝑊) = (II ↾t 𝑊)
30 iitopon 24800 . . . . . . . 8 II ∈ (TopOn‘(0[,]1))
3130a1i 11 . . . . . . 7 ((𝜑𝑀 ∈ (1...𝑁)) → II ∈ (TopOn‘(0[,]1)))
326adantr 480 . . . . . . . . . 10 ((𝜑𝑀 ∈ (1...𝑁)) → 𝐺 ∈ (II Cn 𝐽))
33 iiuni 24802 . . . . . . . . . . 11 (0[,]1) = II
3433, 4cnf 23162 . . . . . . . . . 10 (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶𝑋)
3532, 34syl 17 . . . . . . . . 9 ((𝜑𝑀 ∈ (1...𝑁)) → 𝐺:(0[,]1)⟶𝑋)
3635feqmptd 6890 . . . . . . . 8 ((𝜑𝑀 ∈ (1...𝑁)) → 𝐺 = (𝑧 ∈ (0[,]1) ↦ (𝐺𝑧)))
3736, 32eqeltrrd 2832 . . . . . . 7 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑧 ∈ (0[,]1) ↦ (𝐺𝑧)) ∈ (II Cn 𝐽))
3829, 31, 24, 37cnmpt1res 23592 . . . . . 6 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑧𝑊 ↦ (𝐺𝑧)) ∈ ((II ↾t 𝑊) Cn 𝐽))
39 dfii2 24803 . . . . . . . . . 10 II = ((topGen‘ran (,)) ↾t (0[,]1))
4012oveq1i 7356 . . . . . . . . . 10 (𝐿t (0[,]1)) = ((topGen‘ran (,)) ↾t (0[,]1))
4139, 40eqtr4i 2757 . . . . . . . . 9 II = (𝐿t (0[,]1))
4241oveq1i 7356 . . . . . . . 8 (II ↾t 𝑊) = ((𝐿t (0[,]1)) ↾t 𝑊)
43 retop 24677 . . . . . . . . . . 11 (topGen‘ran (,)) ∈ Top
4412, 43eqeltri 2827 . . . . . . . . . 10 𝐿 ∈ Top
4544a1i 11 . . . . . . . . 9 ((𝜑𝑀 ∈ (1...𝑁)) → 𝐿 ∈ Top)
46 ovexd 7381 . . . . . . . . 9 ((𝜑𝑀 ∈ (1...𝑁)) → (0[,]1) ∈ V)
47 restabs 23081 . . . . . . . . 9 ((𝐿 ∈ Top ∧ 𝑊 ⊆ (0[,]1) ∧ (0[,]1) ∈ V) → ((𝐿t (0[,]1)) ↾t 𝑊) = (𝐿t 𝑊))
4845, 24, 46, 47syl3anc 1373 . . . . . . . 8 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝐿t (0[,]1)) ↾t 𝑊) = (𝐿t 𝑊))
4942, 48eqtrid 2778 . . . . . . 7 ((𝜑𝑀 ∈ (1...𝑁)) → (II ↾t 𝑊) = (𝐿t 𝑊))
5049oveq1d 7361 . . . . . 6 ((𝜑𝑀 ∈ (1...𝑁)) → ((II ↾t 𝑊) Cn 𝐽) = ((𝐿t 𝑊) Cn 𝐽))
5138, 50eleqtrd 2833 . . . . 5 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑧𝑊 ↦ (𝐺𝑧)) ∈ ((𝐿t 𝑊) Cn 𝐽))
52 cvmtop2 35303 . . . . . . . 8 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top)
5317, 52syl 17 . . . . . . 7 ((𝜑𝑀 ∈ (1...𝑁)) → 𝐽 ∈ Top)
544toptopon 22833 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
5553, 54sylib 218 . . . . . 6 ((𝜑𝑀 ∈ (1...𝑁)) → 𝐽 ∈ (TopOn‘𝑋))
56 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑀 ∈ (1...𝑁) ∧ 𝑧𝑊)) → 𝑀 ∈ (1...𝑁))
57 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑀 ∈ (1...𝑁) ∧ 𝑧𝑊)) → 𝑧𝑊)
582, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 56, 14, 57cvmliftlem3 35329 . . . . . . . . 9 ((𝜑 ∧ (𝑀 ∈ (1...𝑁) ∧ 𝑧𝑊)) → (𝐺𝑧) ∈ (1st ‘(𝑇𝑀)))
5958anassrs 467 . . . . . . . 8 (((𝜑𝑀 ∈ (1...𝑁)) ∧ 𝑧𝑊) → (𝐺𝑧) ∈ (1st ‘(𝑇𝑀)))
6059fmpttd 7048 . . . . . . 7 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑧𝑊 ↦ (𝐺𝑧)):𝑊⟶(1st ‘(𝑇𝑀)))
6160frnd 6659 . . . . . 6 ((𝜑𝑀 ∈ (1...𝑁)) → ran (𝑧𝑊 ↦ (𝐺𝑧)) ⊆ (1st ‘(𝑇𝑀)))
622, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23cvmliftlem1 35327 . . . . . . . 8 ((𝜑𝑀 ∈ (1...𝑁)) → (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))))
632cvmsrcl 35306 . . . . . . . 8 ((2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))) → (1st ‘(𝑇𝑀)) ∈ 𝐽)
64 elssuni 4889 . . . . . . . 8 ((1st ‘(𝑇𝑀)) ∈ 𝐽 → (1st ‘(𝑇𝑀)) ⊆ 𝐽)
6562, 63, 643syl 18 . . . . . . 7 ((𝜑𝑀 ∈ (1...𝑁)) → (1st ‘(𝑇𝑀)) ⊆ 𝐽)
6665, 4sseqtrrdi 3976 . . . . . 6 ((𝜑𝑀 ∈ (1...𝑁)) → (1st ‘(𝑇𝑀)) ⊆ 𝑋)
67 cnrest2 23202 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ ran (𝑧𝑊 ↦ (𝐺𝑧)) ⊆ (1st ‘(𝑇𝑀)) ∧ (1st ‘(𝑇𝑀)) ⊆ 𝑋) → ((𝑧𝑊 ↦ (𝐺𝑧)) ∈ ((𝐿t 𝑊) Cn 𝐽) ↔ (𝑧𝑊 ↦ (𝐺𝑧)) ∈ ((𝐿t 𝑊) Cn (𝐽t (1st ‘(𝑇𝑀))))))
6855, 61, 66, 67syl3anc 1373 . . . . 5 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑧𝑊 ↦ (𝐺𝑧)) ∈ ((𝐿t 𝑊) Cn 𝐽) ↔ (𝑧𝑊 ↦ (𝐺𝑧)) ∈ ((𝐿t 𝑊) Cn (𝐽t (1st ‘(𝑇𝑀))))))
6951, 68mpbid 232 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑧𝑊 ↦ (𝐺𝑧)) ∈ ((𝐿t 𝑊) Cn (𝐽t (1st ‘(𝑇𝑀)))))
702, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14cvmliftlem7 35333 . . . . . . . . . 10 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
71 cvmcn 35304 . . . . . . . . . . . 12 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
723, 4cnf 23162 . . . . . . . . . . . 12 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵𝑋)
7317, 71, 723syl 18 . . . . . . . . . . 11 ((𝜑𝑀 ∈ (1...𝑁)) → 𝐹:𝐵𝑋)
74 ffn 6651 . . . . . . . . . . 11 (𝐹:𝐵𝑋𝐹 Fn 𝐵)
75 fniniseg 6993 . . . . . . . . . . 11 (𝐹 Fn 𝐵 → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}) ↔ (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)))))
7673, 74, 753syl 18 . . . . . . . . . 10 ((𝜑𝑀 ∈ (1...𝑁)) → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}) ↔ (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)))))
7770, 76mpbid 232 . . . . . . . . 9 ((𝜑𝑀 ∈ (1...𝑁)) → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁))))
7877simpld 494 . . . . . . . 8 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵)
7977simprd 495 . . . . . . . . 9 ((𝜑𝑀 ∈ (1...𝑁)) → (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)))
801adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑀 ∈ ℕ)
8180nnred 12140 . . . . . . . . . . . . . . 15 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑀 ∈ ℝ)
82 peano2rem 11428 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
8381, 82syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑀 − 1) ∈ ℝ)
849adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑁 ∈ ℕ)
8583, 84nndivred 12179 . . . . . . . . . . . . 13 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ∈ ℝ)
8685rexrd 11162 . . . . . . . . . . . 12 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ∈ ℝ*)
8781, 84nndivred 12179 . . . . . . . . . . . . 13 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑀 / 𝑁) ∈ ℝ)
8887rexrd 11162 . . . . . . . . . . . 12 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑀 / 𝑁) ∈ ℝ*)
8981ltm1d 12054 . . . . . . . . . . . . . 14 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑀 − 1) < 𝑀)
9084nnred 12140 . . . . . . . . . . . . . . 15 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑁 ∈ ℝ)
9184nngt0d 12174 . . . . . . . . . . . . . . 15 ((𝜑𝑀 ∈ (1...𝑁)) → 0 < 𝑁)
92 ltdiv1 11986 . . . . . . . . . . . . . . 15 (((𝑀 − 1) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑀 − 1) < 𝑀 ↔ ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁)))
9383, 81, 90, 91, 92syl112anc 1376 . . . . . . . . . . . . . 14 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) < 𝑀 ↔ ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁)))
9489, 93mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁))
9585, 87, 94ltled 11261 . . . . . . . . . . . 12 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ≤ (𝑀 / 𝑁))
96 lbicc2 13364 . . . . . . . . . . . 12 ((((𝑀 − 1) / 𝑁) ∈ ℝ* ∧ (𝑀 / 𝑁) ∈ ℝ* ∧ ((𝑀 − 1) / 𝑁) ≤ (𝑀 / 𝑁)) → ((𝑀 − 1) / 𝑁) ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)))
9786, 88, 95, 96syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)))
9897, 14eleqtrrdi 2842 . . . . . . . . . 10 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ∈ 𝑊)
992, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 14, 98cvmliftlem3 35329 . . . . . . . . 9 ((𝜑𝑀 ∈ (1...𝑁)) → (𝐺‘((𝑀 − 1) / 𝑁)) ∈ (1st ‘(𝑇𝑀)))
10079, 99eqeltrd 2831 . . . . . . . 8 ((𝜑𝑀 ∈ (1...𝑁)) → (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) ∈ (1st ‘(𝑇𝑀)))
101 eqid 2731 . . . . . . . . 9 (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) = (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)
1022, 3, 101cvmsiota 35319 . . . . . . . 8 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ ((2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) ∈ (1st ‘(𝑇𝑀)))) → ((𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀)) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))
10317, 62, 78, 100, 102syl13anc 1374 . . . . . . 7 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀)) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))
104103simpld 494 . . . . . 6 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀)))
1052cvmshmeo 35313 . . . . . 6 (((2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))) ∧ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀))) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) ∈ ((𝐶t (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))Homeo(𝐽t (1st ‘(𝑇𝑀)))))
10662, 104, 105syl2anc 584 . . . . 5 ((𝜑𝑀 ∈ (1...𝑁)) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) ∈ ((𝐶t (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))Homeo(𝐽t (1st ‘(𝑇𝑀)))))
107 hmeocnvcn 23677 . . . . 5 ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) ∈ ((𝐶t (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))Homeo(𝐽t (1st ‘(𝑇𝑀)))) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) ∈ ((𝐽t (1st ‘(𝑇𝑀))) Cn (𝐶t (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))))
108106, 107syl 17 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) ∈ ((𝐽t (1st ‘(𝑇𝑀))) Cn (𝐶t (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))))
10928, 69, 108cnmpt11f 23580 . . 3 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) ∈ ((𝐿t 𝑊) Cn (𝐶t (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))))
11020, 109sseldd 3935 . 2 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) ∈ ((𝐿t 𝑊) Cn 𝐶))
11116, 110eqeltrd 2831 1 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑄𝑀) ∈ ((𝐿t 𝑊) Cn 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395  Vcvv 3436  cdif 3899  cun 3900  cin 3901  wss 3902  c0 4283  𝒫 cpw 4550  {csn 4576  cop 4582   cuni 4859   ciun 4941   class class class wbr 5091  cmpt 5172   I cid 5510   × cxp 5614  ccnv 5615  ran crn 5617  cres 5618  cima 5619   Fn wfn 6476  wf 6477  cfv 6481  crio 7302  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920  cr 11005  0cc0 11006  1c1 11007  *cxr 11145   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  cn 12125  (,)cioo 13245  [,]cicc 13248  ...cfz 13407  seqcseq 13908  t crest 17324  topGenctg 17341  Topctop 22809  TopOnctopon 22826   Cn ccn 23140  Homeochmeo 23669  IIcii 24796   CovMap ccvm 35297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-icc 13252  df-fz 13408  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-rest 17326  df-topgen 17347  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287  df-mopn 21288  df-top 22810  df-topon 22827  df-bases 22862  df-cn 23143  df-hmeo 23671  df-ii 24798  df-cvm 35298
This theorem is referenced by:  cvmliftlem10  35336
  Copyright terms: Public domain W3C validator