Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem8 Structured version   Visualization version   GIF version

Theorem cvmliftlem8 33250
Description: Lemma for cvmlift 33257. The functions 𝑄 are continuous functions because they are defined as (𝐹𝐼) ∘ 𝐺 where 𝐺 is continuous and (𝐹𝐼) is a homeomorphism. (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem.q 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
cvmliftlem5.3 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
Assertion
Ref Expression
cvmliftlem8 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑄𝑀) ∈ ((𝐿t 𝑊) Cn 𝐶))
Distinct variable groups:   𝑣,𝑏,𝑧,𝐵   𝑗,𝑏,𝑘,𝑚,𝑠,𝑢,𝑥,𝐹,𝑣,𝑧   𝑧,𝐿   𝑀,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑃,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝐶,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑧   𝜑,𝑗,𝑠,𝑥,𝑧   𝑁,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑆,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑗,𝑋   𝐺,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑇,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝐽,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑄,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑘,𝑊,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘,𝑚,𝑏)   𝐵(𝑥,𝑢,𝑗,𝑘,𝑚,𝑠)   𝐶(𝑥,𝑚)   𝑃(𝑗,𝑠)   𝑄(𝑗,𝑠)   𝑆(𝑚)   𝐽(𝑚)   𝐿(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝑁(𝑗,𝑠)   𝑊(𝑣,𝑢,𝑗,𝑠,𝑏)   𝑋(𝑥,𝑧,𝑣,𝑢,𝑘,𝑚,𝑠,𝑏)

Proof of Theorem cvmliftlem8
StepHypRef Expression
1 elfznn 13284 . . 3 (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℕ)
2 cvmliftlem.1 . . . 4 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
3 cvmliftlem.b . . . 4 𝐵 = 𝐶
4 cvmliftlem.x . . . 4 𝑋 = 𝐽
5 cvmliftlem.f . . . 4 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
6 cvmliftlem.g . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
7 cvmliftlem.p . . . 4 (𝜑𝑃𝐵)
8 cvmliftlem.e . . . 4 (𝜑 → (𝐹𝑃) = (𝐺‘0))
9 cvmliftlem.n . . . 4 (𝜑𝑁 ∈ ℕ)
10 cvmliftlem.t . . . 4 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
11 cvmliftlem.a . . . 4 (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
12 cvmliftlem.l . . . 4 𝐿 = (topGen‘ran (,))
13 cvmliftlem.q . . . 4 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
14 cvmliftlem5.3 . . . 4 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
152, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14cvmliftlem5 33247 . . 3 ((𝜑𝑀 ∈ ℕ) → (𝑄𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
161, 15sylan2 593 . 2 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑄𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
175adantr 481 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
18 cvmtop1 33218 . . . 4 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
19 cnrest2r 22436 . . . 4 (𝐶 ∈ Top → ((𝐿t 𝑊) Cn (𝐶t (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))) ⊆ ((𝐿t 𝑊) Cn 𝐶))
2017, 18, 193syl 18 . . 3 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝐿t 𝑊) Cn (𝐶t (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))) ⊆ ((𝐿t 𝑊) Cn 𝐶))
21 retopon 23925 . . . . . 6 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
2212, 21eqeltri 2837 . . . . 5 𝐿 ∈ (TopOn‘ℝ)
23 simpr 485 . . . . . . 7 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑀 ∈ (1...𝑁))
242, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 14cvmliftlem2 33244 . . . . . 6 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑊 ⊆ (0[,]1))
25 unitssre 13230 . . . . . 6 (0[,]1) ⊆ ℝ
2624, 25sstrdi 3938 . . . . 5 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑊 ⊆ ℝ)
27 resttopon 22310 . . . . 5 ((𝐿 ∈ (TopOn‘ℝ) ∧ 𝑊 ⊆ ℝ) → (𝐿t 𝑊) ∈ (TopOn‘𝑊))
2822, 26, 27sylancr 587 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → (𝐿t 𝑊) ∈ (TopOn‘𝑊))
29 eqid 2740 . . . . . . 7 (II ↾t 𝑊) = (II ↾t 𝑊)
30 iitopon 24040 . . . . . . . 8 II ∈ (TopOn‘(0[,]1))
3130a1i 11 . . . . . . 7 ((𝜑𝑀 ∈ (1...𝑁)) → II ∈ (TopOn‘(0[,]1)))
326adantr 481 . . . . . . . . . 10 ((𝜑𝑀 ∈ (1...𝑁)) → 𝐺 ∈ (II Cn 𝐽))
33 iiuni 24042 . . . . . . . . . . 11 (0[,]1) = II
3433, 4cnf 22395 . . . . . . . . . 10 (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶𝑋)
3532, 34syl 17 . . . . . . . . 9 ((𝜑𝑀 ∈ (1...𝑁)) → 𝐺:(0[,]1)⟶𝑋)
3635feqmptd 6834 . . . . . . . 8 ((𝜑𝑀 ∈ (1...𝑁)) → 𝐺 = (𝑧 ∈ (0[,]1) ↦ (𝐺𝑧)))
3736, 32eqeltrrd 2842 . . . . . . 7 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑧 ∈ (0[,]1) ↦ (𝐺𝑧)) ∈ (II Cn 𝐽))
3829, 31, 24, 37cnmpt1res 22825 . . . . . 6 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑧𝑊 ↦ (𝐺𝑧)) ∈ ((II ↾t 𝑊) Cn 𝐽))
39 dfii2 24043 . . . . . . . . . 10 II = ((topGen‘ran (,)) ↾t (0[,]1))
4012oveq1i 7281 . . . . . . . . . 10 (𝐿t (0[,]1)) = ((topGen‘ran (,)) ↾t (0[,]1))
4139, 40eqtr4i 2771 . . . . . . . . 9 II = (𝐿t (0[,]1))
4241oveq1i 7281 . . . . . . . 8 (II ↾t 𝑊) = ((𝐿t (0[,]1)) ↾t 𝑊)
43 retop 23923 . . . . . . . . . . 11 (topGen‘ran (,)) ∈ Top
4412, 43eqeltri 2837 . . . . . . . . . 10 𝐿 ∈ Top
4544a1i 11 . . . . . . . . 9 ((𝜑𝑀 ∈ (1...𝑁)) → 𝐿 ∈ Top)
46 ovexd 7306 . . . . . . . . 9 ((𝜑𝑀 ∈ (1...𝑁)) → (0[,]1) ∈ V)
47 restabs 22314 . . . . . . . . 9 ((𝐿 ∈ Top ∧ 𝑊 ⊆ (0[,]1) ∧ (0[,]1) ∈ V) → ((𝐿t (0[,]1)) ↾t 𝑊) = (𝐿t 𝑊))
4845, 24, 46, 47syl3anc 1370 . . . . . . . 8 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝐿t (0[,]1)) ↾t 𝑊) = (𝐿t 𝑊))
4942, 48eqtrid 2792 . . . . . . 7 ((𝜑𝑀 ∈ (1...𝑁)) → (II ↾t 𝑊) = (𝐿t 𝑊))
5049oveq1d 7286 . . . . . 6 ((𝜑𝑀 ∈ (1...𝑁)) → ((II ↾t 𝑊) Cn 𝐽) = ((𝐿t 𝑊) Cn 𝐽))
5138, 50eleqtrd 2843 . . . . 5 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑧𝑊 ↦ (𝐺𝑧)) ∈ ((𝐿t 𝑊) Cn 𝐽))
52 cvmtop2 33219 . . . . . . . 8 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top)
5317, 52syl 17 . . . . . . 7 ((𝜑𝑀 ∈ (1...𝑁)) → 𝐽 ∈ Top)
544toptopon 22064 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
5553, 54sylib 217 . . . . . 6 ((𝜑𝑀 ∈ (1...𝑁)) → 𝐽 ∈ (TopOn‘𝑋))
56 simprl 768 . . . . . . . . . 10 ((𝜑 ∧ (𝑀 ∈ (1...𝑁) ∧ 𝑧𝑊)) → 𝑀 ∈ (1...𝑁))
57 simprr 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑀 ∈ (1...𝑁) ∧ 𝑧𝑊)) → 𝑧𝑊)
582, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 56, 14, 57cvmliftlem3 33245 . . . . . . . . 9 ((𝜑 ∧ (𝑀 ∈ (1...𝑁) ∧ 𝑧𝑊)) → (𝐺𝑧) ∈ (1st ‘(𝑇𝑀)))
5958anassrs 468 . . . . . . . 8 (((𝜑𝑀 ∈ (1...𝑁)) ∧ 𝑧𝑊) → (𝐺𝑧) ∈ (1st ‘(𝑇𝑀)))
6059fmpttd 6986 . . . . . . 7 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑧𝑊 ↦ (𝐺𝑧)):𝑊⟶(1st ‘(𝑇𝑀)))
6160frnd 6606 . . . . . 6 ((𝜑𝑀 ∈ (1...𝑁)) → ran (𝑧𝑊 ↦ (𝐺𝑧)) ⊆ (1st ‘(𝑇𝑀)))
622, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23cvmliftlem1 33243 . . . . . . . 8 ((𝜑𝑀 ∈ (1...𝑁)) → (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))))
632cvmsrcl 33222 . . . . . . . 8 ((2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))) → (1st ‘(𝑇𝑀)) ∈ 𝐽)
64 elssuni 4877 . . . . . . . 8 ((1st ‘(𝑇𝑀)) ∈ 𝐽 → (1st ‘(𝑇𝑀)) ⊆ 𝐽)
6562, 63, 643syl 18 . . . . . . 7 ((𝜑𝑀 ∈ (1...𝑁)) → (1st ‘(𝑇𝑀)) ⊆ 𝐽)
6665, 4sseqtrrdi 3977 . . . . . 6 ((𝜑𝑀 ∈ (1...𝑁)) → (1st ‘(𝑇𝑀)) ⊆ 𝑋)
67 cnrest2 22435 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ ran (𝑧𝑊 ↦ (𝐺𝑧)) ⊆ (1st ‘(𝑇𝑀)) ∧ (1st ‘(𝑇𝑀)) ⊆ 𝑋) → ((𝑧𝑊 ↦ (𝐺𝑧)) ∈ ((𝐿t 𝑊) Cn 𝐽) ↔ (𝑧𝑊 ↦ (𝐺𝑧)) ∈ ((𝐿t 𝑊) Cn (𝐽t (1st ‘(𝑇𝑀))))))
6855, 61, 66, 67syl3anc 1370 . . . . 5 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑧𝑊 ↦ (𝐺𝑧)) ∈ ((𝐿t 𝑊) Cn 𝐽) ↔ (𝑧𝑊 ↦ (𝐺𝑧)) ∈ ((𝐿t 𝑊) Cn (𝐽t (1st ‘(𝑇𝑀))))))
6951, 68mpbid 231 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑧𝑊 ↦ (𝐺𝑧)) ∈ ((𝐿t 𝑊) Cn (𝐽t (1st ‘(𝑇𝑀)))))
702, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14cvmliftlem7 33249 . . . . . . . . . 10 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
71 cvmcn 33220 . . . . . . . . . . . 12 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
723, 4cnf 22395 . . . . . . . . . . . 12 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵𝑋)
7317, 71, 723syl 18 . . . . . . . . . . 11 ((𝜑𝑀 ∈ (1...𝑁)) → 𝐹:𝐵𝑋)
74 ffn 6598 . . . . . . . . . . 11 (𝐹:𝐵𝑋𝐹 Fn 𝐵)
75 fniniseg 6934 . . . . . . . . . . 11 (𝐹 Fn 𝐵 → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}) ↔ (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)))))
7673, 74, 753syl 18 . . . . . . . . . 10 ((𝜑𝑀 ∈ (1...𝑁)) → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}) ↔ (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)))))
7770, 76mpbid 231 . . . . . . . . 9 ((𝜑𝑀 ∈ (1...𝑁)) → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁))))
7877simpld 495 . . . . . . . 8 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵)
7977simprd 496 . . . . . . . . 9 ((𝜑𝑀 ∈ (1...𝑁)) → (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)))
801adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑀 ∈ ℕ)
8180nnred 11988 . . . . . . . . . . . . . . 15 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑀 ∈ ℝ)
82 peano2rem 11288 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
8381, 82syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑀 − 1) ∈ ℝ)
849adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑁 ∈ ℕ)
8583, 84nndivred 12027 . . . . . . . . . . . . 13 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ∈ ℝ)
8685rexrd 11026 . . . . . . . . . . . 12 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ∈ ℝ*)
8781, 84nndivred 12027 . . . . . . . . . . . . 13 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑀 / 𝑁) ∈ ℝ)
8887rexrd 11026 . . . . . . . . . . . 12 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑀 / 𝑁) ∈ ℝ*)
8981ltm1d 11907 . . . . . . . . . . . . . 14 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑀 − 1) < 𝑀)
9084nnred 11988 . . . . . . . . . . . . . . 15 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑁 ∈ ℝ)
9184nngt0d 12022 . . . . . . . . . . . . . . 15 ((𝜑𝑀 ∈ (1...𝑁)) → 0 < 𝑁)
92 ltdiv1 11839 . . . . . . . . . . . . . . 15 (((𝑀 − 1) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑀 − 1) < 𝑀 ↔ ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁)))
9383, 81, 90, 91, 92syl112anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) < 𝑀 ↔ ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁)))
9489, 93mpbid 231 . . . . . . . . . . . . 13 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁))
9585, 87, 94ltled 11123 . . . . . . . . . . . 12 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ≤ (𝑀 / 𝑁))
96 lbicc2 13195 . . . . . . . . . . . 12 ((((𝑀 − 1) / 𝑁) ∈ ℝ* ∧ (𝑀 / 𝑁) ∈ ℝ* ∧ ((𝑀 − 1) / 𝑁) ≤ (𝑀 / 𝑁)) → ((𝑀 − 1) / 𝑁) ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)))
9786, 88, 95, 96syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)))
9897, 14eleqtrrdi 2852 . . . . . . . . . 10 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ∈ 𝑊)
992, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 14, 98cvmliftlem3 33245 . . . . . . . . 9 ((𝜑𝑀 ∈ (1...𝑁)) → (𝐺‘((𝑀 − 1) / 𝑁)) ∈ (1st ‘(𝑇𝑀)))
10079, 99eqeltrd 2841 . . . . . . . 8 ((𝜑𝑀 ∈ (1...𝑁)) → (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) ∈ (1st ‘(𝑇𝑀)))
101 eqid 2740 . . . . . . . . 9 (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) = (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)
1022, 3, 101cvmsiota 33235 . . . . . . . 8 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ ((2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) ∈ (1st ‘(𝑇𝑀)))) → ((𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀)) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))
10317, 62, 78, 100, 102syl13anc 1371 . . . . . . 7 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀)) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))
104103simpld 495 . . . . . 6 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀)))
1052cvmshmeo 33229 . . . . . 6 (((2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))) ∧ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀))) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) ∈ ((𝐶t (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))Homeo(𝐽t (1st ‘(𝑇𝑀)))))
10662, 104, 105syl2anc 584 . . . . 5 ((𝜑𝑀 ∈ (1...𝑁)) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) ∈ ((𝐶t (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))Homeo(𝐽t (1st ‘(𝑇𝑀)))))
107 hmeocnvcn 22910 . . . . 5 ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) ∈ ((𝐶t (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))Homeo(𝐽t (1st ‘(𝑇𝑀)))) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) ∈ ((𝐽t (1st ‘(𝑇𝑀))) Cn (𝐶t (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))))
108106, 107syl 17 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) ∈ ((𝐽t (1st ‘(𝑇𝑀))) Cn (𝐶t (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))))
10928, 69, 108cnmpt11f 22813 . . 3 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) ∈ ((𝐿t 𝑊) Cn (𝐶t (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))))
11020, 109sseldd 3927 . 2 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) ∈ ((𝐿t 𝑊) Cn 𝐶))
11116, 110eqeltrd 2841 1 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑄𝑀) ∈ ((𝐿t 𝑊) Cn 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wral 3066  {crab 3070  Vcvv 3431  cdif 3889  cun 3890  cin 3891  wss 3892  c0 4262  𝒫 cpw 4539  {csn 4567  cop 4573   cuni 4845   ciun 4930   class class class wbr 5079  cmpt 5162   I cid 5489   × cxp 5588  ccnv 5589  ran crn 5591  cres 5592  cima 5593   Fn wfn 6427  wf 6428  cfv 6432  crio 7227  (class class class)co 7271  cmpo 7273  1st c1st 7822  2nd c2nd 7823  cr 10871  0cc0 10872  1c1 10873  *cxr 11009   < clt 11010  cle 11011  cmin 11205   / cdiv 11632  cn 11973  (,)cioo 13078  [,]cicc 13081  ...cfz 13238  seqcseq 13719  t crest 17129  topGenctg 17146  Topctop 22040  TopOnctopon 22057   Cn ccn 22373  Homeochmeo 22902  IIcii 24036   CovMap ccvm 33213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fi 9148  df-sup 9179  df-inf 9180  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-ioo 13082  df-icc 13085  df-fz 13239  df-seq 13720  df-exp 13781  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-rest 17131  df-topgen 17152  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-top 22041  df-topon 22058  df-bases 22094  df-cn 22376  df-hmeo 22904  df-ii 24038  df-cvm 33214
This theorem is referenced by:  cvmliftlem10  33252
  Copyright terms: Public domain W3C validator