Proof of Theorem cvmliftlem8
Step | Hyp | Ref
| Expression |
1 | | elfznn 13214 |
. . 3
⊢ (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℕ) |
2 | | cvmliftlem.1 |
. . . 4
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
3 | | cvmliftlem.b |
. . . 4
⊢ 𝐵 = ∪
𝐶 |
4 | | cvmliftlem.x |
. . . 4
⊢ 𝑋 = ∪
𝐽 |
5 | | cvmliftlem.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
6 | | cvmliftlem.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
7 | | cvmliftlem.p |
. . . 4
⊢ (𝜑 → 𝑃 ∈ 𝐵) |
8 | | cvmliftlem.e |
. . . 4
⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
9 | | cvmliftlem.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℕ) |
10 | | cvmliftlem.t |
. . . 4
⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
11 | | cvmliftlem.a |
. . . 4
⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
12 | | cvmliftlem.l |
. . . 4
⊢ 𝐿 = (topGen‘ran
(,)) |
13 | | cvmliftlem.q |
. . . 4
⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0,
{〈0, 𝑃〉}〉})) |
14 | | cvmliftlem5.3 |
. . . 4
⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) |
15 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | cvmliftlem5 33151 |
. . 3
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → (𝑄‘𝑀) = (𝑧 ∈ 𝑊 ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))) |
16 | 1, 15 | sylan2 592 |
. 2
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑄‘𝑀) = (𝑧 ∈ 𝑊 ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))) |
17 | 5 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
18 | | cvmtop1 33122 |
. . . 4
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top) |
19 | | cnrest2r 22346 |
. . . 4
⊢ (𝐶 ∈ Top → ((𝐿 ↾t 𝑊) Cn (𝐶 ↾t (℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))) ⊆ ((𝐿 ↾t 𝑊) Cn 𝐶)) |
20 | 17, 18, 19 | 3syl 18 |
. . 3
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝐿 ↾t 𝑊) Cn (𝐶 ↾t (℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))) ⊆ ((𝐿 ↾t 𝑊) Cn 𝐶)) |
21 | | retopon 23833 |
. . . . . 6
⊢
(topGen‘ran (,)) ∈ (TopOn‘ℝ) |
22 | 12, 21 | eqeltri 2835 |
. . . . 5
⊢ 𝐿 ∈
(TopOn‘ℝ) |
23 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝑀 ∈ (1...𝑁)) |
24 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 14 | cvmliftlem2 33148 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝑊 ⊆ (0[,]1)) |
25 | | unitssre 13160 |
. . . . . 6
⊢ (0[,]1)
⊆ ℝ |
26 | 24, 25 | sstrdi 3929 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝑊 ⊆ ℝ) |
27 | | resttopon 22220 |
. . . . 5
⊢ ((𝐿 ∈ (TopOn‘ℝ)
∧ 𝑊 ⊆ ℝ)
→ (𝐿
↾t 𝑊)
∈ (TopOn‘𝑊)) |
28 | 22, 26, 27 | sylancr 586 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝐿 ↾t 𝑊) ∈ (TopOn‘𝑊)) |
29 | | eqid 2738 |
. . . . . . 7
⊢ (II
↾t 𝑊) =
(II ↾t 𝑊) |
30 | | iitopon 23948 |
. . . . . . . 8
⊢ II ∈
(TopOn‘(0[,]1)) |
31 | 30 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → II ∈
(TopOn‘(0[,]1))) |
32 | 6 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝐺 ∈ (II Cn 𝐽)) |
33 | | iiuni 23950 |
. . . . . . . . . . 11
⊢ (0[,]1) =
∪ II |
34 | 33, 4 | cnf 22305 |
. . . . . . . . . 10
⊢ (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶𝑋) |
35 | 32, 34 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝐺:(0[,]1)⟶𝑋) |
36 | 35 | feqmptd 6819 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝐺 = (𝑧 ∈ (0[,]1) ↦ (𝐺‘𝑧))) |
37 | 36, 32 | eqeltrrd 2840 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑧 ∈ (0[,]1) ↦ (𝐺‘𝑧)) ∈ (II Cn 𝐽)) |
38 | 29, 31, 24, 37 | cnmpt1res 22735 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑧 ∈ 𝑊 ↦ (𝐺‘𝑧)) ∈ ((II ↾t 𝑊) Cn 𝐽)) |
39 | | dfii2 23951 |
. . . . . . . . . 10
⊢ II =
((topGen‘ran (,)) ↾t (0[,]1)) |
40 | 12 | oveq1i 7265 |
. . . . . . . . . 10
⊢ (𝐿 ↾t (0[,]1)) =
((topGen‘ran (,)) ↾t (0[,]1)) |
41 | 39, 40 | eqtr4i 2769 |
. . . . . . . . 9
⊢ II =
(𝐿 ↾t
(0[,]1)) |
42 | 41 | oveq1i 7265 |
. . . . . . . 8
⊢ (II
↾t 𝑊) =
((𝐿 ↾t
(0[,]1)) ↾t 𝑊) |
43 | | retop 23831 |
. . . . . . . . . . 11
⊢
(topGen‘ran (,)) ∈ Top |
44 | 12, 43 | eqeltri 2835 |
. . . . . . . . . 10
⊢ 𝐿 ∈ Top |
45 | 44 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝐿 ∈ Top) |
46 | | ovexd 7290 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (0[,]1) ∈ V) |
47 | | restabs 22224 |
. . . . . . . . 9
⊢ ((𝐿 ∈ Top ∧ 𝑊 ⊆ (0[,]1) ∧ (0[,]1)
∈ V) → ((𝐿
↾t (0[,]1)) ↾t 𝑊) = (𝐿 ↾t 𝑊)) |
48 | 45, 24, 46, 47 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝐿 ↾t (0[,]1))
↾t 𝑊) =
(𝐿 ↾t
𝑊)) |
49 | 42, 48 | syl5eq 2791 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (II ↾t 𝑊) = (𝐿 ↾t 𝑊)) |
50 | 49 | oveq1d 7270 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((II ↾t 𝑊) Cn 𝐽) = ((𝐿 ↾t 𝑊) Cn 𝐽)) |
51 | 38, 50 | eleqtrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑧 ∈ 𝑊 ↦ (𝐺‘𝑧)) ∈ ((𝐿 ↾t 𝑊) Cn 𝐽)) |
52 | | cvmtop2 33123 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top) |
53 | 17, 52 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝐽 ∈ Top) |
54 | 4 | toptopon 21974 |
. . . . . . 7
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
55 | 53, 54 | sylib 217 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝐽 ∈ (TopOn‘𝑋)) |
56 | | simprl 767 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑀 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝑊)) → 𝑀 ∈ (1...𝑁)) |
57 | | simprr 769 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑀 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝑊)) → 𝑧 ∈ 𝑊) |
58 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 56, 14, 57 | cvmliftlem3 33149 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑀 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝑊)) → (𝐺‘𝑧) ∈ (1st ‘(𝑇‘𝑀))) |
59 | 58 | anassrs 467 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑀 ∈ (1...𝑁)) ∧ 𝑧 ∈ 𝑊) → (𝐺‘𝑧) ∈ (1st ‘(𝑇‘𝑀))) |
60 | 59 | fmpttd 6971 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑧 ∈ 𝑊 ↦ (𝐺‘𝑧)):𝑊⟶(1st ‘(𝑇‘𝑀))) |
61 | 60 | frnd 6592 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ran (𝑧 ∈ 𝑊 ↦ (𝐺‘𝑧)) ⊆ (1st ‘(𝑇‘𝑀))) |
62 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23 | cvmliftlem1 33147 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀)))) |
63 | 2 | cvmsrcl 33126 |
. . . . . . . 8
⊢
((2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀))) → (1st ‘(𝑇‘𝑀)) ∈ 𝐽) |
64 | | elssuni 4868 |
. . . . . . . 8
⊢
((1st ‘(𝑇‘𝑀)) ∈ 𝐽 → (1st ‘(𝑇‘𝑀)) ⊆ ∪
𝐽) |
65 | 62, 63, 64 | 3syl 18 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (1st ‘(𝑇‘𝑀)) ⊆ ∪
𝐽) |
66 | 65, 4 | sseqtrrdi 3968 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (1st ‘(𝑇‘𝑀)) ⊆ 𝑋) |
67 | | cnrest2 22345 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ran (𝑧 ∈ 𝑊 ↦ (𝐺‘𝑧)) ⊆ (1st ‘(𝑇‘𝑀)) ∧ (1st ‘(𝑇‘𝑀)) ⊆ 𝑋) → ((𝑧 ∈ 𝑊 ↦ (𝐺‘𝑧)) ∈ ((𝐿 ↾t 𝑊) Cn 𝐽) ↔ (𝑧 ∈ 𝑊 ↦ (𝐺‘𝑧)) ∈ ((𝐿 ↾t 𝑊) Cn (𝐽 ↾t (1st
‘(𝑇‘𝑀)))))) |
68 | 55, 61, 66, 67 | syl3anc 1369 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑧 ∈ 𝑊 ↦ (𝐺‘𝑧)) ∈ ((𝐿 ↾t 𝑊) Cn 𝐽) ↔ (𝑧 ∈ 𝑊 ↦ (𝐺‘𝑧)) ∈ ((𝐿 ↾t 𝑊) Cn (𝐽 ↾t (1st
‘(𝑇‘𝑀)))))) |
69 | 51, 68 | mpbid 231 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑧 ∈ 𝑊 ↦ (𝐺‘𝑧)) ∈ ((𝐿 ↾t 𝑊) Cn (𝐽 ↾t (1st
‘(𝑇‘𝑀))))) |
70 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | cvmliftlem7 33153 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})) |
71 | | cvmcn 33124 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
72 | 3, 4 | cnf 22305 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵⟶𝑋) |
73 | 17, 71, 72 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝐹:𝐵⟶𝑋) |
74 | | ffn 6584 |
. . . . . . . . . . 11
⊢ (𝐹:𝐵⟶𝑋 → 𝐹 Fn 𝐵) |
75 | | fniniseg 6919 |
. . . . . . . . . . 11
⊢ (𝐹 Fn 𝐵 → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}) ↔ (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁))))) |
76 | 73, 74, 75 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}) ↔ (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁))))) |
77 | 70, 76 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)))) |
78 | 77 | simpld 494 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵) |
79 | 77 | simprd 495 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁))) |
80 | 1 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝑀 ∈ ℕ) |
81 | 80 | nnred 11918 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝑀 ∈ ℝ) |
82 | | peano2rem 11218 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ ℝ → (𝑀 − 1) ∈
ℝ) |
83 | 81, 82 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑀 − 1) ∈ ℝ) |
84 | 9 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝑁 ∈ ℕ) |
85 | 83, 84 | nndivred 11957 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ∈ ℝ) |
86 | 85 | rexrd 10956 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ∈
ℝ*) |
87 | 81, 84 | nndivred 11957 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑀 / 𝑁) ∈ ℝ) |
88 | 87 | rexrd 10956 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑀 / 𝑁) ∈
ℝ*) |
89 | 81 | ltm1d 11837 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑀 − 1) < 𝑀) |
90 | 84 | nnred 11918 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝑁 ∈ ℝ) |
91 | 84 | nngt0d 11952 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 0 < 𝑁) |
92 | | ltdiv1 11769 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 − 1) ∈ ℝ ∧
𝑀 ∈ ℝ ∧
(𝑁 ∈ ℝ ∧ 0
< 𝑁)) → ((𝑀 − 1) < 𝑀 ↔ ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁))) |
93 | 83, 81, 90, 91, 92 | syl112anc 1372 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) < 𝑀 ↔ ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁))) |
94 | 89, 93 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁)) |
95 | 85, 87, 94 | ltled 11053 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ≤ (𝑀 / 𝑁)) |
96 | | lbicc2 13125 |
. . . . . . . . . . . 12
⊢ ((((𝑀 − 1) / 𝑁) ∈ ℝ* ∧ (𝑀 / 𝑁) ∈ ℝ* ∧ ((𝑀 − 1) / 𝑁) ≤ (𝑀 / 𝑁)) → ((𝑀 − 1) / 𝑁) ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))) |
97 | 86, 88, 95, 96 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))) |
98 | 97, 14 | eleqtrrdi 2850 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ∈ 𝑊) |
99 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 14, 98 | cvmliftlem3 33149 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝐺‘((𝑀 − 1) / 𝑁)) ∈ (1st ‘(𝑇‘𝑀))) |
100 | 79, 99 | eqeltrd 2839 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) ∈ (1st ‘(𝑇‘𝑀))) |
101 | | eqid 2738 |
. . . . . . . . 9
⊢
(℩𝑏
∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) = (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) |
102 | 2, 3, 101 | cvmsiota 33139 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ ((2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀))) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) ∈ (1st ‘(𝑇‘𝑀)))) → ((℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇‘𝑀)) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))) |
103 | 17, 62, 78, 100, 102 | syl13anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇‘𝑀)) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))) |
104 | 103 | simpld 494 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇‘𝑀))) |
105 | 2 | cvmshmeo 33133 |
. . . . . 6
⊢
(((2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀))) ∧ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇‘𝑀))) → (𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) ∈ ((𝐶 ↾t (℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))Homeo(𝐽 ↾t (1st
‘(𝑇‘𝑀))))) |
106 | 62, 104, 105 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) ∈ ((𝐶 ↾t (℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))Homeo(𝐽 ↾t (1st
‘(𝑇‘𝑀))))) |
107 | | hmeocnvcn 22820 |
. . . . 5
⊢ ((𝐹 ↾ (℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) ∈ ((𝐶 ↾t (℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))Homeo(𝐽 ↾t (1st
‘(𝑇‘𝑀)))) → ◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) ∈ ((𝐽 ↾t (1st
‘(𝑇‘𝑀))) Cn (𝐶 ↾t (℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))) |
108 | 106, 107 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) ∈ ((𝐽 ↾t (1st
‘(𝑇‘𝑀))) Cn (𝐶 ↾t (℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))) |
109 | 28, 69, 108 | cnmpt11f 22723 |
. . 3
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑧 ∈ 𝑊 ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧))) ∈ ((𝐿 ↾t 𝑊) Cn (𝐶 ↾t (℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))) |
110 | 20, 109 | sseldd 3918 |
. 2
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑧 ∈ 𝑊 ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧))) ∈ ((𝐿 ↾t 𝑊) Cn 𝐶)) |
111 | 16, 110 | eqeltrd 2839 |
1
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑄‘𝑀) ∈ ((𝐿 ↾t 𝑊) Cn 𝐶)) |