![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmsf1o | Structured version Visualization version GIF version |
Description: 𝐹, localized to an element of an even covering of 𝑈, is a bijection. (Contributed by Mario Carneiro, 14-Feb-2015.) |
Ref | Expression |
---|---|
cvmcov.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
Ref | Expression |
---|---|
cvmsf1o | ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐹 ↾ 𝐴):𝐴–1-1-onto→𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmtop1 32109 | . . . . 5 ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top) | |
2 | 1 | 3ad2ant1 1126 | . . . 4 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐶 ∈ Top) |
3 | eqid 2794 | . . . . 5 ⊢ ∪ 𝐶 = ∪ 𝐶 | |
4 | 3 | toptopon 21209 | . . . 4 ⊢ (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘∪ 𝐶)) |
5 | 2, 4 | sylib 219 | . . 3 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐶 ∈ (TopOn‘∪ 𝐶)) |
6 | cvmcov.1 | . . . . . . 7 ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
7 | 6 | cvmsss 32116 | . . . . . 6 ⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑇 ⊆ 𝐶) |
8 | 7 | 3ad2ant2 1127 | . . . . 5 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝑇 ⊆ 𝐶) |
9 | simp3 1131 | . . . . 5 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐴 ∈ 𝑇) | |
10 | 8, 9 | sseldd 3892 | . . . 4 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐴 ∈ 𝐶) |
11 | elssuni 4776 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ⊆ ∪ 𝐶) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐴 ⊆ ∪ 𝐶) |
13 | resttopon 21453 | . . 3 ⊢ ((𝐶 ∈ (TopOn‘∪ 𝐶) ∧ 𝐴 ⊆ ∪ 𝐶) → (𝐶 ↾t 𝐴) ∈ (TopOn‘𝐴)) | |
14 | 5, 12, 13 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐶 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
15 | cvmtop2 32110 | . . . . 5 ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top) | |
16 | 15 | 3ad2ant1 1126 | . . . 4 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐽 ∈ Top) |
17 | eqid 2794 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
18 | 17 | toptopon 21209 | . . . 4 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
19 | 16, 18 | sylib 219 | . . 3 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
20 | 6 | cvmsrcl 32113 | . . . . 5 ⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑈 ∈ 𝐽) |
21 | 20 | 3ad2ant2 1127 | . . . 4 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝑈 ∈ 𝐽) |
22 | elssuni 4776 | . . . 4 ⊢ (𝑈 ∈ 𝐽 → 𝑈 ⊆ ∪ 𝐽) | |
23 | 21, 22 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝑈 ⊆ ∪ 𝐽) |
24 | resttopon 21453 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝑈 ⊆ ∪ 𝐽) → (𝐽 ↾t 𝑈) ∈ (TopOn‘𝑈)) | |
25 | 19, 23, 24 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐽 ↾t 𝑈) ∈ (TopOn‘𝑈)) |
26 | 6 | cvmshmeo 32120 | . . 3 ⊢ ((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐹 ↾ 𝐴) ∈ ((𝐶 ↾t 𝐴)Homeo(𝐽 ↾t 𝑈))) |
27 | 26 | 3adant1 1123 | . 2 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐹 ↾ 𝐴) ∈ ((𝐶 ↾t 𝐴)Homeo(𝐽 ↾t 𝑈))) |
28 | hmeof1o2 22055 | . 2 ⊢ (((𝐶 ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ (𝐽 ↾t 𝑈) ∈ (TopOn‘𝑈) ∧ (𝐹 ↾ 𝐴) ∈ ((𝐶 ↾t 𝐴)Homeo(𝐽 ↾t 𝑈))) → (𝐹 ↾ 𝐴):𝐴–1-1-onto→𝑈) | |
29 | 14, 25, 27, 28 | syl3anc 1364 | 1 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐹 ↾ 𝐴):𝐴–1-1-onto→𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2080 ∀wral 3104 {crab 3108 ∖ cdif 3858 ∩ cin 3860 ⊆ wss 3861 ∅c0 4213 𝒫 cpw 4455 {csn 4474 ∪ cuni 4747 ↦ cmpt 5043 ◡ccnv 5445 ↾ cres 5448 “ cima 5449 –1-1-onto→wf1o 6227 ‘cfv 6228 (class class class)co 7019 ↾t crest 16523 Topctop 21185 TopOnctopon 21202 Homeochmeo 22045 CovMap ccvm 32104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-rep 5084 ax-sep 5097 ax-nul 5104 ax-pow 5160 ax-pr 5224 ax-un 7322 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ne 2984 df-ral 3109 df-rex 3110 df-reu 3111 df-rab 3113 df-v 3438 df-sbc 3708 df-csb 3814 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-pss 3878 df-nul 4214 df-if 4384 df-pw 4457 df-sn 4475 df-pr 4477 df-tp 4479 df-op 4481 df-uni 4748 df-int 4785 df-iun 4829 df-br 4965 df-opab 5027 df-mpt 5044 df-tr 5067 df-id 5351 df-eprel 5356 df-po 5365 df-so 5366 df-fr 5405 df-we 5407 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-rn 5457 df-res 5458 df-ima 5459 df-pred 6026 df-ord 6072 df-on 6073 df-lim 6074 df-suc 6075 df-iota 6192 df-fun 6230 df-fn 6231 df-f 6232 df-f1 6233 df-fo 6234 df-f1o 6235 df-fv 6236 df-ov 7022 df-oprab 7023 df-mpo 7024 df-om 7440 df-1st 7548 df-2nd 7549 df-wrecs 7801 df-recs 7863 df-rdg 7901 df-oadd 7960 df-er 8142 df-map 8261 df-en 8361 df-fin 8364 df-fi 8724 df-rest 16525 df-topgen 16546 df-top 21186 df-topon 21203 df-bases 21238 df-cn 21519 df-hmeo 22047 df-cvm 32105 |
This theorem is referenced by: cvmsss2 32123 cvmfolem 32128 cvmliftmolem1 32130 cvmliftlem6 32139 cvmliftlem9 32142 cvmlift2lem9a 32152 |
Copyright terms: Public domain | W3C validator |