| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmsf1o | Structured version Visualization version GIF version | ||
| Description: 𝐹, localized to an element of an even covering of 𝑈, is a bijection. (Contributed by Mario Carneiro, 14-Feb-2015.) |
| Ref | Expression |
|---|---|
| cvmcov.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
| Ref | Expression |
|---|---|
| cvmsf1o | ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐹 ↾ 𝐴):𝐴–1-1-onto→𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvmtop1 35272 | . . . . 5 ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top) | |
| 2 | 1 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐶 ∈ Top) |
| 3 | eqid 2730 | . . . . 5 ⊢ ∪ 𝐶 = ∪ 𝐶 | |
| 4 | 3 | toptopon 22825 | . . . 4 ⊢ (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘∪ 𝐶)) |
| 5 | 2, 4 | sylib 218 | . . 3 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐶 ∈ (TopOn‘∪ 𝐶)) |
| 6 | cvmcov.1 | . . . . . . 7 ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
| 7 | 6 | cvmsss 35279 | . . . . . 6 ⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑇 ⊆ 𝐶) |
| 8 | 7 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝑇 ⊆ 𝐶) |
| 9 | simp3 1138 | . . . . 5 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐴 ∈ 𝑇) | |
| 10 | 8, 9 | sseldd 3933 | . . . 4 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐴 ∈ 𝐶) |
| 11 | elssuni 4887 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ⊆ ∪ 𝐶) | |
| 12 | 10, 11 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐴 ⊆ ∪ 𝐶) |
| 13 | resttopon 23069 | . . 3 ⊢ ((𝐶 ∈ (TopOn‘∪ 𝐶) ∧ 𝐴 ⊆ ∪ 𝐶) → (𝐶 ↾t 𝐴) ∈ (TopOn‘𝐴)) | |
| 14 | 5, 12, 13 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐶 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
| 15 | cvmtop2 35273 | . . . . 5 ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top) | |
| 16 | 15 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐽 ∈ Top) |
| 17 | eqid 2730 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 18 | 17 | toptopon 22825 | . . . 4 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 19 | 16, 18 | sylib 218 | . . 3 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 20 | 6 | cvmsrcl 35276 | . . . . 5 ⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑈 ∈ 𝐽) |
| 21 | 20 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝑈 ∈ 𝐽) |
| 22 | elssuni 4887 | . . . 4 ⊢ (𝑈 ∈ 𝐽 → 𝑈 ⊆ ∪ 𝐽) | |
| 23 | 21, 22 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝑈 ⊆ ∪ 𝐽) |
| 24 | resttopon 23069 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝑈 ⊆ ∪ 𝐽) → (𝐽 ↾t 𝑈) ∈ (TopOn‘𝑈)) | |
| 25 | 19, 23, 24 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐽 ↾t 𝑈) ∈ (TopOn‘𝑈)) |
| 26 | 6 | cvmshmeo 35283 | . . 3 ⊢ ((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐹 ↾ 𝐴) ∈ ((𝐶 ↾t 𝐴)Homeo(𝐽 ↾t 𝑈))) |
| 27 | 26 | 3adant1 1130 | . 2 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐹 ↾ 𝐴) ∈ ((𝐶 ↾t 𝐴)Homeo(𝐽 ↾t 𝑈))) |
| 28 | hmeof1o2 23671 | . 2 ⊢ (((𝐶 ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ (𝐽 ↾t 𝑈) ∈ (TopOn‘𝑈) ∧ (𝐹 ↾ 𝐴) ∈ ((𝐶 ↾t 𝐴)Homeo(𝐽 ↾t 𝑈))) → (𝐹 ↾ 𝐴):𝐴–1-1-onto→𝑈) | |
| 29 | 14, 25, 27, 28 | syl3anc 1373 | 1 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐹 ↾ 𝐴):𝐴–1-1-onto→𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ∀wral 3045 {crab 3393 ∖ cdif 3897 ∩ cin 3899 ⊆ wss 3900 ∅c0 4281 𝒫 cpw 4548 {csn 4574 ∪ cuni 4857 ↦ cmpt 5170 ◡ccnv 5613 ↾ cres 5616 “ cima 5617 –1-1-onto→wf1o 6476 ‘cfv 6477 (class class class)co 7341 ↾t crest 17316 Topctop 22801 TopOnctopon 22818 Homeochmeo 23661 CovMap ccvm 35267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-map 8747 df-en 8865 df-fin 8868 df-fi 9290 df-rest 17318 df-topgen 17339 df-top 22802 df-topon 22819 df-bases 22854 df-cn 23135 df-hmeo 23663 df-cvm 35268 |
| This theorem is referenced by: cvmsss2 35286 cvmfolem 35291 cvmliftmolem1 35293 cvmliftlem6 35302 cvmliftlem9 35305 cvmlift2lem9a 35315 |
| Copyright terms: Public domain | W3C validator |