| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmsf1o | Structured version Visualization version GIF version | ||
| Description: 𝐹, localized to an element of an even covering of 𝑈, is a bijection. (Contributed by Mario Carneiro, 14-Feb-2015.) |
| Ref | Expression |
|---|---|
| cvmcov.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
| Ref | Expression |
|---|---|
| cvmsf1o | ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐹 ↾ 𝐴):𝐴–1-1-onto→𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvmtop1 35240 | . . . . 5 ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top) | |
| 2 | 1 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐶 ∈ Top) |
| 3 | eqid 2729 | . . . . 5 ⊢ ∪ 𝐶 = ∪ 𝐶 | |
| 4 | 3 | toptopon 22837 | . . . 4 ⊢ (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘∪ 𝐶)) |
| 5 | 2, 4 | sylib 218 | . . 3 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐶 ∈ (TopOn‘∪ 𝐶)) |
| 6 | cvmcov.1 | . . . . . . 7 ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
| 7 | 6 | cvmsss 35247 | . . . . . 6 ⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑇 ⊆ 𝐶) |
| 8 | 7 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝑇 ⊆ 𝐶) |
| 9 | simp3 1138 | . . . . 5 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐴 ∈ 𝑇) | |
| 10 | 8, 9 | sseldd 3944 | . . . 4 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐴 ∈ 𝐶) |
| 11 | elssuni 4897 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ⊆ ∪ 𝐶) | |
| 12 | 10, 11 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐴 ⊆ ∪ 𝐶) |
| 13 | resttopon 23081 | . . 3 ⊢ ((𝐶 ∈ (TopOn‘∪ 𝐶) ∧ 𝐴 ⊆ ∪ 𝐶) → (𝐶 ↾t 𝐴) ∈ (TopOn‘𝐴)) | |
| 14 | 5, 12, 13 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐶 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
| 15 | cvmtop2 35241 | . . . . 5 ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top) | |
| 16 | 15 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐽 ∈ Top) |
| 17 | eqid 2729 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 18 | 17 | toptopon 22837 | . . . 4 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 19 | 16, 18 | sylib 218 | . . 3 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 20 | 6 | cvmsrcl 35244 | . . . . 5 ⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑈 ∈ 𝐽) |
| 21 | 20 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝑈 ∈ 𝐽) |
| 22 | elssuni 4897 | . . . 4 ⊢ (𝑈 ∈ 𝐽 → 𝑈 ⊆ ∪ 𝐽) | |
| 23 | 21, 22 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝑈 ⊆ ∪ 𝐽) |
| 24 | resttopon 23081 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝑈 ⊆ ∪ 𝐽) → (𝐽 ↾t 𝑈) ∈ (TopOn‘𝑈)) | |
| 25 | 19, 23, 24 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐽 ↾t 𝑈) ∈ (TopOn‘𝑈)) |
| 26 | 6 | cvmshmeo 35251 | . . 3 ⊢ ((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐹 ↾ 𝐴) ∈ ((𝐶 ↾t 𝐴)Homeo(𝐽 ↾t 𝑈))) |
| 27 | 26 | 3adant1 1130 | . 2 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐹 ↾ 𝐴) ∈ ((𝐶 ↾t 𝐴)Homeo(𝐽 ↾t 𝑈))) |
| 28 | hmeof1o2 23683 | . 2 ⊢ (((𝐶 ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ (𝐽 ↾t 𝑈) ∈ (TopOn‘𝑈) ∧ (𝐹 ↾ 𝐴) ∈ ((𝐶 ↾t 𝐴)Homeo(𝐽 ↾t 𝑈))) → (𝐹 ↾ 𝐴):𝐴–1-1-onto→𝑈) | |
| 29 | 14, 25, 27, 28 | syl3anc 1373 | 1 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐹 ↾ 𝐴):𝐴–1-1-onto→𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3402 ∖ cdif 3908 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 𝒫 cpw 4559 {csn 4585 ∪ cuni 4867 ↦ cmpt 5183 ◡ccnv 5630 ↾ cres 5633 “ cima 5634 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 ↾t crest 17359 Topctop 22813 TopOnctopon 22830 Homeochmeo 23673 CovMap ccvm 35235 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-map 8778 df-en 8896 df-fin 8899 df-fi 9338 df-rest 17361 df-topgen 17382 df-top 22814 df-topon 22831 df-bases 22866 df-cn 23147 df-hmeo 23675 df-cvm 35236 |
| This theorem is referenced by: cvmsss2 35254 cvmfolem 35259 cvmliftmolem1 35261 cvmliftlem6 35270 cvmliftlem9 35273 cvmlift2lem9a 35283 |
| Copyright terms: Public domain | W3C validator |