| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > meascnbl | Structured version Visualization version GIF version | ||
| Description: A measure is continuous from below. Cf. volsup 25455. (Contributed by Thierry Arnoux, 18-Jan-2017.) (Revised by Thierry Arnoux, 11-Jul-2017.) |
| Ref | Expression |
|---|---|
| meascnbl.0 | ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) |
| meascnbl.1 | ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) |
| meascnbl.2 | ⊢ (𝜑 → 𝐹:ℕ⟶𝑆) |
| meascnbl.3 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) |
| Ref | Expression |
|---|---|
| meascnbl | ⊢ (𝜑 → (𝑀 ∘ 𝐹)(⇝𝑡‘𝐽)(𝑀‘∪ ran 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meascnbl.0 | . . 3 ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
| 2 | meascnbl.1 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑀 ∈ (measures‘𝑆)) |
| 4 | measbase 34170 | . . . . . . 7 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 5 | 2, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑆 ∈ ∪ ran sigAlgebra) |
| 7 | meascnbl.2 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℕ⟶𝑆) | |
| 8 | 7 | ffvelcdmda 7018 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ 𝑆) |
| 9 | simpll 766 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝜑) | |
| 10 | fzossnn 13614 | . . . . . . . . 9 ⊢ (1..^𝑛) ⊆ ℕ | |
| 11 | simpr 484 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑘 ∈ (1..^𝑛)) | |
| 12 | 10, 11 | sselid 3933 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑘 ∈ ℕ) |
| 13 | 7 | ffvelcdmda 7018 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ 𝑆) |
| 14 | 9, 12, 13 | syl2anc 584 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → (𝐹‘𝑘) ∈ 𝑆) |
| 15 | 14 | ralrimiva 3121 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) ∈ 𝑆) |
| 16 | sigaclfu2 34094 | . . . . . 6 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) ∈ 𝑆) → ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) ∈ 𝑆) | |
| 17 | 6, 15, 16 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) ∈ 𝑆) |
| 18 | difelsiga 34106 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ (𝐹‘𝑛) ∈ 𝑆 ∧ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) ∈ 𝑆) → ((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)) ∈ 𝑆) | |
| 19 | 6, 8, 17, 18 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)) ∈ 𝑆) |
| 20 | measvxrge0 34178 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)) ∈ 𝑆) → (𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))) ∈ (0[,]+∞)) | |
| 21 | 3, 19, 20 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))) ∈ (0[,]+∞)) |
| 22 | fveq2 6822 | . . . . 5 ⊢ (𝑛 = 𝑜 → (𝐹‘𝑛) = (𝐹‘𝑜)) | |
| 23 | oveq2 7357 | . . . . . 6 ⊢ (𝑛 = 𝑜 → (1..^𝑛) = (1..^𝑜)) | |
| 24 | 23 | iuneq1d 4969 | . . . . 5 ⊢ (𝑛 = 𝑜 → ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) = ∪ 𝑘 ∈ (1..^𝑜)(𝐹‘𝑘)) |
| 25 | 22, 24 | difeq12d 4078 | . . . 4 ⊢ (𝑛 = 𝑜 → ((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)) = ((𝐹‘𝑜) ∖ ∪ 𝑘 ∈ (1..^𝑜)(𝐹‘𝑘))) |
| 26 | 25 | fveq2d 6826 | . . 3 ⊢ (𝑛 = 𝑜 → (𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))) = (𝑀‘((𝐹‘𝑜) ∖ ∪ 𝑘 ∈ (1..^𝑜)(𝐹‘𝑘)))) |
| 27 | fveq2 6822 | . . . . 5 ⊢ (𝑛 = 𝑝 → (𝐹‘𝑛) = (𝐹‘𝑝)) | |
| 28 | oveq2 7357 | . . . . . 6 ⊢ (𝑛 = 𝑝 → (1..^𝑛) = (1..^𝑝)) | |
| 29 | 28 | iuneq1d 4969 | . . . . 5 ⊢ (𝑛 = 𝑝 → ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) = ∪ 𝑘 ∈ (1..^𝑝)(𝐹‘𝑘)) |
| 30 | 27, 29 | difeq12d 4078 | . . . 4 ⊢ (𝑛 = 𝑝 → ((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)) = ((𝐹‘𝑝) ∖ ∪ 𝑘 ∈ (1..^𝑝)(𝐹‘𝑘))) |
| 31 | 30 | fveq2d 6826 | . . 3 ⊢ (𝑛 = 𝑝 → (𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))) = (𝑀‘((𝐹‘𝑝) ∖ ∪ 𝑘 ∈ (1..^𝑝)(𝐹‘𝑘)))) |
| 32 | 1, 21, 26, 31 | esumcvg2 34060 | . 2 ⊢ (𝜑 → (𝑖 ∈ ℕ ↦ Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))))(⇝𝑡‘𝐽)Σ*𝑛 ∈ ℕ(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)))) |
| 33 | measfrge0 34176 | . . . . 5 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑀:𝑆⟶(0[,]+∞)) | |
| 34 | 2, 33 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀:𝑆⟶(0[,]+∞)) |
| 35 | fcompt 7067 | . . . 4 ⊢ ((𝑀:𝑆⟶(0[,]+∞) ∧ 𝐹:ℕ⟶𝑆) → (𝑀 ∘ 𝐹) = (𝑖 ∈ ℕ ↦ (𝑀‘(𝐹‘𝑖)))) | |
| 36 | 34, 7, 35 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑀 ∘ 𝐹) = (𝑖 ∈ ℕ ↦ (𝑀‘(𝐹‘𝑖)))) |
| 37 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑛(𝐹‘𝑘) | |
| 38 | fveq2 6822 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) | |
| 39 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) | |
| 40 | 39 | nnzd 12498 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℤ) |
| 41 | fzval3 13637 | . . . . . . . 8 ⊢ (𝑖 ∈ ℤ → (1...𝑖) = (1..^(𝑖 + 1))) | |
| 42 | 40, 41 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (1...𝑖) = (1..^(𝑖 + 1))) |
| 43 | 42 | olcd 874 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((1...𝑖) = ℕ ∨ (1...𝑖) = (1..^(𝑖 + 1)))) |
| 44 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑀 ∈ (measures‘𝑆)) |
| 45 | simpll 766 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑖)) → 𝜑) | |
| 46 | fzossnn 13614 | . . . . . . . 8 ⊢ (1..^(𝑖 + 1)) ⊆ ℕ | |
| 47 | 42 | eleq2d 2814 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝑛 ∈ (1...𝑖) ↔ 𝑛 ∈ (1..^(𝑖 + 1)))) |
| 48 | 47 | biimpa 476 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑖)) → 𝑛 ∈ (1..^(𝑖 + 1))) |
| 49 | 46, 48 | sselid 3933 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑖)) → 𝑛 ∈ ℕ) |
| 50 | 45, 49, 8 | syl2anc 584 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑖)) → (𝐹‘𝑛) ∈ 𝑆) |
| 51 | 37, 38, 43, 44, 50 | measiuns 34190 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝑀‘∪ 𝑛 ∈ (1...𝑖)(𝐹‘𝑛)) = Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)))) |
| 52 | 7 | ffnd 6653 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn ℕ) |
| 53 | meascnbl.3 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) | |
| 54 | 52, 53 | iuninc 32504 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ∪ 𝑛 ∈ (1...𝑖)(𝐹‘𝑛) = (𝐹‘𝑖)) |
| 55 | 54 | fveq2d 6826 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝑀‘∪ 𝑛 ∈ (1...𝑖)(𝐹‘𝑛)) = (𝑀‘(𝐹‘𝑖))) |
| 56 | 51, 55 | eqtr3d 2766 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))) = (𝑀‘(𝐹‘𝑖))) |
| 57 | 56 | mpteq2dva 5185 | . . 3 ⊢ (𝜑 → (𝑖 ∈ ℕ ↦ Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)))) = (𝑖 ∈ ℕ ↦ (𝑀‘(𝐹‘𝑖)))) |
| 58 | 36, 57 | eqtr4d 2767 | . 2 ⊢ (𝜑 → (𝑀 ∘ 𝐹) = (𝑖 ∈ ℕ ↦ Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))))) |
| 59 | 8 | ralrimiva 3121 | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐹‘𝑛) ∈ 𝑆) |
| 60 | dfiun2g 4980 | . . . . . 6 ⊢ (∀𝑛 ∈ ℕ (𝐹‘𝑛) ∈ 𝑆 → ∪ 𝑛 ∈ ℕ (𝐹‘𝑛) = ∪ {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹‘𝑛)}) | |
| 61 | 59, 60 | syl 17 | . . . . 5 ⊢ (𝜑 → ∪ 𝑛 ∈ ℕ (𝐹‘𝑛) = ∪ {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹‘𝑛)}) |
| 62 | fnrnfv 6882 | . . . . . . 7 ⊢ (𝐹 Fn ℕ → ran 𝐹 = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹‘𝑛)}) | |
| 63 | 52, 62 | syl 17 | . . . . . 6 ⊢ (𝜑 → ran 𝐹 = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹‘𝑛)}) |
| 64 | 63 | unieqd 4871 | . . . . 5 ⊢ (𝜑 → ∪ ran 𝐹 = ∪ {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹‘𝑛)}) |
| 65 | 61, 64 | eqtr4d 2767 | . . . 4 ⊢ (𝜑 → ∪ 𝑛 ∈ ℕ (𝐹‘𝑛) = ∪ ran 𝐹) |
| 66 | 65 | fveq2d 6826 | . . 3 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ ℕ (𝐹‘𝑛)) = (𝑀‘∪ ran 𝐹)) |
| 67 | eqidd 2730 | . . . . 5 ⊢ (𝜑 → ℕ = ℕ) | |
| 68 | 67 | orcd 873 | . . . 4 ⊢ (𝜑 → (ℕ = ℕ ∨ ℕ = (1..^(𝑖 + 1)))) |
| 69 | 37, 38, 68, 2, 8 | measiuns 34190 | . . 3 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ ℕ (𝐹‘𝑛)) = Σ*𝑛 ∈ ℕ(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)))) |
| 70 | 66, 69 | eqtr3d 2766 | . 2 ⊢ (𝜑 → (𝑀‘∪ ran 𝐹) = Σ*𝑛 ∈ ℕ(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)))) |
| 71 | 32, 58, 70 | 3brtr4d 5124 | 1 ⊢ (𝜑 → (𝑀 ∘ 𝐹)(⇝𝑡‘𝐽)(𝑀‘∪ ran 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 ∖ cdif 3900 ⊆ wss 3903 ∪ cuni 4858 ∪ ciun 4941 class class class wbr 5092 ↦ cmpt 5173 ran crn 5620 ∘ ccom 5623 Fn wfn 6477 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 0cc0 11009 1c1 11010 + caddc 11012 +∞cpnf 11146 ℕcn 12128 ℤcz 12471 [,]cicc 13251 ...cfz 13410 ..^cfzo 13557 ↾s cress 17141 TopOpenctopn 17325 ℝ*𝑠cxrs 17404 ⇝𝑡clm 23111 Σ*cesum 34000 sigAlgebracsiga 34081 measurescmeas 34168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-ac2 10357 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-disj 5060 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9797 df-card 9835 df-acn 9838 df-ac 10010 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-xnn0 12458 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ioc 13253 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-ordt 17405 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-ps 18472 df-tsr 18473 df-plusf 18513 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-cntz 19196 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-subrng 20431 df-subrg 20455 df-abv 20694 df-lmod 20765 df-scaf 20766 df-sra 21077 df-rgmod 21078 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-lp 23021 df-perf 23022 df-cn 23112 df-cnp 23113 df-lm 23114 df-haus 23200 df-tx 23447 df-hmeo 23640 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-tmd 23957 df-tgp 23958 df-tsms 24012 df-trg 24045 df-xms 24206 df-ms 24207 df-tms 24208 df-nm 24468 df-ngp 24469 df-nrg 24471 df-nlm 24472 df-ii 24768 df-cncf 24769 df-limc 25765 df-dv 25766 df-log 26463 df-esum 34001 df-siga 34082 df-meas 34169 |
| This theorem is referenced by: dstfrvclim1 34452 |
| Copyright terms: Public domain | W3C validator |