Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meascnbl Structured version   Visualization version   GIF version

Theorem meascnbl 33706
Description: A measure is continuous from below. Cf. volsup 25407. (Contributed by Thierry Arnoux, 18-Jan-2017.) (Revised by Thierry Arnoux, 11-Jul-2017.)
Hypotheses
Ref Expression
meascnbl.0 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
meascnbl.1 (𝜑𝑀 ∈ (measures‘𝑆))
meascnbl.2 (𝜑𝐹:ℕ⟶𝑆)
meascnbl.3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
Assertion
Ref Expression
meascnbl (𝜑 → (𝑀𝐹)(⇝𝑡𝐽)(𝑀 ran 𝐹))
Distinct variable groups:   𝑛,𝐹   𝑛,𝐽   𝑛,𝑀   𝑆,𝑛   𝜑,𝑛

Proof of Theorem meascnbl
Dummy variables 𝑖 𝑘 𝑜 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meascnbl.0 . . 3 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
2 meascnbl.1 . . . . 5 (𝜑𝑀 ∈ (measures‘𝑆))
32adantr 480 . . . 4 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ (measures‘𝑆))
4 measbase 33684 . . . . . . 7 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
52, 4syl 17 . . . . . 6 (𝜑𝑆 ran sigAlgebra)
65adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝑆 ran sigAlgebra)
7 meascnbl.2 . . . . . 6 (𝜑𝐹:ℕ⟶𝑆)
87ffvelcdmda 7076 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ 𝑆)
9 simpll 764 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝜑)
10 fzossnn 13678 . . . . . . . . 9 (1..^𝑛) ⊆ ℕ
11 simpr 484 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑘 ∈ (1..^𝑛))
1210, 11sselid 3972 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑘 ∈ ℕ)
137ffvelcdmda 7076 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ 𝑆)
149, 12, 13syl2anc 583 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → (𝐹𝑘) ∈ 𝑆)
1514ralrimiva 3138 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (1..^𝑛)(𝐹𝑘) ∈ 𝑆)
16 sigaclfu2 33608 . . . . . 6 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑛)(𝐹𝑘) ∈ 𝑆) → 𝑘 ∈ (1..^𝑛)(𝐹𝑘) ∈ 𝑆)
176, 15, 16syl2anc 583 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝑘 ∈ (1..^𝑛)(𝐹𝑘) ∈ 𝑆)
18 difelsiga 33620 . . . . 5 ((𝑆 ran sigAlgebra ∧ (𝐹𝑛) ∈ 𝑆 𝑘 ∈ (1..^𝑛)(𝐹𝑘) ∈ 𝑆) → ((𝐹𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝐹𝑘)) ∈ 𝑆)
196, 8, 17, 18syl3anc 1368 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝐹𝑘)) ∈ 𝑆)
20 measvxrge0 33692 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ((𝐹𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝐹𝑘)) ∈ 𝑆) → (𝑀‘((𝐹𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝐹𝑘))) ∈ (0[,]+∞))
213, 19, 20syl2anc 583 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑀‘((𝐹𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝐹𝑘))) ∈ (0[,]+∞))
22 fveq2 6881 . . . . 5 (𝑛 = 𝑜 → (𝐹𝑛) = (𝐹𝑜))
23 oveq2 7409 . . . . . 6 (𝑛 = 𝑜 → (1..^𝑛) = (1..^𝑜))
2423iuneq1d 5014 . . . . 5 (𝑛 = 𝑜 𝑘 ∈ (1..^𝑛)(𝐹𝑘) = 𝑘 ∈ (1..^𝑜)(𝐹𝑘))
2522, 24difeq12d 4115 . . . 4 (𝑛 = 𝑜 → ((𝐹𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝐹𝑘)) = ((𝐹𝑜) ∖ 𝑘 ∈ (1..^𝑜)(𝐹𝑘)))
2625fveq2d 6885 . . 3 (𝑛 = 𝑜 → (𝑀‘((𝐹𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝐹𝑘))) = (𝑀‘((𝐹𝑜) ∖ 𝑘 ∈ (1..^𝑜)(𝐹𝑘))))
27 fveq2 6881 . . . . 5 (𝑛 = 𝑝 → (𝐹𝑛) = (𝐹𝑝))
28 oveq2 7409 . . . . . 6 (𝑛 = 𝑝 → (1..^𝑛) = (1..^𝑝))
2928iuneq1d 5014 . . . . 5 (𝑛 = 𝑝 𝑘 ∈ (1..^𝑛)(𝐹𝑘) = 𝑘 ∈ (1..^𝑝)(𝐹𝑘))
3027, 29difeq12d 4115 . . . 4 (𝑛 = 𝑝 → ((𝐹𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝐹𝑘)) = ((𝐹𝑝) ∖ 𝑘 ∈ (1..^𝑝)(𝐹𝑘)))
3130fveq2d 6885 . . 3 (𝑛 = 𝑝 → (𝑀‘((𝐹𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝐹𝑘))) = (𝑀‘((𝐹𝑝) ∖ 𝑘 ∈ (1..^𝑝)(𝐹𝑘))))
321, 21, 26, 31esumcvg2 33574 . 2 (𝜑 → (𝑖 ∈ ℕ ↦ Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝐹𝑘))))(⇝𝑡𝐽*𝑛 ∈ ℕ(𝑀‘((𝐹𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝐹𝑘))))
33 measfrge0 33690 . . . . 5 (𝑀 ∈ (measures‘𝑆) → 𝑀:𝑆⟶(0[,]+∞))
342, 33syl 17 . . . 4 (𝜑𝑀:𝑆⟶(0[,]+∞))
35 fcompt 7123 . . . 4 ((𝑀:𝑆⟶(0[,]+∞) ∧ 𝐹:ℕ⟶𝑆) → (𝑀𝐹) = (𝑖 ∈ ℕ ↦ (𝑀‘(𝐹𝑖))))
3634, 7, 35syl2anc 583 . . 3 (𝜑 → (𝑀𝐹) = (𝑖 ∈ ℕ ↦ (𝑀‘(𝐹𝑖))))
37 nfcv 2895 . . . . . 6 𝑛(𝐹𝑘)
38 fveq2 6881 . . . . . 6 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
39 simpr 484 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
4039nnzd 12582 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℤ)
41 fzval3 13698 . . . . . . . 8 (𝑖 ∈ ℤ → (1...𝑖) = (1..^(𝑖 + 1)))
4240, 41syl 17 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → (1...𝑖) = (1..^(𝑖 + 1)))
4342olcd 871 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → ((1...𝑖) = ℕ ∨ (1...𝑖) = (1..^(𝑖 + 1))))
442adantr 480 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → 𝑀 ∈ (measures‘𝑆))
45 simpll 764 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑖)) → 𝜑)
46 fzossnn 13678 . . . . . . . 8 (1..^(𝑖 + 1)) ⊆ ℕ
4742eleq2d 2811 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ) → (𝑛 ∈ (1...𝑖) ↔ 𝑛 ∈ (1..^(𝑖 + 1))))
4847biimpa 476 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑖)) → 𝑛 ∈ (1..^(𝑖 + 1)))
4946, 48sselid 3972 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑖)) → 𝑛 ∈ ℕ)
5045, 49, 8syl2anc 583 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑖)) → (𝐹𝑛) ∈ 𝑆)
5137, 38, 43, 44, 50measiuns 33704 . . . . 5 ((𝜑𝑖 ∈ ℕ) → (𝑀 𝑛 ∈ (1...𝑖)(𝐹𝑛)) = Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝐹𝑘))))
527ffnd 6708 . . . . . . 7 (𝜑𝐹 Fn ℕ)
53 meascnbl.3 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
5452, 53iuninc 32261 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → 𝑛 ∈ (1...𝑖)(𝐹𝑛) = (𝐹𝑖))
5554fveq2d 6885 . . . . 5 ((𝜑𝑖 ∈ ℕ) → (𝑀 𝑛 ∈ (1...𝑖)(𝐹𝑛)) = (𝑀‘(𝐹𝑖)))
5651, 55eqtr3d 2766 . . . 4 ((𝜑𝑖 ∈ ℕ) → Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝐹𝑘))) = (𝑀‘(𝐹𝑖)))
5756mpteq2dva 5238 . . 3 (𝜑 → (𝑖 ∈ ℕ ↦ Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝐹𝑘)))) = (𝑖 ∈ ℕ ↦ (𝑀‘(𝐹𝑖))))
5836, 57eqtr4d 2767 . 2 (𝜑 → (𝑀𝐹) = (𝑖 ∈ ℕ ↦ Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝐹𝑘)))))
598ralrimiva 3138 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ 𝑆)
60 dfiun2g 5023 . . . . . 6 (∀𝑛 ∈ ℕ (𝐹𝑛) ∈ 𝑆 𝑛 ∈ ℕ (𝐹𝑛) = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹𝑛)})
6159, 60syl 17 . . . . 5 (𝜑 𝑛 ∈ ℕ (𝐹𝑛) = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹𝑛)})
62 fnrnfv 6941 . . . . . . 7 (𝐹 Fn ℕ → ran 𝐹 = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹𝑛)})
6352, 62syl 17 . . . . . 6 (𝜑 → ran 𝐹 = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹𝑛)})
6463unieqd 4912 . . . . 5 (𝜑 ran 𝐹 = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹𝑛)})
6561, 64eqtr4d 2767 . . . 4 (𝜑 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
6665fveq2d 6885 . . 3 (𝜑 → (𝑀 𝑛 ∈ ℕ (𝐹𝑛)) = (𝑀 ran 𝐹))
67 eqidd 2725 . . . . 5 (𝜑 → ℕ = ℕ)
6867orcd 870 . . . 4 (𝜑 → (ℕ = ℕ ∨ ℕ = (1..^(𝑖 + 1))))
6937, 38, 68, 2, 8measiuns 33704 . . 3 (𝜑 → (𝑀 𝑛 ∈ ℕ (𝐹𝑛)) = Σ*𝑛 ∈ ℕ(𝑀‘((𝐹𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝐹𝑘))))
7066, 69eqtr3d 2766 . 2 (𝜑 → (𝑀 ran 𝐹) = Σ*𝑛 ∈ ℕ(𝑀‘((𝐹𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝐹𝑘))))
7132, 58, 703brtr4d 5170 1 (𝜑 → (𝑀𝐹)(⇝𝑡𝐽)(𝑀 ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  {cab 2701  wral 3053  wrex 3062  cdif 3937  wss 3940   cuni 4899   ciun 4987   class class class wbr 5138  cmpt 5221  ran crn 5667  ccom 5670   Fn wfn 6528  wf 6529  cfv 6533  (class class class)co 7401  0cc0 11106  1c1 11107   + caddc 11109  +∞cpnf 11242  cn 12209  cz 12555  [,]cicc 13324  ...cfz 13481  ..^cfzo 13624  s cress 17172  TopOpenctopn 17366  *𝑠cxrs 17445  𝑡clm 23052  Σ*cesum 33514  sigAlgebracsiga 33595  measurescmeas 33682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632  ax-ac2 10454  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-disj 5104  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-oadd 8465  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-acn 9933  df-ac 10107  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-xnn0 12542  df-z 12556  df-dec 12675  df-uz 12820  df-q 12930  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-ioo 13325  df-ioc 13326  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-fl 13754  df-mod 13832  df-seq 13964  df-exp 14025  df-fac 14231  df-bc 14260  df-hash 14288  df-shft 15011  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-limsup 15412  df-clim 15429  df-rlim 15430  df-sum 15630  df-ef 16008  df-sin 16010  df-cos 16011  df-pi 16013  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17367  df-topn 17368  df-0g 17386  df-gsum 17387  df-topgen 17388  df-pt 17389  df-prds 17392  df-ordt 17446  df-xrs 17447  df-qtop 17452  df-imas 17453  df-xps 17455  df-mre 17529  df-mrc 17530  df-acs 17532  df-ps 18521  df-tsr 18522  df-plusf 18562  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-mhm 18703  df-submnd 18704  df-grp 18856  df-minusg 18857  df-sbg 18858  df-mulg 18986  df-subg 19040  df-cntz 19223  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-ring 20130  df-cring 20131  df-subrng 20436  df-subrg 20461  df-abv 20650  df-lmod 20698  df-scaf 20699  df-sra 21011  df-rgmod 21012  df-psmet 21220  df-xmet 21221  df-met 21222  df-bl 21223  df-mopn 21224  df-fbas 21225  df-fg 21226  df-cnfld 21229  df-top 22718  df-topon 22735  df-topsp 22757  df-bases 22771  df-cld 22845  df-ntr 22846  df-cls 22847  df-nei 22924  df-lp 22962  df-perf 22963  df-cn 23053  df-cnp 23054  df-lm 23055  df-haus 23141  df-tx 23388  df-hmeo 23581  df-fil 23672  df-fm 23764  df-flim 23765  df-flf 23766  df-tmd 23898  df-tgp 23899  df-tsms 23953  df-trg 23986  df-xms 24148  df-ms 24149  df-tms 24150  df-nm 24413  df-ngp 24414  df-nrg 24416  df-nlm 24417  df-ii 24719  df-cncf 24720  df-limc 25717  df-dv 25718  df-log 26407  df-esum 33515  df-siga 33596  df-meas 33683
This theorem is referenced by:  dstfrvclim1  33965
  Copyright terms: Public domain W3C validator