Step | Hyp | Ref
| Expression |
1 | | meascnbl.0 |
. . 3
β’ π½ =
(TopOpenβ(β*π βΎs
(0[,]+β))) |
2 | | meascnbl.1 |
. . . . 5
β’ (π β π β (measuresβπ)) |
3 | 2 | adantr 481 |
. . . 4
β’ ((π β§ π β β) β π β (measuresβπ)) |
4 | | measbase 33183 |
. . . . . . 7
β’ (π β (measuresβπ) β π β βͺ ran
sigAlgebra) |
5 | 2, 4 | syl 17 |
. . . . . 6
β’ (π β π β βͺ ran
sigAlgebra) |
6 | 5 | adantr 481 |
. . . . 5
β’ ((π β§ π β β) β π β βͺ ran
sigAlgebra) |
7 | | meascnbl.2 |
. . . . . 6
β’ (π β πΉ:ββΆπ) |
8 | 7 | ffvelcdmda 7083 |
. . . . 5
β’ ((π β§ π β β) β (πΉβπ) β π) |
9 | | simpll 765 |
. . . . . . . 8
β’ (((π β§ π β β) β§ π β (1..^π)) β π) |
10 | | fzossnn 13677 |
. . . . . . . . 9
β’
(1..^π) β
β |
11 | | simpr 485 |
. . . . . . . . 9
β’ (((π β§ π β β) β§ π β (1..^π)) β π β (1..^π)) |
12 | 10, 11 | sselid 3979 |
. . . . . . . 8
β’ (((π β§ π β β) β§ π β (1..^π)) β π β β) |
13 | 7 | ffvelcdmda 7083 |
. . . . . . . 8
β’ ((π β§ π β β) β (πΉβπ) β π) |
14 | 9, 12, 13 | syl2anc 584 |
. . . . . . 7
β’ (((π β§ π β β) β§ π β (1..^π)) β (πΉβπ) β π) |
15 | 14 | ralrimiva 3146 |
. . . . . 6
β’ ((π β§ π β β) β βπ β (1..^π)(πΉβπ) β π) |
16 | | sigaclfu2 33107 |
. . . . . 6
β’ ((π β βͺ ran sigAlgebra β§ βπ β (1..^π)(πΉβπ) β π) β βͺ
π β (1..^π)(πΉβπ) β π) |
17 | 6, 15, 16 | syl2anc 584 |
. . . . 5
β’ ((π β§ π β β) β βͺ π β (1..^π)(πΉβπ) β π) |
18 | | difelsiga 33119 |
. . . . 5
β’ ((π β βͺ ran sigAlgebra β§ (πΉβπ) β π β§ βͺ
π β (1..^π)(πΉβπ) β π) β ((πΉβπ) β βͺ
π β (1..^π)(πΉβπ)) β π) |
19 | 6, 8, 17, 18 | syl3anc 1371 |
. . . 4
β’ ((π β§ π β β) β ((πΉβπ) β βͺ
π β (1..^π)(πΉβπ)) β π) |
20 | | measvxrge0 33191 |
. . . 4
β’ ((π β (measuresβπ) β§ ((πΉβπ) β βͺ
π β (1..^π)(πΉβπ)) β π) β (πβ((πΉβπ) β βͺ
π β (1..^π)(πΉβπ))) β (0[,]+β)) |
21 | 3, 19, 20 | syl2anc 584 |
. . 3
β’ ((π β§ π β β) β (πβ((πΉβπ) β βͺ
π β (1..^π)(πΉβπ))) β (0[,]+β)) |
22 | | fveq2 6888 |
. . . . 5
β’ (π = π β (πΉβπ) = (πΉβπ)) |
23 | | oveq2 7413 |
. . . . . 6
β’ (π = π β (1..^π) = (1..^π)) |
24 | 23 | iuneq1d 5023 |
. . . . 5
β’ (π = π β βͺ
π β (1..^π)(πΉβπ) = βͺ π β (1..^π)(πΉβπ)) |
25 | 22, 24 | difeq12d 4122 |
. . . 4
β’ (π = π β ((πΉβπ) β βͺ
π β (1..^π)(πΉβπ)) = ((πΉβπ) β βͺ
π β (1..^π)(πΉβπ))) |
26 | 25 | fveq2d 6892 |
. . 3
β’ (π = π β (πβ((πΉβπ) β βͺ
π β (1..^π)(πΉβπ))) = (πβ((πΉβπ) β βͺ
π β (1..^π)(πΉβπ)))) |
27 | | fveq2 6888 |
. . . . 5
β’ (π = π β (πΉβπ) = (πΉβπ)) |
28 | | oveq2 7413 |
. . . . . 6
β’ (π = π β (1..^π) = (1..^π)) |
29 | 28 | iuneq1d 5023 |
. . . . 5
β’ (π = π β βͺ
π β (1..^π)(πΉβπ) = βͺ π β (1..^π)(πΉβπ)) |
30 | 27, 29 | difeq12d 4122 |
. . . 4
β’ (π = π β ((πΉβπ) β βͺ
π β (1..^π)(πΉβπ)) = ((πΉβπ) β βͺ
π β (1..^π)(πΉβπ))) |
31 | 30 | fveq2d 6892 |
. . 3
β’ (π = π β (πβ((πΉβπ) β βͺ
π β (1..^π)(πΉβπ))) = (πβ((πΉβπ) β βͺ
π β (1..^π)(πΉβπ)))) |
32 | 1, 21, 26, 31 | esumcvg2 33073 |
. 2
β’ (π β (π β β β¦
Ξ£*π β
(1...π)(πβ((πΉβπ) β βͺ
π β (1..^π)(πΉβπ))))(βπ‘βπ½)Ξ£*π β β(πβ((πΉβπ) β βͺ
π β (1..^π)(πΉβπ)))) |
33 | | measfrge0 33189 |
. . . . 5
β’ (π β (measuresβπ) β π:πβΆ(0[,]+β)) |
34 | 2, 33 | syl 17 |
. . . 4
β’ (π β π:πβΆ(0[,]+β)) |
35 | | fcompt 7127 |
. . . 4
β’ ((π:πβΆ(0[,]+β) β§ πΉ:ββΆπ) β (π β πΉ) = (π β β β¦ (πβ(πΉβπ)))) |
36 | 34, 7, 35 | syl2anc 584 |
. . 3
β’ (π β (π β πΉ) = (π β β β¦ (πβ(πΉβπ)))) |
37 | | nfcv 2903 |
. . . . . 6
β’
β²π(πΉβπ) |
38 | | fveq2 6888 |
. . . . . 6
β’ (π = π β (πΉβπ) = (πΉβπ)) |
39 | | simpr 485 |
. . . . . . . . 9
β’ ((π β§ π β β) β π β β) |
40 | 39 | nnzd 12581 |
. . . . . . . 8
β’ ((π β§ π β β) β π β β€) |
41 | | fzval3 13697 |
. . . . . . . 8
β’ (π β β€ β
(1...π) = (1..^(π + 1))) |
42 | 40, 41 | syl 17 |
. . . . . . 7
β’ ((π β§ π β β) β (1...π) = (1..^(π + 1))) |
43 | 42 | olcd 872 |
. . . . . 6
β’ ((π β§ π β β) β ((1...π) = β β¨ (1...π) = (1..^(π + 1)))) |
44 | 2 | adantr 481 |
. . . . . 6
β’ ((π β§ π β β) β π β (measuresβπ)) |
45 | | simpll 765 |
. . . . . . 7
β’ (((π β§ π β β) β§ π β (1...π)) β π) |
46 | | fzossnn 13677 |
. . . . . . . 8
β’
(1..^(π + 1))
β β |
47 | 42 | eleq2d 2819 |
. . . . . . . . 9
β’ ((π β§ π β β) β (π β (1...π) β π β (1..^(π + 1)))) |
48 | 47 | biimpa 477 |
. . . . . . . 8
β’ (((π β§ π β β) β§ π β (1...π)) β π β (1..^(π + 1))) |
49 | 46, 48 | sselid 3979 |
. . . . . . 7
β’ (((π β§ π β β) β§ π β (1...π)) β π β β) |
50 | 45, 49, 8 | syl2anc 584 |
. . . . . 6
β’ (((π β§ π β β) β§ π β (1...π)) β (πΉβπ) β π) |
51 | 37, 38, 43, 44, 50 | measiuns 33203 |
. . . . 5
β’ ((π β§ π β β) β (πββͺ
π β (1...π)(πΉβπ)) = Ξ£*π β (1...π)(πβ((πΉβπ) β βͺ
π β (1..^π)(πΉβπ)))) |
52 | 7 | ffnd 6715 |
. . . . . . 7
β’ (π β πΉ Fn β) |
53 | | meascnbl.3 |
. . . . . . 7
β’ ((π β§ π β β) β (πΉβπ) β (πΉβ(π + 1))) |
54 | 52, 53 | iuninc 31779 |
. . . . . 6
β’ ((π β§ π β β) β βͺ π β (1...π)(πΉβπ) = (πΉβπ)) |
55 | 54 | fveq2d 6892 |
. . . . 5
β’ ((π β§ π β β) β (πββͺ
π β (1...π)(πΉβπ)) = (πβ(πΉβπ))) |
56 | 51, 55 | eqtr3d 2774 |
. . . 4
β’ ((π β§ π β β) β
Ξ£*π β
(1...π)(πβ((πΉβπ) β βͺ
π β (1..^π)(πΉβπ))) = (πβ(πΉβπ))) |
57 | 56 | mpteq2dva 5247 |
. . 3
β’ (π β (π β β β¦
Ξ£*π β
(1...π)(πβ((πΉβπ) β βͺ
π β (1..^π)(πΉβπ)))) = (π β β β¦ (πβ(πΉβπ)))) |
58 | 36, 57 | eqtr4d 2775 |
. 2
β’ (π β (π β πΉ) = (π β β β¦
Ξ£*π β
(1...π)(πβ((πΉβπ) β βͺ
π β (1..^π)(πΉβπ))))) |
59 | 8 | ralrimiva 3146 |
. . . . . 6
β’ (π β βπ β β (πΉβπ) β π) |
60 | | dfiun2g 5032 |
. . . . . 6
β’
(βπ β
β (πΉβπ) β π β βͺ
π β β (πΉβπ) = βͺ {π₯ β£ βπ β β π₯ = (πΉβπ)}) |
61 | 59, 60 | syl 17 |
. . . . 5
β’ (π β βͺ π β β (πΉβπ) = βͺ {π₯ β£ βπ β β π₯ = (πΉβπ)}) |
62 | | fnrnfv 6948 |
. . . . . . 7
β’ (πΉ Fn β β ran πΉ = {π₯ β£ βπ β β π₯ = (πΉβπ)}) |
63 | 52, 62 | syl 17 |
. . . . . 6
β’ (π β ran πΉ = {π₯ β£ βπ β β π₯ = (πΉβπ)}) |
64 | 63 | unieqd 4921 |
. . . . 5
β’ (π β βͺ ran πΉ = βͺ {π₯ β£ βπ β β π₯ = (πΉβπ)}) |
65 | 61, 64 | eqtr4d 2775 |
. . . 4
β’ (π β βͺ π β β (πΉβπ) = βͺ ran πΉ) |
66 | 65 | fveq2d 6892 |
. . 3
β’ (π β (πββͺ
π β β (πΉβπ)) = (πββͺ ran
πΉ)) |
67 | | eqidd 2733 |
. . . . 5
β’ (π β β =
β) |
68 | 67 | orcd 871 |
. . . 4
β’ (π β (β = β β¨
β = (1..^(π +
1)))) |
69 | 37, 38, 68, 2, 8 | measiuns 33203 |
. . 3
β’ (π β (πββͺ
π β β (πΉβπ)) = Ξ£*π β β(πβ((πΉβπ) β βͺ
π β (1..^π)(πΉβπ)))) |
70 | 66, 69 | eqtr3d 2774 |
. 2
β’ (π β (πββͺ ran
πΉ) =
Ξ£*π β
β(πβ((πΉβπ) β βͺ
π β (1..^π)(πΉβπ)))) |
71 | 32, 58, 70 | 3brtr4d 5179 |
1
β’ (π β (π β πΉ)(βπ‘βπ½)(πββͺ ran
πΉ)) |