| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > meascnbl | Structured version Visualization version GIF version | ||
| Description: A measure is continuous from below. Cf. volsup 25457. (Contributed by Thierry Arnoux, 18-Jan-2017.) (Revised by Thierry Arnoux, 11-Jul-2017.) |
| Ref | Expression |
|---|---|
| meascnbl.0 | ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) |
| meascnbl.1 | ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) |
| meascnbl.2 | ⊢ (𝜑 → 𝐹:ℕ⟶𝑆) |
| meascnbl.3 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) |
| Ref | Expression |
|---|---|
| meascnbl | ⊢ (𝜑 → (𝑀 ∘ 𝐹)(⇝𝑡‘𝐽)(𝑀‘∪ ran 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meascnbl.0 | . . 3 ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
| 2 | meascnbl.1 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑀 ∈ (measures‘𝑆)) |
| 4 | measbase 34187 | . . . . . . 7 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 5 | 2, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑆 ∈ ∪ ran sigAlgebra) |
| 7 | meascnbl.2 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℕ⟶𝑆) | |
| 8 | 7 | ffvelcdmda 7056 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ 𝑆) |
| 9 | simpll 766 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝜑) | |
| 10 | fzossnn 13672 | . . . . . . . . 9 ⊢ (1..^𝑛) ⊆ ℕ | |
| 11 | simpr 484 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑘 ∈ (1..^𝑛)) | |
| 12 | 10, 11 | sselid 3944 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑘 ∈ ℕ) |
| 13 | 7 | ffvelcdmda 7056 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ 𝑆) |
| 14 | 9, 12, 13 | syl2anc 584 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → (𝐹‘𝑘) ∈ 𝑆) |
| 15 | 14 | ralrimiva 3125 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) ∈ 𝑆) |
| 16 | sigaclfu2 34111 | . . . . . 6 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) ∈ 𝑆) → ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) ∈ 𝑆) | |
| 17 | 6, 15, 16 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) ∈ 𝑆) |
| 18 | difelsiga 34123 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ (𝐹‘𝑛) ∈ 𝑆 ∧ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) ∈ 𝑆) → ((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)) ∈ 𝑆) | |
| 19 | 6, 8, 17, 18 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)) ∈ 𝑆) |
| 20 | measvxrge0 34195 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)) ∈ 𝑆) → (𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))) ∈ (0[,]+∞)) | |
| 21 | 3, 19, 20 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))) ∈ (0[,]+∞)) |
| 22 | fveq2 6858 | . . . . 5 ⊢ (𝑛 = 𝑜 → (𝐹‘𝑛) = (𝐹‘𝑜)) | |
| 23 | oveq2 7395 | . . . . . 6 ⊢ (𝑛 = 𝑜 → (1..^𝑛) = (1..^𝑜)) | |
| 24 | 23 | iuneq1d 4983 | . . . . 5 ⊢ (𝑛 = 𝑜 → ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) = ∪ 𝑘 ∈ (1..^𝑜)(𝐹‘𝑘)) |
| 25 | 22, 24 | difeq12d 4090 | . . . 4 ⊢ (𝑛 = 𝑜 → ((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)) = ((𝐹‘𝑜) ∖ ∪ 𝑘 ∈ (1..^𝑜)(𝐹‘𝑘))) |
| 26 | 25 | fveq2d 6862 | . . 3 ⊢ (𝑛 = 𝑜 → (𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))) = (𝑀‘((𝐹‘𝑜) ∖ ∪ 𝑘 ∈ (1..^𝑜)(𝐹‘𝑘)))) |
| 27 | fveq2 6858 | . . . . 5 ⊢ (𝑛 = 𝑝 → (𝐹‘𝑛) = (𝐹‘𝑝)) | |
| 28 | oveq2 7395 | . . . . . 6 ⊢ (𝑛 = 𝑝 → (1..^𝑛) = (1..^𝑝)) | |
| 29 | 28 | iuneq1d 4983 | . . . . 5 ⊢ (𝑛 = 𝑝 → ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) = ∪ 𝑘 ∈ (1..^𝑝)(𝐹‘𝑘)) |
| 30 | 27, 29 | difeq12d 4090 | . . . 4 ⊢ (𝑛 = 𝑝 → ((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)) = ((𝐹‘𝑝) ∖ ∪ 𝑘 ∈ (1..^𝑝)(𝐹‘𝑘))) |
| 31 | 30 | fveq2d 6862 | . . 3 ⊢ (𝑛 = 𝑝 → (𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))) = (𝑀‘((𝐹‘𝑝) ∖ ∪ 𝑘 ∈ (1..^𝑝)(𝐹‘𝑘)))) |
| 32 | 1, 21, 26, 31 | esumcvg2 34077 | . 2 ⊢ (𝜑 → (𝑖 ∈ ℕ ↦ Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))))(⇝𝑡‘𝐽)Σ*𝑛 ∈ ℕ(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)))) |
| 33 | measfrge0 34193 | . . . . 5 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑀:𝑆⟶(0[,]+∞)) | |
| 34 | 2, 33 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀:𝑆⟶(0[,]+∞)) |
| 35 | fcompt 7105 | . . . 4 ⊢ ((𝑀:𝑆⟶(0[,]+∞) ∧ 𝐹:ℕ⟶𝑆) → (𝑀 ∘ 𝐹) = (𝑖 ∈ ℕ ↦ (𝑀‘(𝐹‘𝑖)))) | |
| 36 | 34, 7, 35 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑀 ∘ 𝐹) = (𝑖 ∈ ℕ ↦ (𝑀‘(𝐹‘𝑖)))) |
| 37 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑛(𝐹‘𝑘) | |
| 38 | fveq2 6858 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) | |
| 39 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) | |
| 40 | 39 | nnzd 12556 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℤ) |
| 41 | fzval3 13695 | . . . . . . . 8 ⊢ (𝑖 ∈ ℤ → (1...𝑖) = (1..^(𝑖 + 1))) | |
| 42 | 40, 41 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (1...𝑖) = (1..^(𝑖 + 1))) |
| 43 | 42 | olcd 874 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((1...𝑖) = ℕ ∨ (1...𝑖) = (1..^(𝑖 + 1)))) |
| 44 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑀 ∈ (measures‘𝑆)) |
| 45 | simpll 766 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑖)) → 𝜑) | |
| 46 | fzossnn 13672 | . . . . . . . 8 ⊢ (1..^(𝑖 + 1)) ⊆ ℕ | |
| 47 | 42 | eleq2d 2814 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝑛 ∈ (1...𝑖) ↔ 𝑛 ∈ (1..^(𝑖 + 1)))) |
| 48 | 47 | biimpa 476 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑖)) → 𝑛 ∈ (1..^(𝑖 + 1))) |
| 49 | 46, 48 | sselid 3944 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑖)) → 𝑛 ∈ ℕ) |
| 50 | 45, 49, 8 | syl2anc 584 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑖)) → (𝐹‘𝑛) ∈ 𝑆) |
| 51 | 37, 38, 43, 44, 50 | measiuns 34207 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝑀‘∪ 𝑛 ∈ (1...𝑖)(𝐹‘𝑛)) = Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)))) |
| 52 | 7 | ffnd 6689 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn ℕ) |
| 53 | meascnbl.3 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) | |
| 54 | 52, 53 | iuninc 32489 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ∪ 𝑛 ∈ (1...𝑖)(𝐹‘𝑛) = (𝐹‘𝑖)) |
| 55 | 54 | fveq2d 6862 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝑀‘∪ 𝑛 ∈ (1...𝑖)(𝐹‘𝑛)) = (𝑀‘(𝐹‘𝑖))) |
| 56 | 51, 55 | eqtr3d 2766 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))) = (𝑀‘(𝐹‘𝑖))) |
| 57 | 56 | mpteq2dva 5200 | . . 3 ⊢ (𝜑 → (𝑖 ∈ ℕ ↦ Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)))) = (𝑖 ∈ ℕ ↦ (𝑀‘(𝐹‘𝑖)))) |
| 58 | 36, 57 | eqtr4d 2767 | . 2 ⊢ (𝜑 → (𝑀 ∘ 𝐹) = (𝑖 ∈ ℕ ↦ Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))))) |
| 59 | 8 | ralrimiva 3125 | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐹‘𝑛) ∈ 𝑆) |
| 60 | dfiun2g 4994 | . . . . . 6 ⊢ (∀𝑛 ∈ ℕ (𝐹‘𝑛) ∈ 𝑆 → ∪ 𝑛 ∈ ℕ (𝐹‘𝑛) = ∪ {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹‘𝑛)}) | |
| 61 | 59, 60 | syl 17 | . . . . 5 ⊢ (𝜑 → ∪ 𝑛 ∈ ℕ (𝐹‘𝑛) = ∪ {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹‘𝑛)}) |
| 62 | fnrnfv 6920 | . . . . . . 7 ⊢ (𝐹 Fn ℕ → ran 𝐹 = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹‘𝑛)}) | |
| 63 | 52, 62 | syl 17 | . . . . . 6 ⊢ (𝜑 → ran 𝐹 = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹‘𝑛)}) |
| 64 | 63 | unieqd 4884 | . . . . 5 ⊢ (𝜑 → ∪ ran 𝐹 = ∪ {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹‘𝑛)}) |
| 65 | 61, 64 | eqtr4d 2767 | . . . 4 ⊢ (𝜑 → ∪ 𝑛 ∈ ℕ (𝐹‘𝑛) = ∪ ran 𝐹) |
| 66 | 65 | fveq2d 6862 | . . 3 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ ℕ (𝐹‘𝑛)) = (𝑀‘∪ ran 𝐹)) |
| 67 | eqidd 2730 | . . . . 5 ⊢ (𝜑 → ℕ = ℕ) | |
| 68 | 67 | orcd 873 | . . . 4 ⊢ (𝜑 → (ℕ = ℕ ∨ ℕ = (1..^(𝑖 + 1)))) |
| 69 | 37, 38, 68, 2, 8 | measiuns 34207 | . . 3 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ ℕ (𝐹‘𝑛)) = Σ*𝑛 ∈ ℕ(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)))) |
| 70 | 66, 69 | eqtr3d 2766 | . 2 ⊢ (𝜑 → (𝑀‘∪ ran 𝐹) = Σ*𝑛 ∈ ℕ(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)))) |
| 71 | 32, 58, 70 | 3brtr4d 5139 | 1 ⊢ (𝜑 → (𝑀 ∘ 𝐹)(⇝𝑡‘𝐽)(𝑀‘∪ ran 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 ∖ cdif 3911 ⊆ wss 3914 ∪ cuni 4871 ∪ ciun 4955 class class class wbr 5107 ↦ cmpt 5188 ran crn 5639 ∘ ccom 5642 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 +∞cpnf 11205 ℕcn 12186 ℤcz 12529 [,]cicc 13309 ...cfz 13468 ..^cfzo 13615 ↾s cress 17200 TopOpenctopn 17384 ℝ*𝑠cxrs 17463 ⇝𝑡clm 23113 Σ*cesum 34017 sigAlgebracsiga 34098 measurescmeas 34185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-ac2 10416 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-disj 5075 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-acn 9895 df-ac 10069 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-xnn0 12516 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ioc 13311 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15033 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-ef 16033 df-sin 16035 df-cos 16036 df-pi 16038 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-ordt 17464 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-ps 18525 df-tsr 18526 df-plusf 18566 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-subrng 20455 df-subrg 20479 df-abv 20718 df-lmod 20768 df-scaf 20769 df-sra 21080 df-rgmod 21081 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-lp 23023 df-perf 23024 df-cn 23114 df-cnp 23115 df-lm 23116 df-haus 23202 df-tx 23449 df-hmeo 23642 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-tmd 23959 df-tgp 23960 df-tsms 24014 df-trg 24047 df-xms 24208 df-ms 24209 df-tms 24210 df-nm 24470 df-ngp 24471 df-nrg 24473 df-nlm 24474 df-ii 24770 df-cncf 24771 df-limc 25767 df-dv 25768 df-log 26465 df-esum 34018 df-siga 34099 df-meas 34186 |
| This theorem is referenced by: dstfrvclim1 34469 |
| Copyright terms: Public domain | W3C validator |