Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > meascnbl | Structured version Visualization version GIF version |
Description: A measure is continuous from below. Cf. volsup 24256. (Contributed by Thierry Arnoux, 18-Jan-2017.) (Revised by Thierry Arnoux, 11-Jul-2017.) |
Ref | Expression |
---|---|
meascnbl.0 | ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) |
meascnbl.1 | ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) |
meascnbl.2 | ⊢ (𝜑 → 𝐹:ℕ⟶𝑆) |
meascnbl.3 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) |
Ref | Expression |
---|---|
meascnbl | ⊢ (𝜑 → (𝑀 ∘ 𝐹)(⇝𝑡‘𝐽)(𝑀‘∪ ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meascnbl.0 | . . 3 ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
2 | meascnbl.1 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) | |
3 | 2 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑀 ∈ (measures‘𝑆)) |
4 | measbase 31684 | . . . . . . 7 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
5 | 2, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
6 | 5 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑆 ∈ ∪ ran sigAlgebra) |
7 | meascnbl.2 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℕ⟶𝑆) | |
8 | 7 | ffvelrnda 6842 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ 𝑆) |
9 | simpll 766 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝜑) | |
10 | fzossnn 13135 | . . . . . . . . 9 ⊢ (1..^𝑛) ⊆ ℕ | |
11 | simpr 488 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑘 ∈ (1..^𝑛)) | |
12 | 10, 11 | sseldi 3890 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑘 ∈ ℕ) |
13 | 7 | ffvelrnda 6842 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ 𝑆) |
14 | 9, 12, 13 | syl2anc 587 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → (𝐹‘𝑘) ∈ 𝑆) |
15 | 14 | ralrimiva 3113 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) ∈ 𝑆) |
16 | sigaclfu2 31608 | . . . . . 6 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) ∈ 𝑆) → ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) ∈ 𝑆) | |
17 | 6, 15, 16 | syl2anc 587 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) ∈ 𝑆) |
18 | difelsiga 31620 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ (𝐹‘𝑛) ∈ 𝑆 ∧ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) ∈ 𝑆) → ((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)) ∈ 𝑆) | |
19 | 6, 8, 17, 18 | syl3anc 1368 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)) ∈ 𝑆) |
20 | measvxrge0 31692 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)) ∈ 𝑆) → (𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))) ∈ (0[,]+∞)) | |
21 | 3, 19, 20 | syl2anc 587 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))) ∈ (0[,]+∞)) |
22 | fveq2 6658 | . . . . 5 ⊢ (𝑛 = 𝑜 → (𝐹‘𝑛) = (𝐹‘𝑜)) | |
23 | oveq2 7158 | . . . . . 6 ⊢ (𝑛 = 𝑜 → (1..^𝑛) = (1..^𝑜)) | |
24 | 23 | iuneq1d 4910 | . . . . 5 ⊢ (𝑛 = 𝑜 → ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) = ∪ 𝑘 ∈ (1..^𝑜)(𝐹‘𝑘)) |
25 | 22, 24 | difeq12d 4029 | . . . 4 ⊢ (𝑛 = 𝑜 → ((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)) = ((𝐹‘𝑜) ∖ ∪ 𝑘 ∈ (1..^𝑜)(𝐹‘𝑘))) |
26 | 25 | fveq2d 6662 | . . 3 ⊢ (𝑛 = 𝑜 → (𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))) = (𝑀‘((𝐹‘𝑜) ∖ ∪ 𝑘 ∈ (1..^𝑜)(𝐹‘𝑘)))) |
27 | fveq2 6658 | . . . . 5 ⊢ (𝑛 = 𝑝 → (𝐹‘𝑛) = (𝐹‘𝑝)) | |
28 | oveq2 7158 | . . . . . 6 ⊢ (𝑛 = 𝑝 → (1..^𝑛) = (1..^𝑝)) | |
29 | 28 | iuneq1d 4910 | . . . . 5 ⊢ (𝑛 = 𝑝 → ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) = ∪ 𝑘 ∈ (1..^𝑝)(𝐹‘𝑘)) |
30 | 27, 29 | difeq12d 4029 | . . . 4 ⊢ (𝑛 = 𝑝 → ((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)) = ((𝐹‘𝑝) ∖ ∪ 𝑘 ∈ (1..^𝑝)(𝐹‘𝑘))) |
31 | 30 | fveq2d 6662 | . . 3 ⊢ (𝑛 = 𝑝 → (𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))) = (𝑀‘((𝐹‘𝑝) ∖ ∪ 𝑘 ∈ (1..^𝑝)(𝐹‘𝑘)))) |
32 | 1, 21, 26, 31 | esumcvg2 31574 | . 2 ⊢ (𝜑 → (𝑖 ∈ ℕ ↦ Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))))(⇝𝑡‘𝐽)Σ*𝑛 ∈ ℕ(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)))) |
33 | measfrge0 31690 | . . . . 5 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑀:𝑆⟶(0[,]+∞)) | |
34 | 2, 33 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀:𝑆⟶(0[,]+∞)) |
35 | fcompt 6886 | . . . 4 ⊢ ((𝑀:𝑆⟶(0[,]+∞) ∧ 𝐹:ℕ⟶𝑆) → (𝑀 ∘ 𝐹) = (𝑖 ∈ ℕ ↦ (𝑀‘(𝐹‘𝑖)))) | |
36 | 34, 7, 35 | syl2anc 587 | . . 3 ⊢ (𝜑 → (𝑀 ∘ 𝐹) = (𝑖 ∈ ℕ ↦ (𝑀‘(𝐹‘𝑖)))) |
37 | nfcv 2919 | . . . . . 6 ⊢ Ⅎ𝑛(𝐹‘𝑘) | |
38 | fveq2 6658 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) | |
39 | simpr 488 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) | |
40 | 39 | nnzd 12125 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℤ) |
41 | fzval3 13155 | . . . . . . . 8 ⊢ (𝑖 ∈ ℤ → (1...𝑖) = (1..^(𝑖 + 1))) | |
42 | 40, 41 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (1...𝑖) = (1..^(𝑖 + 1))) |
43 | 42 | olcd 871 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((1...𝑖) = ℕ ∨ (1...𝑖) = (1..^(𝑖 + 1)))) |
44 | 2 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑀 ∈ (measures‘𝑆)) |
45 | simpll 766 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑖)) → 𝜑) | |
46 | fzossnn 13135 | . . . . . . . 8 ⊢ (1..^(𝑖 + 1)) ⊆ ℕ | |
47 | 42 | eleq2d 2837 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝑛 ∈ (1...𝑖) ↔ 𝑛 ∈ (1..^(𝑖 + 1)))) |
48 | 47 | biimpa 480 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑖)) → 𝑛 ∈ (1..^(𝑖 + 1))) |
49 | 46, 48 | sseldi 3890 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑖)) → 𝑛 ∈ ℕ) |
50 | 45, 49, 8 | syl2anc 587 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑖)) → (𝐹‘𝑛) ∈ 𝑆) |
51 | 37, 38, 43, 44, 50 | measiuns 31704 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝑀‘∪ 𝑛 ∈ (1...𝑖)(𝐹‘𝑛)) = Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)))) |
52 | 7 | ffnd 6499 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn ℕ) |
53 | meascnbl.3 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) | |
54 | 52, 53 | iuninc 30422 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ∪ 𝑛 ∈ (1...𝑖)(𝐹‘𝑛) = (𝐹‘𝑖)) |
55 | 54 | fveq2d 6662 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝑀‘∪ 𝑛 ∈ (1...𝑖)(𝐹‘𝑛)) = (𝑀‘(𝐹‘𝑖))) |
56 | 51, 55 | eqtr3d 2795 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))) = (𝑀‘(𝐹‘𝑖))) |
57 | 56 | mpteq2dva 5127 | . . 3 ⊢ (𝜑 → (𝑖 ∈ ℕ ↦ Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)))) = (𝑖 ∈ ℕ ↦ (𝑀‘(𝐹‘𝑖)))) |
58 | 36, 57 | eqtr4d 2796 | . 2 ⊢ (𝜑 → (𝑀 ∘ 𝐹) = (𝑖 ∈ ℕ ↦ Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))))) |
59 | 8 | ralrimiva 3113 | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐹‘𝑛) ∈ 𝑆) |
60 | dfiun2g 4919 | . . . . . 6 ⊢ (∀𝑛 ∈ ℕ (𝐹‘𝑛) ∈ 𝑆 → ∪ 𝑛 ∈ ℕ (𝐹‘𝑛) = ∪ {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹‘𝑛)}) | |
61 | 59, 60 | syl 17 | . . . . 5 ⊢ (𝜑 → ∪ 𝑛 ∈ ℕ (𝐹‘𝑛) = ∪ {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹‘𝑛)}) |
62 | fnrnfv 6713 | . . . . . . 7 ⊢ (𝐹 Fn ℕ → ran 𝐹 = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹‘𝑛)}) | |
63 | 52, 62 | syl 17 | . . . . . 6 ⊢ (𝜑 → ran 𝐹 = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹‘𝑛)}) |
64 | 63 | unieqd 4812 | . . . . 5 ⊢ (𝜑 → ∪ ran 𝐹 = ∪ {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹‘𝑛)}) |
65 | 61, 64 | eqtr4d 2796 | . . . 4 ⊢ (𝜑 → ∪ 𝑛 ∈ ℕ (𝐹‘𝑛) = ∪ ran 𝐹) |
66 | 65 | fveq2d 6662 | . . 3 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ ℕ (𝐹‘𝑛)) = (𝑀‘∪ ran 𝐹)) |
67 | eqidd 2759 | . . . . 5 ⊢ (𝜑 → ℕ = ℕ) | |
68 | 67 | orcd 870 | . . . 4 ⊢ (𝜑 → (ℕ = ℕ ∨ ℕ = (1..^(𝑖 + 1)))) |
69 | 37, 38, 68, 2, 8 | measiuns 31704 | . . 3 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ ℕ (𝐹‘𝑛)) = Σ*𝑛 ∈ ℕ(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)))) |
70 | 66, 69 | eqtr3d 2795 | . 2 ⊢ (𝜑 → (𝑀‘∪ ran 𝐹) = Σ*𝑛 ∈ ℕ(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)))) |
71 | 32, 58, 70 | 3brtr4d 5064 | 1 ⊢ (𝜑 → (𝑀 ∘ 𝐹)(⇝𝑡‘𝐽)(𝑀‘∪ ran 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {cab 2735 ∀wral 3070 ∃wrex 3071 ∖ cdif 3855 ⊆ wss 3858 ∪ cuni 4798 ∪ ciun 4883 class class class wbr 5032 ↦ cmpt 5112 ran crn 5525 ∘ ccom 5528 Fn wfn 6330 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 0cc0 10575 1c1 10576 + caddc 10578 +∞cpnf 10710 ℕcn 11674 ℤcz 12020 [,]cicc 12782 ...cfz 12939 ..^cfzo 13082 ↾s cress 16542 TopOpenctopn 16753 ℝ*𝑠cxrs 16831 ⇝𝑡clm 21926 Σ*cesum 31514 sigAlgebracsiga 31595 measurescmeas 31682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-inf2 9137 ax-ac2 9923 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 ax-addf 10654 ax-mulf 10655 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-iin 4886 df-disj 4998 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-of 7405 df-om 7580 df-1st 7693 df-2nd 7694 df-supp 7836 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-2o 8113 df-oadd 8116 df-er 8299 df-map 8418 df-pm 8419 df-ixp 8480 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-fsupp 8867 df-fi 8908 df-sup 8939 df-inf 8940 df-oi 9007 df-dju 9363 df-card 9401 df-acn 9404 df-ac 9576 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-xnn0 12007 df-z 12021 df-dec 12138 df-uz 12283 df-q 12389 df-rp 12431 df-xneg 12548 df-xadd 12549 df-xmul 12550 df-ioo 12783 df-ioc 12784 df-ico 12785 df-icc 12786 df-fz 12940 df-fzo 13083 df-fl 13211 df-mod 13287 df-seq 13419 df-exp 13480 df-fac 13684 df-bc 13713 df-hash 13741 df-shft 14474 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-limsup 14876 df-clim 14893 df-rlim 14894 df-sum 15091 df-ef 15469 df-sin 15471 df-cos 15472 df-pi 15474 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-starv 16638 df-sca 16639 df-vsca 16640 df-ip 16641 df-tset 16642 df-ple 16643 df-ds 16645 df-unif 16646 df-hom 16647 df-cco 16648 df-rest 16754 df-topn 16755 df-0g 16773 df-gsum 16774 df-topgen 16775 df-pt 16776 df-prds 16779 df-ordt 16832 df-xrs 16833 df-qtop 16838 df-imas 16839 df-xps 16841 df-mre 16915 df-mrc 16916 df-acs 16918 df-ps 17876 df-tsr 17877 df-plusf 17917 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-mhm 18022 df-submnd 18023 df-grp 18172 df-minusg 18173 df-sbg 18174 df-mulg 18292 df-subg 18343 df-cntz 18514 df-cmn 18975 df-abl 18976 df-mgp 19308 df-ur 19320 df-ring 19367 df-cring 19368 df-subrg 19601 df-abv 19656 df-lmod 19704 df-scaf 19705 df-sra 20012 df-rgmod 20013 df-psmet 20158 df-xmet 20159 df-met 20160 df-bl 20161 df-mopn 20162 df-fbas 20163 df-fg 20164 df-cnfld 20167 df-top 21594 df-topon 21611 df-topsp 21633 df-bases 21646 df-cld 21719 df-ntr 21720 df-cls 21721 df-nei 21798 df-lp 21836 df-perf 21837 df-cn 21927 df-cnp 21928 df-lm 21929 df-haus 22015 df-tx 22262 df-hmeo 22455 df-fil 22546 df-fm 22638 df-flim 22639 df-flf 22640 df-tmd 22772 df-tgp 22773 df-tsms 22827 df-trg 22860 df-xms 23022 df-ms 23023 df-tms 23024 df-nm 23284 df-ngp 23285 df-nrg 23287 df-nlm 23288 df-ii 23578 df-cncf 23579 df-limc 24565 df-dv 24566 df-log 25247 df-esum 31515 df-siga 31596 df-meas 31683 |
This theorem is referenced by: dstfrvclim1 31963 |
Copyright terms: Public domain | W3C validator |