| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > meascnbl | Structured version Visualization version GIF version | ||
| Description: A measure is continuous from below. Cf. volsup 25484. (Contributed by Thierry Arnoux, 18-Jan-2017.) (Revised by Thierry Arnoux, 11-Jul-2017.) |
| Ref | Expression |
|---|---|
| meascnbl.0 | ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) |
| meascnbl.1 | ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) |
| meascnbl.2 | ⊢ (𝜑 → 𝐹:ℕ⟶𝑆) |
| meascnbl.3 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) |
| Ref | Expression |
|---|---|
| meascnbl | ⊢ (𝜑 → (𝑀 ∘ 𝐹)(⇝𝑡‘𝐽)(𝑀‘∪ ran 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meascnbl.0 | . . 3 ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
| 2 | meascnbl.1 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑀 ∈ (measures‘𝑆)) |
| 4 | measbase 34210 | . . . . . . 7 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 5 | 2, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑆 ∈ ∪ ran sigAlgebra) |
| 7 | meascnbl.2 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℕ⟶𝑆) | |
| 8 | 7 | ffvelcdmda 7017 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ 𝑆) |
| 9 | simpll 766 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝜑) | |
| 10 | fzossnn 13611 | . . . . . . . . 9 ⊢ (1..^𝑛) ⊆ ℕ | |
| 11 | simpr 484 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑘 ∈ (1..^𝑛)) | |
| 12 | 10, 11 | sselid 3927 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑘 ∈ ℕ) |
| 13 | 7 | ffvelcdmda 7017 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ 𝑆) |
| 14 | 9, 12, 13 | syl2anc 584 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → (𝐹‘𝑘) ∈ 𝑆) |
| 15 | 14 | ralrimiva 3124 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) ∈ 𝑆) |
| 16 | sigaclfu2 34134 | . . . . . 6 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) ∈ 𝑆) → ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) ∈ 𝑆) | |
| 17 | 6, 15, 16 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) ∈ 𝑆) |
| 18 | difelsiga 34146 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ (𝐹‘𝑛) ∈ 𝑆 ∧ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) ∈ 𝑆) → ((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)) ∈ 𝑆) | |
| 19 | 6, 8, 17, 18 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)) ∈ 𝑆) |
| 20 | measvxrge0 34218 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)) ∈ 𝑆) → (𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))) ∈ (0[,]+∞)) | |
| 21 | 3, 19, 20 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))) ∈ (0[,]+∞)) |
| 22 | fveq2 6822 | . . . . 5 ⊢ (𝑛 = 𝑜 → (𝐹‘𝑛) = (𝐹‘𝑜)) | |
| 23 | oveq2 7354 | . . . . . 6 ⊢ (𝑛 = 𝑜 → (1..^𝑛) = (1..^𝑜)) | |
| 24 | 23 | iuneq1d 4967 | . . . . 5 ⊢ (𝑛 = 𝑜 → ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) = ∪ 𝑘 ∈ (1..^𝑜)(𝐹‘𝑘)) |
| 25 | 22, 24 | difeq12d 4074 | . . . 4 ⊢ (𝑛 = 𝑜 → ((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)) = ((𝐹‘𝑜) ∖ ∪ 𝑘 ∈ (1..^𝑜)(𝐹‘𝑘))) |
| 26 | 25 | fveq2d 6826 | . . 3 ⊢ (𝑛 = 𝑜 → (𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))) = (𝑀‘((𝐹‘𝑜) ∖ ∪ 𝑘 ∈ (1..^𝑜)(𝐹‘𝑘)))) |
| 27 | fveq2 6822 | . . . . 5 ⊢ (𝑛 = 𝑝 → (𝐹‘𝑛) = (𝐹‘𝑝)) | |
| 28 | oveq2 7354 | . . . . . 6 ⊢ (𝑛 = 𝑝 → (1..^𝑛) = (1..^𝑝)) | |
| 29 | 28 | iuneq1d 4967 | . . . . 5 ⊢ (𝑛 = 𝑝 → ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) = ∪ 𝑘 ∈ (1..^𝑝)(𝐹‘𝑘)) |
| 30 | 27, 29 | difeq12d 4074 | . . . 4 ⊢ (𝑛 = 𝑝 → ((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)) = ((𝐹‘𝑝) ∖ ∪ 𝑘 ∈ (1..^𝑝)(𝐹‘𝑘))) |
| 31 | 30 | fveq2d 6826 | . . 3 ⊢ (𝑛 = 𝑝 → (𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))) = (𝑀‘((𝐹‘𝑝) ∖ ∪ 𝑘 ∈ (1..^𝑝)(𝐹‘𝑘)))) |
| 32 | 1, 21, 26, 31 | esumcvg2 34100 | . 2 ⊢ (𝜑 → (𝑖 ∈ ℕ ↦ Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))))(⇝𝑡‘𝐽)Σ*𝑛 ∈ ℕ(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)))) |
| 33 | measfrge0 34216 | . . . . 5 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑀:𝑆⟶(0[,]+∞)) | |
| 34 | 2, 33 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀:𝑆⟶(0[,]+∞)) |
| 35 | fcompt 7066 | . . . 4 ⊢ ((𝑀:𝑆⟶(0[,]+∞) ∧ 𝐹:ℕ⟶𝑆) → (𝑀 ∘ 𝐹) = (𝑖 ∈ ℕ ↦ (𝑀‘(𝐹‘𝑖)))) | |
| 36 | 34, 7, 35 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑀 ∘ 𝐹) = (𝑖 ∈ ℕ ↦ (𝑀‘(𝐹‘𝑖)))) |
| 37 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑛(𝐹‘𝑘) | |
| 38 | fveq2 6822 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) | |
| 39 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) | |
| 40 | 39 | nnzd 12495 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℤ) |
| 41 | fzval3 13634 | . . . . . . . 8 ⊢ (𝑖 ∈ ℤ → (1...𝑖) = (1..^(𝑖 + 1))) | |
| 42 | 40, 41 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (1...𝑖) = (1..^(𝑖 + 1))) |
| 43 | 42 | olcd 874 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((1...𝑖) = ℕ ∨ (1...𝑖) = (1..^(𝑖 + 1)))) |
| 44 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑀 ∈ (measures‘𝑆)) |
| 45 | simpll 766 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑖)) → 𝜑) | |
| 46 | fzossnn 13611 | . . . . . . . 8 ⊢ (1..^(𝑖 + 1)) ⊆ ℕ | |
| 47 | 42 | eleq2d 2817 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝑛 ∈ (1...𝑖) ↔ 𝑛 ∈ (1..^(𝑖 + 1)))) |
| 48 | 47 | biimpa 476 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑖)) → 𝑛 ∈ (1..^(𝑖 + 1))) |
| 49 | 46, 48 | sselid 3927 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑖)) → 𝑛 ∈ ℕ) |
| 50 | 45, 49, 8 | syl2anc 584 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑖)) → (𝐹‘𝑛) ∈ 𝑆) |
| 51 | 37, 38, 43, 44, 50 | measiuns 34230 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝑀‘∪ 𝑛 ∈ (1...𝑖)(𝐹‘𝑛)) = Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)))) |
| 52 | 7 | ffnd 6652 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn ℕ) |
| 53 | meascnbl.3 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) | |
| 54 | 52, 53 | iuninc 32540 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ∪ 𝑛 ∈ (1...𝑖)(𝐹‘𝑛) = (𝐹‘𝑖)) |
| 55 | 54 | fveq2d 6826 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝑀‘∪ 𝑛 ∈ (1...𝑖)(𝐹‘𝑛)) = (𝑀‘(𝐹‘𝑖))) |
| 56 | 51, 55 | eqtr3d 2768 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))) = (𝑀‘(𝐹‘𝑖))) |
| 57 | 56 | mpteq2dva 5182 | . . 3 ⊢ (𝜑 → (𝑖 ∈ ℕ ↦ Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)))) = (𝑖 ∈ ℕ ↦ (𝑀‘(𝐹‘𝑖)))) |
| 58 | 36, 57 | eqtr4d 2769 | . 2 ⊢ (𝜑 → (𝑀 ∘ 𝐹) = (𝑖 ∈ ℕ ↦ Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))))) |
| 59 | 8 | ralrimiva 3124 | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐹‘𝑛) ∈ 𝑆) |
| 60 | dfiun2g 4978 | . . . . . 6 ⊢ (∀𝑛 ∈ ℕ (𝐹‘𝑛) ∈ 𝑆 → ∪ 𝑛 ∈ ℕ (𝐹‘𝑛) = ∪ {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹‘𝑛)}) | |
| 61 | 59, 60 | syl 17 | . . . . 5 ⊢ (𝜑 → ∪ 𝑛 ∈ ℕ (𝐹‘𝑛) = ∪ {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹‘𝑛)}) |
| 62 | fnrnfv 6881 | . . . . . . 7 ⊢ (𝐹 Fn ℕ → ran 𝐹 = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹‘𝑛)}) | |
| 63 | 52, 62 | syl 17 | . . . . . 6 ⊢ (𝜑 → ran 𝐹 = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹‘𝑛)}) |
| 64 | 63 | unieqd 4869 | . . . . 5 ⊢ (𝜑 → ∪ ran 𝐹 = ∪ {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹‘𝑛)}) |
| 65 | 61, 64 | eqtr4d 2769 | . . . 4 ⊢ (𝜑 → ∪ 𝑛 ∈ ℕ (𝐹‘𝑛) = ∪ ran 𝐹) |
| 66 | 65 | fveq2d 6826 | . . 3 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ ℕ (𝐹‘𝑛)) = (𝑀‘∪ ran 𝐹)) |
| 67 | eqidd 2732 | . . . . 5 ⊢ (𝜑 → ℕ = ℕ) | |
| 68 | 67 | orcd 873 | . . . 4 ⊢ (𝜑 → (ℕ = ℕ ∨ ℕ = (1..^(𝑖 + 1)))) |
| 69 | 37, 38, 68, 2, 8 | measiuns 34230 | . . 3 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ ℕ (𝐹‘𝑛)) = Σ*𝑛 ∈ ℕ(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)))) |
| 70 | 66, 69 | eqtr3d 2768 | . 2 ⊢ (𝜑 → (𝑀‘∪ ran 𝐹) = Σ*𝑛 ∈ ℕ(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)))) |
| 71 | 32, 58, 70 | 3brtr4d 5121 | 1 ⊢ (𝜑 → (𝑀 ∘ 𝐹)(⇝𝑡‘𝐽)(𝑀‘∪ ran 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 ∃wrex 3056 ∖ cdif 3894 ⊆ wss 3897 ∪ cuni 4856 ∪ ciun 4939 class class class wbr 5089 ↦ cmpt 5170 ran crn 5615 ∘ ccom 5618 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 + caddc 11009 +∞cpnf 11143 ℕcn 12125 ℤcz 12468 [,]cicc 13248 ...cfz 13407 ..^cfzo 13554 ↾s cress 17141 TopOpenctopn 17325 ℝ*𝑠cxrs 17404 ⇝𝑡clm 23141 Σ*cesum 34040 sigAlgebracsiga 34121 measurescmeas 34208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-ac2 10354 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-disj 5057 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-acn 9835 df-ac 10007 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ioc 13250 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-ordt 17405 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-ps 18472 df-tsr 18473 df-plusf 18547 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-cntz 19229 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-subrng 20461 df-subrg 20485 df-abv 20724 df-lmod 20795 df-scaf 20796 df-sra 21107 df-rgmod 21108 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-lp 23051 df-perf 23052 df-cn 23142 df-cnp 23143 df-lm 23144 df-haus 23230 df-tx 23477 df-hmeo 23670 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-tmd 23987 df-tgp 23988 df-tsms 24042 df-trg 24075 df-xms 24235 df-ms 24236 df-tms 24237 df-nm 24497 df-ngp 24498 df-nrg 24500 df-nlm 24501 df-ii 24797 df-cncf 24798 df-limc 25794 df-dv 25795 df-log 26492 df-esum 34041 df-siga 34122 df-meas 34209 |
| This theorem is referenced by: dstfrvclim1 34491 |
| Copyright terms: Public domain | W3C validator |