Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > meascnbl | Structured version Visualization version GIF version |
Description: A measure is continuous from below. Cf. volsup 24720. (Contributed by Thierry Arnoux, 18-Jan-2017.) (Revised by Thierry Arnoux, 11-Jul-2017.) |
Ref | Expression |
---|---|
meascnbl.0 | ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) |
meascnbl.1 | ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) |
meascnbl.2 | ⊢ (𝜑 → 𝐹:ℕ⟶𝑆) |
meascnbl.3 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) |
Ref | Expression |
---|---|
meascnbl | ⊢ (𝜑 → (𝑀 ∘ 𝐹)(⇝𝑡‘𝐽)(𝑀‘∪ ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meascnbl.0 | . . 3 ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
2 | meascnbl.1 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) | |
3 | 2 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑀 ∈ (measures‘𝑆)) |
4 | measbase 32165 | . . . . . . 7 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
5 | 2, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
6 | 5 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑆 ∈ ∪ ran sigAlgebra) |
7 | meascnbl.2 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℕ⟶𝑆) | |
8 | 7 | ffvelrnda 6961 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ 𝑆) |
9 | simpll 764 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝜑) | |
10 | fzossnn 13436 | . . . . . . . . 9 ⊢ (1..^𝑛) ⊆ ℕ | |
11 | simpr 485 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑘 ∈ (1..^𝑛)) | |
12 | 10, 11 | sselid 3919 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑘 ∈ ℕ) |
13 | 7 | ffvelrnda 6961 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ 𝑆) |
14 | 9, 12, 13 | syl2anc 584 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → (𝐹‘𝑘) ∈ 𝑆) |
15 | 14 | ralrimiva 3103 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) ∈ 𝑆) |
16 | sigaclfu2 32089 | . . . . . 6 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) ∈ 𝑆) → ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) ∈ 𝑆) | |
17 | 6, 15, 16 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) ∈ 𝑆) |
18 | difelsiga 32101 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ (𝐹‘𝑛) ∈ 𝑆 ∧ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) ∈ 𝑆) → ((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)) ∈ 𝑆) | |
19 | 6, 8, 17, 18 | syl3anc 1370 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)) ∈ 𝑆) |
20 | measvxrge0 32173 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)) ∈ 𝑆) → (𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))) ∈ (0[,]+∞)) | |
21 | 3, 19, 20 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))) ∈ (0[,]+∞)) |
22 | fveq2 6774 | . . . . 5 ⊢ (𝑛 = 𝑜 → (𝐹‘𝑛) = (𝐹‘𝑜)) | |
23 | oveq2 7283 | . . . . . 6 ⊢ (𝑛 = 𝑜 → (1..^𝑛) = (1..^𝑜)) | |
24 | 23 | iuneq1d 4951 | . . . . 5 ⊢ (𝑛 = 𝑜 → ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) = ∪ 𝑘 ∈ (1..^𝑜)(𝐹‘𝑘)) |
25 | 22, 24 | difeq12d 4058 | . . . 4 ⊢ (𝑛 = 𝑜 → ((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)) = ((𝐹‘𝑜) ∖ ∪ 𝑘 ∈ (1..^𝑜)(𝐹‘𝑘))) |
26 | 25 | fveq2d 6778 | . . 3 ⊢ (𝑛 = 𝑜 → (𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))) = (𝑀‘((𝐹‘𝑜) ∖ ∪ 𝑘 ∈ (1..^𝑜)(𝐹‘𝑘)))) |
27 | fveq2 6774 | . . . . 5 ⊢ (𝑛 = 𝑝 → (𝐹‘𝑛) = (𝐹‘𝑝)) | |
28 | oveq2 7283 | . . . . . 6 ⊢ (𝑛 = 𝑝 → (1..^𝑛) = (1..^𝑝)) | |
29 | 28 | iuneq1d 4951 | . . . . 5 ⊢ (𝑛 = 𝑝 → ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘) = ∪ 𝑘 ∈ (1..^𝑝)(𝐹‘𝑘)) |
30 | 27, 29 | difeq12d 4058 | . . . 4 ⊢ (𝑛 = 𝑝 → ((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)) = ((𝐹‘𝑝) ∖ ∪ 𝑘 ∈ (1..^𝑝)(𝐹‘𝑘))) |
31 | 30 | fveq2d 6778 | . . 3 ⊢ (𝑛 = 𝑝 → (𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))) = (𝑀‘((𝐹‘𝑝) ∖ ∪ 𝑘 ∈ (1..^𝑝)(𝐹‘𝑘)))) |
32 | 1, 21, 26, 31 | esumcvg2 32055 | . 2 ⊢ (𝜑 → (𝑖 ∈ ℕ ↦ Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))))(⇝𝑡‘𝐽)Σ*𝑛 ∈ ℕ(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)))) |
33 | measfrge0 32171 | . . . . 5 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑀:𝑆⟶(0[,]+∞)) | |
34 | 2, 33 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀:𝑆⟶(0[,]+∞)) |
35 | fcompt 7005 | . . . 4 ⊢ ((𝑀:𝑆⟶(0[,]+∞) ∧ 𝐹:ℕ⟶𝑆) → (𝑀 ∘ 𝐹) = (𝑖 ∈ ℕ ↦ (𝑀‘(𝐹‘𝑖)))) | |
36 | 34, 7, 35 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑀 ∘ 𝐹) = (𝑖 ∈ ℕ ↦ (𝑀‘(𝐹‘𝑖)))) |
37 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑛(𝐹‘𝑘) | |
38 | fveq2 6774 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) | |
39 | simpr 485 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) | |
40 | 39 | nnzd 12425 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℤ) |
41 | fzval3 13456 | . . . . . . . 8 ⊢ (𝑖 ∈ ℤ → (1...𝑖) = (1..^(𝑖 + 1))) | |
42 | 40, 41 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (1...𝑖) = (1..^(𝑖 + 1))) |
43 | 42 | olcd 871 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((1...𝑖) = ℕ ∨ (1...𝑖) = (1..^(𝑖 + 1)))) |
44 | 2 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑀 ∈ (measures‘𝑆)) |
45 | simpll 764 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑖)) → 𝜑) | |
46 | fzossnn 13436 | . . . . . . . 8 ⊢ (1..^(𝑖 + 1)) ⊆ ℕ | |
47 | 42 | eleq2d 2824 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝑛 ∈ (1...𝑖) ↔ 𝑛 ∈ (1..^(𝑖 + 1)))) |
48 | 47 | biimpa 477 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑖)) → 𝑛 ∈ (1..^(𝑖 + 1))) |
49 | 46, 48 | sselid 3919 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑖)) → 𝑛 ∈ ℕ) |
50 | 45, 49, 8 | syl2anc 584 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑖)) → (𝐹‘𝑛) ∈ 𝑆) |
51 | 37, 38, 43, 44, 50 | measiuns 32185 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝑀‘∪ 𝑛 ∈ (1...𝑖)(𝐹‘𝑛)) = Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)))) |
52 | 7 | ffnd 6601 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn ℕ) |
53 | meascnbl.3 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) | |
54 | 52, 53 | iuninc 30900 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ∪ 𝑛 ∈ (1...𝑖)(𝐹‘𝑛) = (𝐹‘𝑖)) |
55 | 54 | fveq2d 6778 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝑀‘∪ 𝑛 ∈ (1...𝑖)(𝐹‘𝑛)) = (𝑀‘(𝐹‘𝑖))) |
56 | 51, 55 | eqtr3d 2780 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))) = (𝑀‘(𝐹‘𝑖))) |
57 | 56 | mpteq2dva 5174 | . . 3 ⊢ (𝜑 → (𝑖 ∈ ℕ ↦ Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)))) = (𝑖 ∈ ℕ ↦ (𝑀‘(𝐹‘𝑖)))) |
58 | 36, 57 | eqtr4d 2781 | . 2 ⊢ (𝜑 → (𝑀 ∘ 𝐹) = (𝑖 ∈ ℕ ↦ Σ*𝑛 ∈ (1...𝑖)(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘))))) |
59 | 8 | ralrimiva 3103 | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐹‘𝑛) ∈ 𝑆) |
60 | dfiun2g 4960 | . . . . . 6 ⊢ (∀𝑛 ∈ ℕ (𝐹‘𝑛) ∈ 𝑆 → ∪ 𝑛 ∈ ℕ (𝐹‘𝑛) = ∪ {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹‘𝑛)}) | |
61 | 59, 60 | syl 17 | . . . . 5 ⊢ (𝜑 → ∪ 𝑛 ∈ ℕ (𝐹‘𝑛) = ∪ {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹‘𝑛)}) |
62 | fnrnfv 6829 | . . . . . . 7 ⊢ (𝐹 Fn ℕ → ran 𝐹 = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹‘𝑛)}) | |
63 | 52, 62 | syl 17 | . . . . . 6 ⊢ (𝜑 → ran 𝐹 = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹‘𝑛)}) |
64 | 63 | unieqd 4853 | . . . . 5 ⊢ (𝜑 → ∪ ran 𝐹 = ∪ {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (𝐹‘𝑛)}) |
65 | 61, 64 | eqtr4d 2781 | . . . 4 ⊢ (𝜑 → ∪ 𝑛 ∈ ℕ (𝐹‘𝑛) = ∪ ran 𝐹) |
66 | 65 | fveq2d 6778 | . . 3 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ ℕ (𝐹‘𝑛)) = (𝑀‘∪ ran 𝐹)) |
67 | eqidd 2739 | . . . . 5 ⊢ (𝜑 → ℕ = ℕ) | |
68 | 67 | orcd 870 | . . . 4 ⊢ (𝜑 → (ℕ = ℕ ∨ ℕ = (1..^(𝑖 + 1)))) |
69 | 37, 38, 68, 2, 8 | measiuns 32185 | . . 3 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ ℕ (𝐹‘𝑛)) = Σ*𝑛 ∈ ℕ(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)))) |
70 | 66, 69 | eqtr3d 2780 | . 2 ⊢ (𝜑 → (𝑀‘∪ ran 𝐹) = Σ*𝑛 ∈ ℕ(𝑀‘((𝐹‘𝑛) ∖ ∪ 𝑘 ∈ (1..^𝑛)(𝐹‘𝑘)))) |
71 | 32, 58, 70 | 3brtr4d 5106 | 1 ⊢ (𝜑 → (𝑀 ∘ 𝐹)(⇝𝑡‘𝐽)(𝑀‘∪ ran 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∃wrex 3065 ∖ cdif 3884 ⊆ wss 3887 ∪ cuni 4839 ∪ ciun 4924 class class class wbr 5074 ↦ cmpt 5157 ran crn 5590 ∘ ccom 5593 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 + caddc 10874 +∞cpnf 11006 ℕcn 11973 ℤcz 12319 [,]cicc 13082 ...cfz 13239 ..^cfzo 13382 ↾s cress 16941 TopOpenctopn 17132 ℝ*𝑠cxrs 17211 ⇝𝑡clm 22377 Σ*cesum 31995 sigAlgebracsiga 32076 measurescmeas 32163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-ac2 10219 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-disj 5040 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-acn 9700 df-ac 9872 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-xnn0 12306 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ioc 13084 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-fac 13988 df-bc 14017 df-hash 14045 df-shft 14778 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-limsup 15180 df-clim 15197 df-rlim 15198 df-sum 15398 df-ef 15777 df-sin 15779 df-cos 15780 df-pi 15782 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-ordt 17212 df-xrs 17213 df-qtop 17218 df-imas 17219 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-ps 18284 df-tsr 18285 df-plusf 18325 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-cntz 18923 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-subrg 20022 df-abv 20077 df-lmod 20125 df-scaf 20126 df-sra 20434 df-rgmod 20435 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-fbas 20594 df-fg 20595 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-nei 22249 df-lp 22287 df-perf 22288 df-cn 22378 df-cnp 22379 df-lm 22380 df-haus 22466 df-tx 22713 df-hmeo 22906 df-fil 22997 df-fm 23089 df-flim 23090 df-flf 23091 df-tmd 23223 df-tgp 23224 df-tsms 23278 df-trg 23311 df-xms 23473 df-ms 23474 df-tms 23475 df-nm 23738 df-ngp 23739 df-nrg 23741 df-nlm 23742 df-ii 24040 df-cncf 24041 df-limc 25030 df-dv 25031 df-log 25712 df-esum 31996 df-siga 32077 df-meas 32164 |
This theorem is referenced by: dstfrvclim1 32444 |
Copyright terms: Public domain | W3C validator |