| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sigaclcuni | Structured version Visualization version GIF version | ||
| Description: A sigma-algebra is closed under countable union: indexed union version. (Contributed by Thierry Arnoux, 8-Jun-2017.) |
| Ref | Expression |
|---|---|
| sigaclcuni.1 | ⊢ Ⅎ𝑘𝐴 |
| Ref | Expression |
|---|---|
| sigaclcuni | ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiun2g 4980 | . . 3 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵}) | |
| 2 | 1 | 3ad2ant2 1134 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵}) |
| 3 | simp1 1136 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 4 | r19.29 3095 | . . . . . . . 8 ⊢ ((∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵) → ∃𝑘 ∈ 𝐴 (𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵)) | |
| 5 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵) → 𝑧 = 𝐵) | |
| 6 | simpl 482 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵) → 𝐵 ∈ 𝑆) | |
| 7 | 5, 6 | eqeltrd 2831 | . . . . . . . . 9 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵) → 𝑧 ∈ 𝑆) |
| 8 | 7 | rexlimivw 3129 | . . . . . . . 8 ⊢ (∃𝑘 ∈ 𝐴 (𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵) → 𝑧 ∈ 𝑆) |
| 9 | 4, 8 | syl 17 | . . . . . . 7 ⊢ ((∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵) → 𝑧 ∈ 𝑆) |
| 10 | 9 | ex 412 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 → (∃𝑘 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ 𝑆)) |
| 11 | 10 | abssdv 4015 | . . . . 5 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝑆) |
| 12 | 11 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝑆) |
| 13 | elpw2g 5273 | . . . . 5 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ({𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆 ↔ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝑆)) | |
| 14 | 3, 13 | syl 17 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → ({𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆 ↔ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝑆)) |
| 15 | 12, 14 | mpbird 257 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆) |
| 16 | sigaclcuni.1 | . . . . 5 ⊢ Ⅎ𝑘𝐴 | |
| 17 | 16 | abrexctf 32707 | . . . 4 ⊢ (𝐴 ≼ ω → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ≼ ω) |
| 18 | 17 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ≼ ω) |
| 19 | sigaclcu 34137 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆 ∧ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ≼ ω) → ∪ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝑆) | |
| 20 | 3, 15, 18, 19 | syl3anc 1373 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → ∪ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝑆) |
| 21 | 2, 20 | eqeltrd 2831 | 1 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {cab 2709 Ⅎwnfc 2879 ∀wral 3047 ∃wrex 3056 ⊆ wss 3897 𝒫 cpw 4549 ∪ cuni 4858 ∪ ciun 4941 class class class wbr 5093 ran crn 5620 ωcom 7802 ≼ cdom 8873 sigAlgebracsiga 34128 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9537 ax-ac2 10360 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-oi 9402 df-card 9838 df-acn 9841 df-ac 10013 df-siga 34129 |
| This theorem is referenced by: measvuni 34234 imambfm 34282 sibfof 34360 |
| Copyright terms: Public domain | W3C validator |