Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaclcuni Structured version   Visualization version   GIF version

Theorem sigaclcuni 34099
Description: A sigma-algebra is closed under countable union: indexed union version. (Contributed by Thierry Arnoux, 8-Jun-2017.)
Hypothesis
Ref Expression
sigaclcuni.1 𝑘𝐴
Assertion
Ref Expression
sigaclcuni ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → 𝑘𝐴 𝐵𝑆)
Distinct variable group:   𝑆,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem sigaclcuni
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfiun2g 5035 . . 3 (∀𝑘𝐴 𝐵𝑆 𝑘𝐴 𝐵 = {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵})
213ad2ant2 1133 . 2 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → 𝑘𝐴 𝐵 = {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵})
3 simp1 1135 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → 𝑆 ran sigAlgebra)
4 r19.29 3112 . . . . . . . 8 ((∀𝑘𝐴 𝐵𝑆 ∧ ∃𝑘𝐴 𝑧 = 𝐵) → ∃𝑘𝐴 (𝐵𝑆𝑧 = 𝐵))
5 simpr 484 . . . . . . . . . 10 ((𝐵𝑆𝑧 = 𝐵) → 𝑧 = 𝐵)
6 simpl 482 . . . . . . . . . 10 ((𝐵𝑆𝑧 = 𝐵) → 𝐵𝑆)
75, 6eqeltrd 2839 . . . . . . . . 9 ((𝐵𝑆𝑧 = 𝐵) → 𝑧𝑆)
87rexlimivw 3149 . . . . . . . 8 (∃𝑘𝐴 (𝐵𝑆𝑧 = 𝐵) → 𝑧𝑆)
94, 8syl 17 . . . . . . 7 ((∀𝑘𝐴 𝐵𝑆 ∧ ∃𝑘𝐴 𝑧 = 𝐵) → 𝑧𝑆)
109ex 412 . . . . . 6 (∀𝑘𝐴 𝐵𝑆 → (∃𝑘𝐴 𝑧 = 𝐵𝑧𝑆))
1110abssdv 4078 . . . . 5 (∀𝑘𝐴 𝐵𝑆 → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ⊆ 𝑆)
12113ad2ant2 1133 . . . 4 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ⊆ 𝑆)
13 elpw2g 5339 . . . . 5 (𝑆 ran sigAlgebra → ({𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆 ↔ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ⊆ 𝑆))
143, 13syl 17 . . . 4 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → ({𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆 ↔ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ⊆ 𝑆))
1512, 14mpbird 257 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆)
16 sigaclcuni.1 . . . . 5 𝑘𝐴
1716abrexctf 32736 . . . 4 (𝐴 ≼ ω → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ≼ ω)
18173ad2ant3 1134 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ≼ ω)
19 sigaclcu 34098 . . 3 ((𝑆 ran sigAlgebra ∧ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆 ∧ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ≼ ω) → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ∈ 𝑆)
203, 15, 18, 19syl3anc 1370 . 2 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ∈ 𝑆)
212, 20eqeltrd 2839 1 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → 𝑘𝐴 𝐵𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  {cab 2712  wnfc 2888  wral 3059  wrex 3068  wss 3963  𝒫 cpw 4605   cuni 4912   ciun 4996   class class class wbr 5148  ran crn 5690  ωcom 7887  cdom 8982  sigAlgebracsiga 34089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-ac2 10501
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-oi 9548  df-card 9977  df-acn 9980  df-ac 10154  df-siga 34090
This theorem is referenced by:  measvuni  34195  imambfm  34244  sibfof  34322
  Copyright terms: Public domain W3C validator