![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigaclcuni | Structured version Visualization version GIF version |
Description: A sigma-algebra is closed under countable union: indexed union version. (Contributed by Thierry Arnoux, 8-Jun-2017.) |
Ref | Expression |
---|---|
sigaclcuni.1 | ⊢ Ⅎ𝑘𝐴 |
Ref | Expression |
---|---|
sigaclcuni | ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiun2g 5033 | . . 3 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵}) | |
2 | 1 | 3ad2ant2 1134 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵}) |
3 | simp1 1136 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → 𝑆 ∈ ∪ ran sigAlgebra) | |
4 | r19.29 3114 | . . . . . . . 8 ⊢ ((∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵) → ∃𝑘 ∈ 𝐴 (𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵)) | |
5 | simpr 485 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵) → 𝑧 = 𝐵) | |
6 | simpl 483 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵) → 𝐵 ∈ 𝑆) | |
7 | 5, 6 | eqeltrd 2833 | . . . . . . . . 9 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵) → 𝑧 ∈ 𝑆) |
8 | 7 | rexlimivw 3151 | . . . . . . . 8 ⊢ (∃𝑘 ∈ 𝐴 (𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵) → 𝑧 ∈ 𝑆) |
9 | 4, 8 | syl 17 | . . . . . . 7 ⊢ ((∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵) → 𝑧 ∈ 𝑆) |
10 | 9 | ex 413 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 → (∃𝑘 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ 𝑆)) |
11 | 10 | abssdv 4065 | . . . . 5 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝑆) |
12 | 11 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝑆) |
13 | elpw2g 5344 | . . . . 5 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ({𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆 ↔ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝑆)) | |
14 | 3, 13 | syl 17 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → ({𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆 ↔ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝑆)) |
15 | 12, 14 | mpbird 256 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆) |
16 | sigaclcuni.1 | . . . . 5 ⊢ Ⅎ𝑘𝐴 | |
17 | 16 | abrexctf 31981 | . . . 4 ⊢ (𝐴 ≼ ω → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ≼ ω) |
18 | 17 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ≼ ω) |
19 | sigaclcu 33184 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆 ∧ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ≼ ω) → ∪ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝑆) | |
20 | 3, 15, 18, 19 | syl3anc 1371 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → ∪ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝑆) |
21 | 2, 20 | eqeltrd 2833 | 1 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 {cab 2709 Ⅎwnfc 2883 ∀wral 3061 ∃wrex 3070 ⊆ wss 3948 𝒫 cpw 4602 ∪ cuni 4908 ∪ ciun 4997 class class class wbr 5148 ran crn 5677 ωcom 7857 ≼ cdom 8939 sigAlgebracsiga 33175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-inf2 9638 ax-ac2 10460 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-oi 9507 df-card 9936 df-acn 9939 df-ac 10113 df-siga 33176 |
This theorem is referenced by: measvuni 33281 imambfm 33330 sibfof 33408 |
Copyright terms: Public domain | W3C validator |