Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaclcuni Structured version   Visualization version   GIF version

Theorem sigaclcuni 34121
Description: A sigma-algebra is closed under countable union: indexed union version. (Contributed by Thierry Arnoux, 8-Jun-2017.)
Hypothesis
Ref Expression
sigaclcuni.1 𝑘𝐴
Assertion
Ref Expression
sigaclcuni ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → 𝑘𝐴 𝐵𝑆)
Distinct variable group:   𝑆,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem sigaclcuni
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfiun2g 4978 . . 3 (∀𝑘𝐴 𝐵𝑆 𝑘𝐴 𝐵 = {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵})
213ad2ant2 1134 . 2 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → 𝑘𝐴 𝐵 = {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵})
3 simp1 1136 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → 𝑆 ran sigAlgebra)
4 r19.29 3093 . . . . . . . 8 ((∀𝑘𝐴 𝐵𝑆 ∧ ∃𝑘𝐴 𝑧 = 𝐵) → ∃𝑘𝐴 (𝐵𝑆𝑧 = 𝐵))
5 simpr 484 . . . . . . . . . 10 ((𝐵𝑆𝑧 = 𝐵) → 𝑧 = 𝐵)
6 simpl 482 . . . . . . . . . 10 ((𝐵𝑆𝑧 = 𝐵) → 𝐵𝑆)
75, 6eqeltrd 2829 . . . . . . . . 9 ((𝐵𝑆𝑧 = 𝐵) → 𝑧𝑆)
87rexlimivw 3127 . . . . . . . 8 (∃𝑘𝐴 (𝐵𝑆𝑧 = 𝐵) → 𝑧𝑆)
94, 8syl 17 . . . . . . 7 ((∀𝑘𝐴 𝐵𝑆 ∧ ∃𝑘𝐴 𝑧 = 𝐵) → 𝑧𝑆)
109ex 412 . . . . . 6 (∀𝑘𝐴 𝐵𝑆 → (∃𝑘𝐴 𝑧 = 𝐵𝑧𝑆))
1110abssdv 4017 . . . . 5 (∀𝑘𝐴 𝐵𝑆 → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ⊆ 𝑆)
12113ad2ant2 1134 . . . 4 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ⊆ 𝑆)
13 elpw2g 5269 . . . . 5 (𝑆 ran sigAlgebra → ({𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆 ↔ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ⊆ 𝑆))
143, 13syl 17 . . . 4 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → ({𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆 ↔ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ⊆ 𝑆))
1512, 14mpbird 257 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆)
16 sigaclcuni.1 . . . . 5 𝑘𝐴
1716abrexctf 32690 . . . 4 (𝐴 ≼ ω → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ≼ ω)
18173ad2ant3 1135 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ≼ ω)
19 sigaclcu 34120 . . 3 ((𝑆 ran sigAlgebra ∧ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆 ∧ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ≼ ω) → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ∈ 𝑆)
203, 15, 18, 19syl3anc 1373 . 2 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ∈ 𝑆)
212, 20eqeltrd 2829 1 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → 𝑘𝐴 𝐵𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  {cab 2708  wnfc 2877  wral 3045  wrex 3054  wss 3900  𝒫 cpw 4548   cuni 4857   ciun 4939   class class class wbr 5089  ran crn 5615  ωcom 7791  cdom 8862  sigAlgebracsiga 34111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-ac2 10346
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-oi 9391  df-card 9824  df-acn 9827  df-ac 9999  df-siga 34112
This theorem is referenced by:  measvuni  34217  imambfm  34265  sibfof  34343
  Copyright terms: Public domain W3C validator