| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sigaclcuni | Structured version Visualization version GIF version | ||
| Description: A sigma-algebra is closed under countable union: indexed union version. (Contributed by Thierry Arnoux, 8-Jun-2017.) |
| Ref | Expression |
|---|---|
| sigaclcuni.1 | ⊢ Ⅎ𝑘𝐴 |
| Ref | Expression |
|---|---|
| sigaclcuni | ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiun2g 4983 | . . 3 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵}) | |
| 2 | 1 | 3ad2ant2 1134 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵}) |
| 3 | simp1 1136 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 4 | r19.29 3092 | . . . . . . . 8 ⊢ ((∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵) → ∃𝑘 ∈ 𝐴 (𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵)) | |
| 5 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵) → 𝑧 = 𝐵) | |
| 6 | simpl 482 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵) → 𝐵 ∈ 𝑆) | |
| 7 | 5, 6 | eqeltrd 2828 | . . . . . . . . 9 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵) → 𝑧 ∈ 𝑆) |
| 8 | 7 | rexlimivw 3126 | . . . . . . . 8 ⊢ (∃𝑘 ∈ 𝐴 (𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵) → 𝑧 ∈ 𝑆) |
| 9 | 4, 8 | syl 17 | . . . . . . 7 ⊢ ((∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵) → 𝑧 ∈ 𝑆) |
| 10 | 9 | ex 412 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 → (∃𝑘 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ 𝑆)) |
| 11 | 10 | abssdv 4022 | . . . . 5 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝑆) |
| 12 | 11 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝑆) |
| 13 | elpw2g 5275 | . . . . 5 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ({𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆 ↔ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝑆)) | |
| 14 | 3, 13 | syl 17 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → ({𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆 ↔ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝑆)) |
| 15 | 12, 14 | mpbird 257 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆) |
| 16 | sigaclcuni.1 | . . . . 5 ⊢ Ⅎ𝑘𝐴 | |
| 17 | 16 | abrexctf 32675 | . . . 4 ⊢ (𝐴 ≼ ω → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ≼ ω) |
| 18 | 17 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ≼ ω) |
| 19 | sigaclcu 34083 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆 ∧ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ≼ ω) → ∪ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝑆) | |
| 20 | 3, 15, 18, 19 | syl3anc 1373 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → ∪ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝑆) |
| 21 | 2, 20 | eqeltrd 2828 | 1 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2707 Ⅎwnfc 2876 ∀wral 3044 ∃wrex 3053 ⊆ wss 3905 𝒫 cpw 4553 ∪ cuni 4861 ∪ ciun 4944 class class class wbr 5095 ran crn 5624 ωcom 7806 ≼ cdom 8877 sigAlgebracsiga 34074 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-ac2 10376 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-oi 9421 df-card 9854 df-acn 9857 df-ac 10029 df-siga 34075 |
| This theorem is referenced by: measvuni 34180 imambfm 34229 sibfof 34307 |
| Copyright terms: Public domain | W3C validator |