Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaclcuni Structured version   Visualization version   GIF version

Theorem sigaclcuni 33104
Description: A sigma-algebra is closed under countable union: indexed union version. (Contributed by Thierry Arnoux, 8-Jun-2017.)
Hypothesis
Ref Expression
sigaclcuni.1 𝑘𝐴
Assertion
Ref Expression
sigaclcuni ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → 𝑘𝐴 𝐵𝑆)
Distinct variable group:   𝑆,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem sigaclcuni
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfiun2g 5032 . . 3 (∀𝑘𝐴 𝐵𝑆 𝑘𝐴 𝐵 = {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵})
213ad2ant2 1134 . 2 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → 𝑘𝐴 𝐵 = {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵})
3 simp1 1136 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → 𝑆 ran sigAlgebra)
4 r19.29 3114 . . . . . . . 8 ((∀𝑘𝐴 𝐵𝑆 ∧ ∃𝑘𝐴 𝑧 = 𝐵) → ∃𝑘𝐴 (𝐵𝑆𝑧 = 𝐵))
5 simpr 485 . . . . . . . . . 10 ((𝐵𝑆𝑧 = 𝐵) → 𝑧 = 𝐵)
6 simpl 483 . . . . . . . . . 10 ((𝐵𝑆𝑧 = 𝐵) → 𝐵𝑆)
75, 6eqeltrd 2833 . . . . . . . . 9 ((𝐵𝑆𝑧 = 𝐵) → 𝑧𝑆)
87rexlimivw 3151 . . . . . . . 8 (∃𝑘𝐴 (𝐵𝑆𝑧 = 𝐵) → 𝑧𝑆)
94, 8syl 17 . . . . . . 7 ((∀𝑘𝐴 𝐵𝑆 ∧ ∃𝑘𝐴 𝑧 = 𝐵) → 𝑧𝑆)
109ex 413 . . . . . 6 (∀𝑘𝐴 𝐵𝑆 → (∃𝑘𝐴 𝑧 = 𝐵𝑧𝑆))
1110abssdv 4064 . . . . 5 (∀𝑘𝐴 𝐵𝑆 → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ⊆ 𝑆)
12113ad2ant2 1134 . . . 4 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ⊆ 𝑆)
13 elpw2g 5343 . . . . 5 (𝑆 ran sigAlgebra → ({𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆 ↔ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ⊆ 𝑆))
143, 13syl 17 . . . 4 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → ({𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆 ↔ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ⊆ 𝑆))
1512, 14mpbird 256 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆)
16 sigaclcuni.1 . . . . 5 𝑘𝐴
1716abrexctf 31930 . . . 4 (𝐴 ≼ ω → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ≼ ω)
18173ad2ant3 1135 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ≼ ω)
19 sigaclcu 33103 . . 3 ((𝑆 ran sigAlgebra ∧ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆 ∧ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ≼ ω) → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ∈ 𝑆)
203, 15, 18, 19syl3anc 1371 . 2 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ∈ 𝑆)
212, 20eqeltrd 2833 1 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → 𝑘𝐴 𝐵𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  {cab 2709  wnfc 2883  wral 3061  wrex 3070  wss 3947  𝒫 cpw 4601   cuni 4907   ciun 4996   class class class wbr 5147  ran crn 5676  ωcom 7851  cdom 8933  sigAlgebracsiga 33094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-ac2 10454
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-oi 9501  df-card 9930  df-acn 9933  df-ac 10107  df-siga 33095
This theorem is referenced by:  measvuni  33200  imambfm  33249  sibfof  33327
  Copyright terms: Public domain W3C validator