Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigaclcuni | Structured version Visualization version GIF version |
Description: A sigma-algebra is closed under countable union: indexed union version. (Contributed by Thierry Arnoux, 8-Jun-2017.) |
Ref | Expression |
---|---|
sigaclcuni.1 | ⊢ Ⅎ𝑘𝐴 |
Ref | Expression |
---|---|
sigaclcuni | ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiun2g 4922 | . . 3 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵}) | |
2 | 1 | 3ad2ant2 1131 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵}) |
3 | simp1 1133 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → 𝑆 ∈ ∪ ran sigAlgebra) | |
4 | r19.29 3181 | . . . . . . . 8 ⊢ ((∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵) → ∃𝑘 ∈ 𝐴 (𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵)) | |
5 | simpr 488 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵) → 𝑧 = 𝐵) | |
6 | simpl 486 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵) → 𝐵 ∈ 𝑆) | |
7 | 5, 6 | eqeltrd 2852 | . . . . . . . . 9 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵) → 𝑧 ∈ 𝑆) |
8 | 7 | rexlimivw 3206 | . . . . . . . 8 ⊢ (∃𝑘 ∈ 𝐴 (𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵) → 𝑧 ∈ 𝑆) |
9 | 4, 8 | syl 17 | . . . . . . 7 ⊢ ((∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵) → 𝑧 ∈ 𝑆) |
10 | 9 | ex 416 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 → (∃𝑘 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ 𝑆)) |
11 | 10 | abssdv 3975 | . . . . 5 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝑆) |
12 | 11 | 3ad2ant2 1131 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝑆) |
13 | elpw2g 5217 | . . . . 5 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ({𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆 ↔ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝑆)) | |
14 | 3, 13 | syl 17 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → ({𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆 ↔ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝑆)) |
15 | 12, 14 | mpbird 260 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆) |
16 | sigaclcuni.1 | . . . . 5 ⊢ Ⅎ𝑘𝐴 | |
17 | 16 | abrexctf 30581 | . . . 4 ⊢ (𝐴 ≼ ω → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ≼ ω) |
18 | 17 | 3ad2ant3 1132 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ≼ ω) |
19 | sigaclcu 31608 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆 ∧ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ≼ ω) → ∪ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝑆) | |
20 | 3, 15, 18, 19 | syl3anc 1368 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → ∪ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝑆) |
21 | 2, 20 | eqeltrd 2852 | 1 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 {cab 2735 Ⅎwnfc 2899 ∀wral 3070 ∃wrex 3071 ⊆ wss 3860 𝒫 cpw 4497 ∪ cuni 4801 ∪ ciun 4886 class class class wbr 5035 ran crn 5528 ωcom 7584 ≼ cdom 8530 sigAlgebracsiga 31599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-inf2 9142 ax-ac2 9928 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-se 5487 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-er 8304 df-map 8423 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-oi 9012 df-card 9406 df-acn 9409 df-ac 9581 df-siga 31600 |
This theorem is referenced by: measvuni 31705 imambfm 31752 sibfof 31830 |
Copyright terms: Public domain | W3C validator |