Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaclcuni Structured version   Visualization version   GIF version

Theorem sigaclcuni 32114
Description: A sigma-algebra is closed under countable union: indexed union version. (Contributed by Thierry Arnoux, 8-Jun-2017.)
Hypothesis
Ref Expression
sigaclcuni.1 𝑘𝐴
Assertion
Ref Expression
sigaclcuni ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → 𝑘𝐴 𝐵𝑆)
Distinct variable group:   𝑆,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem sigaclcuni
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfiun2g 4963 . . 3 (∀𝑘𝐴 𝐵𝑆 𝑘𝐴 𝐵 = {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵})
213ad2ant2 1132 . 2 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → 𝑘𝐴 𝐵 = {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵})
3 simp1 1134 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → 𝑆 ran sigAlgebra)
4 r19.29 3111 . . . . . . . 8 ((∀𝑘𝐴 𝐵𝑆 ∧ ∃𝑘𝐴 𝑧 = 𝐵) → ∃𝑘𝐴 (𝐵𝑆𝑧 = 𝐵))
5 simpr 484 . . . . . . . . . 10 ((𝐵𝑆𝑧 = 𝐵) → 𝑧 = 𝐵)
6 simpl 482 . . . . . . . . . 10 ((𝐵𝑆𝑧 = 𝐵) → 𝐵𝑆)
75, 6eqeltrd 2834 . . . . . . . . 9 ((𝐵𝑆𝑧 = 𝐵) → 𝑧𝑆)
87rexlimivw 3142 . . . . . . . 8 (∃𝑘𝐴 (𝐵𝑆𝑧 = 𝐵) → 𝑧𝑆)
94, 8syl 17 . . . . . . 7 ((∀𝑘𝐴 𝐵𝑆 ∧ ∃𝑘𝐴 𝑧 = 𝐵) → 𝑧𝑆)
109ex 412 . . . . . 6 (∀𝑘𝐴 𝐵𝑆 → (∃𝑘𝐴 𝑧 = 𝐵𝑧𝑆))
1110abssdv 4004 . . . . 5 (∀𝑘𝐴 𝐵𝑆 → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ⊆ 𝑆)
12113ad2ant2 1132 . . . 4 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ⊆ 𝑆)
13 elpw2g 5271 . . . . 5 (𝑆 ran sigAlgebra → ({𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆 ↔ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ⊆ 𝑆))
143, 13syl 17 . . . 4 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → ({𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆 ↔ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ⊆ 𝑆))
1512, 14mpbird 256 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆)
16 sigaclcuni.1 . . . . 5 𝑘𝐴
1716abrexctf 31081 . . . 4 (𝐴 ≼ ω → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ≼ ω)
18173ad2ant3 1133 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ≼ ω)
19 sigaclcu 32113 . . 3 ((𝑆 ran sigAlgebra ∧ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆 ∧ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ≼ ω) → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ∈ 𝑆)
203, 15, 18, 19syl3anc 1369 . 2 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} ∈ 𝑆)
212, 20eqeltrd 2834 1 ((𝑆 ran sigAlgebra ∧ ∀𝑘𝐴 𝐵𝑆𝐴 ≼ ω) → 𝑘𝐴 𝐵𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1537  wcel 2101  {cab 2710  wnfc 2882  wral 3059  wrex 3068  wss 3889  𝒫 cpw 4536   cuni 4841   ciun 4927   class class class wbr 5077  ran crn 5592  ωcom 7732  cdom 8751  sigAlgebracsiga 32104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-inf2 9427  ax-ac2 10247
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-int 4883  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-se 5547  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-isom 6456  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-om 7733  df-1st 7851  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-1o 8317  df-er 8518  df-map 8637  df-en 8754  df-dom 8755  df-sdom 8756  df-fin 8757  df-oi 9297  df-card 9725  df-acn 9728  df-ac 9900  df-siga 32105
This theorem is referenced by:  measvuni  32210  imambfm  32257  sibfof  32335
  Copyright terms: Public domain W3C validator