Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigaclcuni | Structured version Visualization version GIF version |
Description: A sigma-algebra is closed under countable union: indexed union version. (Contributed by Thierry Arnoux, 8-Jun-2017.) |
Ref | Expression |
---|---|
sigaclcuni.1 | ⊢ Ⅎ𝑘𝐴 |
Ref | Expression |
---|---|
sigaclcuni | ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiun2g 4963 | . . 3 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵}) | |
2 | 1 | 3ad2ant2 1132 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵}) |
3 | simp1 1134 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → 𝑆 ∈ ∪ ran sigAlgebra) | |
4 | r19.29 3111 | . . . . . . . 8 ⊢ ((∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵) → ∃𝑘 ∈ 𝐴 (𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵)) | |
5 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵) → 𝑧 = 𝐵) | |
6 | simpl 482 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵) → 𝐵 ∈ 𝑆) | |
7 | 5, 6 | eqeltrd 2834 | . . . . . . . . 9 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵) → 𝑧 ∈ 𝑆) |
8 | 7 | rexlimivw 3142 | . . . . . . . 8 ⊢ (∃𝑘 ∈ 𝐴 (𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵) → 𝑧 ∈ 𝑆) |
9 | 4, 8 | syl 17 | . . . . . . 7 ⊢ ((∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵) → 𝑧 ∈ 𝑆) |
10 | 9 | ex 412 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 → (∃𝑘 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ 𝑆)) |
11 | 10 | abssdv 4004 | . . . . 5 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝑆) |
12 | 11 | 3ad2ant2 1132 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝑆) |
13 | elpw2g 5271 | . . . . 5 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ({𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆 ↔ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝑆)) | |
14 | 3, 13 | syl 17 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → ({𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆 ↔ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝑆)) |
15 | 12, 14 | mpbird 256 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆) |
16 | sigaclcuni.1 | . . . . 5 ⊢ Ⅎ𝑘𝐴 | |
17 | 16 | abrexctf 31081 | . . . 4 ⊢ (𝐴 ≼ ω → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ≼ ω) |
18 | 17 | 3ad2ant3 1133 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ≼ ω) |
19 | sigaclcu 32113 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝒫 𝑆 ∧ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ≼ ω) → ∪ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝑆) | |
20 | 3, 15, 18, 19 | syl3anc 1369 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → ∪ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} ∈ 𝑆) |
21 | 2, 20 | eqeltrd 2834 | 1 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1537 ∈ wcel 2101 {cab 2710 Ⅎwnfc 2882 ∀wral 3059 ∃wrex 3068 ⊆ wss 3889 𝒫 cpw 4536 ∪ cuni 4841 ∪ ciun 4927 class class class wbr 5077 ran crn 5592 ωcom 7732 ≼ cdom 8751 sigAlgebracsiga 32104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-inf2 9427 ax-ac2 10247 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-int 4883 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-se 5547 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-isom 6456 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-er 8518 df-map 8637 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-oi 9297 df-card 9725 df-acn 9728 df-ac 9900 df-siga 32105 |
This theorem is referenced by: measvuni 32210 imambfm 32257 sibfof 32335 |
Copyright terms: Public domain | W3C validator |