Step | Hyp | Ref
| Expression |
1 | | dmatid.a |
. . . . 5
⊢ 𝐴 = (𝑁 Mat 𝑅) |
2 | | dmatid.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐴) |
3 | | dmatid.0 |
. . . . 5
⊢ 0 =
(0g‘𝑅) |
4 | | dmatid.d |
. . . . 5
⊢ 𝐷 = (𝑁 DMat 𝑅) |
5 | 1, 2, 3, 4 | dmatel 21642 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 ∈ 𝐷 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑋𝑗) = 0 )))) |
6 | | neeq1 3006 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝐼 → (𝑖 ≠ 𝑗 ↔ 𝐼 ≠ 𝑗)) |
7 | | oveq1 7282 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝐼 → (𝑖𝑋𝑗) = (𝐼𝑋𝑗)) |
8 | 7 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝐼 → ((𝑖𝑋𝑗) = 0 ↔ (𝐼𝑋𝑗) = 0 )) |
9 | 6, 8 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑖 = 𝐼 → ((𝑖 ≠ 𝑗 → (𝑖𝑋𝑗) = 0 ) ↔ (𝐼 ≠ 𝑗 → (𝐼𝑋𝑗) = 0 ))) |
10 | | neeq2 3007 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝐽 → (𝐼 ≠ 𝑗 ↔ 𝐼 ≠ 𝐽)) |
11 | | oveq2 7283 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝐽 → (𝐼𝑋𝑗) = (𝐼𝑋𝐽)) |
12 | 11 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝐽 → ((𝐼𝑋𝑗) = 0 ↔ (𝐼𝑋𝐽) = 0 )) |
13 | 10, 12 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑗 = 𝐽 → ((𝐼 ≠ 𝑗 → (𝐼𝑋𝑗) = 0 ) ↔ (𝐼 ≠ 𝐽 → (𝐼𝑋𝐽) = 0 ))) |
14 | 9, 13 | rspc2v 3570 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑋𝑗) = 0 ) → (𝐼 ≠ 𝐽 → (𝐼𝑋𝐽) = 0 ))) |
15 | 14 | com23 86 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝐼 ≠ 𝐽 → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑋𝑗) = 0 ) → (𝐼𝑋𝐽) = 0 ))) |
16 | 15 | 3impia 1116 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐼 ≠ 𝐽) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑋𝑗) = 0 ) → (𝐼𝑋𝐽) = 0 )) |
17 | 16 | com12 32 |
. . . . . 6
⊢
(∀𝑖 ∈
𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑋𝑗) = 0 ) → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐼 ≠ 𝐽) → (𝐼𝑋𝐽) = 0 )) |
18 | 17 | 2a1i 12 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 ∈ 𝐵 → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑋𝑗) = 0 ) → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐼 ≠ 𝐽) → (𝐼𝑋𝐽) = 0 )))) |
19 | 18 | impd 411 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑋 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑋𝑗) = 0 )) → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐼 ≠ 𝐽) → (𝐼𝑋𝐽) = 0 ))) |
20 | 5, 19 | sylbid 239 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 ∈ 𝐷 → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐼 ≠ 𝐽) → (𝐼𝑋𝐽) = 0 ))) |
21 | 20 | 3impia 1116 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐷) → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐼 ≠ 𝐽) → (𝐼𝑋𝐽) = 0 )) |
22 | 21 | imp 407 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐷) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐼 ≠ 𝐽)) → (𝐼𝑋𝐽) = 0 ) |