MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatelnd Structured version   Visualization version   GIF version

Theorem dmatelnd 22439
Description: An extradiagonal entry of a diagonal matrix is equal to zero. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatid.a 𝐴 = (𝑁 Mat 𝑅)
dmatid.b 𝐵 = (Base‘𝐴)
dmatid.0 0 = (0g𝑅)
dmatid.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatelnd (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷) ∧ (𝐼𝑁𝐽𝑁𝐼𝐽)) → (𝐼𝑋𝐽) = 0 )

Proof of Theorem dmatelnd
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmatid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 dmatid.b . . . . 5 𝐵 = (Base‘𝐴)
3 dmatid.0 . . . . 5 0 = (0g𝑅)
4 dmatid.d . . . . 5 𝐷 = (𝑁 DMat 𝑅)
51, 2, 3, 4dmatel 22436 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝐷 ↔ (𝑋𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 ))))
6 neeq1 2995 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝑖𝑗𝐼𝑗))
7 oveq1 7417 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑖𝑋𝑗) = (𝐼𝑋𝑗))
87eqeq1d 2738 . . . . . . . . . . 11 (𝑖 = 𝐼 → ((𝑖𝑋𝑗) = 0 ↔ (𝐼𝑋𝑗) = 0 ))
96, 8imbi12d 344 . . . . . . . . . 10 (𝑖 = 𝐼 → ((𝑖𝑗 → (𝑖𝑋𝑗) = 0 ) ↔ (𝐼𝑗 → (𝐼𝑋𝑗) = 0 )))
10 neeq2 2996 . . . . . . . . . . 11 (𝑗 = 𝐽 → (𝐼𝑗𝐼𝐽))
11 oveq2 7418 . . . . . . . . . . . 12 (𝑗 = 𝐽 → (𝐼𝑋𝑗) = (𝐼𝑋𝐽))
1211eqeq1d 2738 . . . . . . . . . . 11 (𝑗 = 𝐽 → ((𝐼𝑋𝑗) = 0 ↔ (𝐼𝑋𝐽) = 0 ))
1310, 12imbi12d 344 . . . . . . . . . 10 (𝑗 = 𝐽 → ((𝐼𝑗 → (𝐼𝑋𝑗) = 0 ) ↔ (𝐼𝐽 → (𝐼𝑋𝐽) = 0 )))
149, 13rspc2v 3617 . . . . . . . . 9 ((𝐼𝑁𝐽𝑁) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 ) → (𝐼𝐽 → (𝐼𝑋𝐽) = 0 )))
1514com23 86 . . . . . . . 8 ((𝐼𝑁𝐽𝑁) → (𝐼𝐽 → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 ) → (𝐼𝑋𝐽) = 0 )))
16153impia 1117 . . . . . . 7 ((𝐼𝑁𝐽𝑁𝐼𝐽) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 ) → (𝐼𝑋𝐽) = 0 ))
1716com12 32 . . . . . 6 (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 ) → ((𝐼𝑁𝐽𝑁𝐼𝐽) → (𝐼𝑋𝐽) = 0 ))
18172a1i 12 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝐵 → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 ) → ((𝐼𝑁𝐽𝑁𝐼𝐽) → (𝐼𝑋𝐽) = 0 ))))
1918impd 410 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑋𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 )) → ((𝐼𝑁𝐽𝑁𝐼𝐽) → (𝐼𝑋𝐽) = 0 )))
205, 19sylbid 240 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝐷 → ((𝐼𝑁𝐽𝑁𝐼𝐽) → (𝐼𝑋𝐽) = 0 )))
21203impia 1117 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷) → ((𝐼𝑁𝐽𝑁𝐼𝐽) → (𝐼𝑋𝐽) = 0 ))
2221imp 406 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷) ∧ (𝐼𝑁𝐽𝑁𝐼𝐽)) → (𝐼𝑋𝐽) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  cfv 6536  (class class class)co 7410  Fincfn 8964  Basecbs 17233  0gc0g 17458  Ringcrg 20198   Mat cmat 22350   DMat cdmat 22431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-dmat 22433
This theorem is referenced by:  dmatmul  22440  dmatsubcl  22441
  Copyright terms: Public domain W3C validator