MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatelnd Structured version   Visualization version   GIF version

Theorem dmatelnd 22390
Description: An extradiagonal entry of a diagonal matrix is equal to zero. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatid.a 𝐴 = (𝑁 Mat 𝑅)
dmatid.b 𝐵 = (Base‘𝐴)
dmatid.0 0 = (0g𝑅)
dmatid.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatelnd (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷) ∧ (𝐼𝑁𝐽𝑁𝐼𝐽)) → (𝐼𝑋𝐽) = 0 )

Proof of Theorem dmatelnd
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmatid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 dmatid.b . . . . 5 𝐵 = (Base‘𝐴)
3 dmatid.0 . . . . 5 0 = (0g𝑅)
4 dmatid.d . . . . 5 𝐷 = (𝑁 DMat 𝑅)
51, 2, 3, 4dmatel 22387 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝐷 ↔ (𝑋𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 ))))
6 neeq1 2988 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝑖𝑗𝐼𝑗))
7 oveq1 7397 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑖𝑋𝑗) = (𝐼𝑋𝑗))
87eqeq1d 2732 . . . . . . . . . . 11 (𝑖 = 𝐼 → ((𝑖𝑋𝑗) = 0 ↔ (𝐼𝑋𝑗) = 0 ))
96, 8imbi12d 344 . . . . . . . . . 10 (𝑖 = 𝐼 → ((𝑖𝑗 → (𝑖𝑋𝑗) = 0 ) ↔ (𝐼𝑗 → (𝐼𝑋𝑗) = 0 )))
10 neeq2 2989 . . . . . . . . . . 11 (𝑗 = 𝐽 → (𝐼𝑗𝐼𝐽))
11 oveq2 7398 . . . . . . . . . . . 12 (𝑗 = 𝐽 → (𝐼𝑋𝑗) = (𝐼𝑋𝐽))
1211eqeq1d 2732 . . . . . . . . . . 11 (𝑗 = 𝐽 → ((𝐼𝑋𝑗) = 0 ↔ (𝐼𝑋𝐽) = 0 ))
1310, 12imbi12d 344 . . . . . . . . . 10 (𝑗 = 𝐽 → ((𝐼𝑗 → (𝐼𝑋𝑗) = 0 ) ↔ (𝐼𝐽 → (𝐼𝑋𝐽) = 0 )))
149, 13rspc2v 3602 . . . . . . . . 9 ((𝐼𝑁𝐽𝑁) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 ) → (𝐼𝐽 → (𝐼𝑋𝐽) = 0 )))
1514com23 86 . . . . . . . 8 ((𝐼𝑁𝐽𝑁) → (𝐼𝐽 → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 ) → (𝐼𝑋𝐽) = 0 )))
16153impia 1117 . . . . . . 7 ((𝐼𝑁𝐽𝑁𝐼𝐽) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 ) → (𝐼𝑋𝐽) = 0 ))
1716com12 32 . . . . . 6 (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 ) → ((𝐼𝑁𝐽𝑁𝐼𝐽) → (𝐼𝑋𝐽) = 0 ))
18172a1i 12 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝐵 → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 ) → ((𝐼𝑁𝐽𝑁𝐼𝐽) → (𝐼𝑋𝐽) = 0 ))))
1918impd 410 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑋𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 )) → ((𝐼𝑁𝐽𝑁𝐼𝐽) → (𝐼𝑋𝐽) = 0 )))
205, 19sylbid 240 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝐷 → ((𝐼𝑁𝐽𝑁𝐼𝐽) → (𝐼𝑋𝐽) = 0 )))
21203impia 1117 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷) → ((𝐼𝑁𝐽𝑁𝐼𝐽) → (𝐼𝑋𝐽) = 0 ))
2221imp 406 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷) ∧ (𝐼𝑁𝐽𝑁𝐼𝐽)) → (𝐼𝑋𝐽) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  cfv 6514  (class class class)co 7390  Fincfn 8921  Basecbs 17186  0gc0g 17409  Ringcrg 20149   Mat cmat 22301   DMat cdmat 22382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-dmat 22384
This theorem is referenced by:  dmatmul  22391  dmatsubcl  22392
  Copyright terms: Public domain W3C validator