MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatelnd Structured version   Visualization version   GIF version

Theorem dmatelnd 22319
Description: An extradiagonal entry of a diagonal matrix is equal to zero. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatid.a 𝐴 = (𝑁 Mat 𝑅)
dmatid.b 𝐵 = (Base‘𝐴)
dmatid.0 0 = (0g𝑅)
dmatid.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatelnd (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷) ∧ (𝐼𝑁𝐽𝑁𝐼𝐽)) → (𝐼𝑋𝐽) = 0 )

Proof of Theorem dmatelnd
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmatid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 dmatid.b . . . . 5 𝐵 = (Base‘𝐴)
3 dmatid.0 . . . . 5 0 = (0g𝑅)
4 dmatid.d . . . . 5 𝐷 = (𝑁 DMat 𝑅)
51, 2, 3, 4dmatel 22316 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝐷 ↔ (𝑋𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 ))))
6 neeq1 2995 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝑖𝑗𝐼𝑗))
7 oveq1 7408 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑖𝑋𝑗) = (𝐼𝑋𝑗))
87eqeq1d 2726 . . . . . . . . . . 11 (𝑖 = 𝐼 → ((𝑖𝑋𝑗) = 0 ↔ (𝐼𝑋𝑗) = 0 ))
96, 8imbi12d 344 . . . . . . . . . 10 (𝑖 = 𝐼 → ((𝑖𝑗 → (𝑖𝑋𝑗) = 0 ) ↔ (𝐼𝑗 → (𝐼𝑋𝑗) = 0 )))
10 neeq2 2996 . . . . . . . . . . 11 (𝑗 = 𝐽 → (𝐼𝑗𝐼𝐽))
11 oveq2 7409 . . . . . . . . . . . 12 (𝑗 = 𝐽 → (𝐼𝑋𝑗) = (𝐼𝑋𝐽))
1211eqeq1d 2726 . . . . . . . . . . 11 (𝑗 = 𝐽 → ((𝐼𝑋𝑗) = 0 ↔ (𝐼𝑋𝐽) = 0 ))
1310, 12imbi12d 344 . . . . . . . . . 10 (𝑗 = 𝐽 → ((𝐼𝑗 → (𝐼𝑋𝑗) = 0 ) ↔ (𝐼𝐽 → (𝐼𝑋𝐽) = 0 )))
149, 13rspc2v 3614 . . . . . . . . 9 ((𝐼𝑁𝐽𝑁) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 ) → (𝐼𝐽 → (𝐼𝑋𝐽) = 0 )))
1514com23 86 . . . . . . . 8 ((𝐼𝑁𝐽𝑁) → (𝐼𝐽 → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 ) → (𝐼𝑋𝐽) = 0 )))
16153impia 1114 . . . . . . 7 ((𝐼𝑁𝐽𝑁𝐼𝐽) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 ) → (𝐼𝑋𝐽) = 0 ))
1716com12 32 . . . . . 6 (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 ) → ((𝐼𝑁𝐽𝑁𝐼𝐽) → (𝐼𝑋𝐽) = 0 ))
18172a1i 12 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝐵 → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 ) → ((𝐼𝑁𝐽𝑁𝐼𝐽) → (𝐼𝑋𝐽) = 0 ))))
1918impd 410 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑋𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 )) → ((𝐼𝑁𝐽𝑁𝐼𝐽) → (𝐼𝑋𝐽) = 0 )))
205, 19sylbid 239 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝐷 → ((𝐼𝑁𝐽𝑁𝐼𝐽) → (𝐼𝑋𝐽) = 0 )))
21203impia 1114 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷) → ((𝐼𝑁𝐽𝑁𝐼𝐽) → (𝐼𝑋𝐽) = 0 ))
2221imp 406 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷) ∧ (𝐼𝑁𝐽𝑁𝐼𝐽)) → (𝐼𝑋𝐽) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2932  wral 3053  cfv 6533  (class class class)co 7401  Fincfn 8934  Basecbs 17142  0gc0g 17383  Ringcrg 20127   Mat cmat 22228   DMat cdmat 22311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-iota 6485  df-fun 6535  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-dmat 22313
This theorem is referenced by:  dmatmul  22320  dmatsubcl  22321
  Copyright terms: Public domain W3C validator