MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatelnd Structured version   Visualization version   GIF version

Theorem dmatelnd 21101
Description: An extradiagonal entry of a diagonal matrix is equal to zero. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatid.a 𝐴 = (𝑁 Mat 𝑅)
dmatid.b 𝐵 = (Base‘𝐴)
dmatid.0 0 = (0g𝑅)
dmatid.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatelnd (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷) ∧ (𝐼𝑁𝐽𝑁𝐼𝐽)) → (𝐼𝑋𝐽) = 0 )

Proof of Theorem dmatelnd
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmatid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 dmatid.b . . . . 5 𝐵 = (Base‘𝐴)
3 dmatid.0 . . . . 5 0 = (0g𝑅)
4 dmatid.d . . . . 5 𝐷 = (𝑁 DMat 𝑅)
51, 2, 3, 4dmatel 21098 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝐷 ↔ (𝑋𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 ))))
6 neeq1 3049 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝑖𝑗𝐼𝑗))
7 oveq1 7142 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑖𝑋𝑗) = (𝐼𝑋𝑗))
87eqeq1d 2800 . . . . . . . . . . 11 (𝑖 = 𝐼 → ((𝑖𝑋𝑗) = 0 ↔ (𝐼𝑋𝑗) = 0 ))
96, 8imbi12d 348 . . . . . . . . . 10 (𝑖 = 𝐼 → ((𝑖𝑗 → (𝑖𝑋𝑗) = 0 ) ↔ (𝐼𝑗 → (𝐼𝑋𝑗) = 0 )))
10 neeq2 3050 . . . . . . . . . . 11 (𝑗 = 𝐽 → (𝐼𝑗𝐼𝐽))
11 oveq2 7143 . . . . . . . . . . . 12 (𝑗 = 𝐽 → (𝐼𝑋𝑗) = (𝐼𝑋𝐽))
1211eqeq1d 2800 . . . . . . . . . . 11 (𝑗 = 𝐽 → ((𝐼𝑋𝑗) = 0 ↔ (𝐼𝑋𝐽) = 0 ))
1310, 12imbi12d 348 . . . . . . . . . 10 (𝑗 = 𝐽 → ((𝐼𝑗 → (𝐼𝑋𝑗) = 0 ) ↔ (𝐼𝐽 → (𝐼𝑋𝐽) = 0 )))
149, 13rspc2v 3581 . . . . . . . . 9 ((𝐼𝑁𝐽𝑁) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 ) → (𝐼𝐽 → (𝐼𝑋𝐽) = 0 )))
1514com23 86 . . . . . . . 8 ((𝐼𝑁𝐽𝑁) → (𝐼𝐽 → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 ) → (𝐼𝑋𝐽) = 0 )))
16153impia 1114 . . . . . . 7 ((𝐼𝑁𝐽𝑁𝐼𝐽) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 ) → (𝐼𝑋𝐽) = 0 ))
1716com12 32 . . . . . 6 (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 ) → ((𝐼𝑁𝐽𝑁𝐼𝐽) → (𝐼𝑋𝐽) = 0 ))
18172a1i 12 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝐵 → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 ) → ((𝐼𝑁𝐽𝑁𝐼𝐽) → (𝐼𝑋𝐽) = 0 ))))
1918impd 414 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑋𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑋𝑗) = 0 )) → ((𝐼𝑁𝐽𝑁𝐼𝐽) → (𝐼𝑋𝐽) = 0 )))
205, 19sylbid 243 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝐷 → ((𝐼𝑁𝐽𝑁𝐼𝐽) → (𝐼𝑋𝐽) = 0 )))
21203impia 1114 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷) → ((𝐼𝑁𝐽𝑁𝐼𝐽) → (𝐼𝑋𝐽) = 0 ))
2221imp 410 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷) ∧ (𝐼𝑁𝐽𝑁𝐼𝐽)) → (𝐼𝑋𝐽) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  cfv 6324  (class class class)co 7135  Fincfn 8492  Basecbs 16475  0gc0g 16705  Ringcrg 19290   Mat cmat 21012   DMat cdmat 21093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-dmat 21095
This theorem is referenced by:  dmatmul  21102  dmatsubcl  21103
  Copyright terms: Public domain W3C validator