![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dyadval | Structured version Visualization version GIF version |
Description: Value of the dyadic rational function 𝐹. (Contributed by Mario Carneiro, 26-Mar-2015.) |
Ref | Expression |
---|---|
dyadmbl.1 | ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) |
Ref | Expression |
---|---|
dyadval | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴𝐹𝐵) = ⟨(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
2 | oveq2 7412 | . . . 4 ⊢ (𝑦 = 𝐵 → (2↑𝑦) = (2↑𝐵)) | |
3 | 1, 2 | oveqan12d 7423 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 / (2↑𝑦)) = (𝐴 / (2↑𝐵))) |
4 | oveq1 7411 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 + 1) = (𝐴 + 1)) | |
5 | 4, 2 | oveqan12d 7423 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑥 + 1) / (2↑𝑦)) = ((𝐴 + 1) / (2↑𝐵))) |
6 | 3, 5 | opeq12d 4876 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ = ⟨(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))⟩) |
7 | dyadmbl.1 | . 2 ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) | |
8 | opex 5457 | . 2 ⊢ ⟨(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))⟩ ∈ V | |
9 | 6, 7, 8 | ovmpoa 7558 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴𝐹𝐵) = ⟨(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ⟨cop 4629 (class class class)co 7404 ∈ cmpo 7406 1c1 11110 + caddc 11112 / cdiv 11872 2c2 12268 ℕ0cn0 12473 ℤcz 12559 ↑cexp 14030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6488 df-fun 6538 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 |
This theorem is referenced by: dyadovol 25473 dyadss 25474 dyaddisjlem 25475 dyadmaxlem 25477 opnmbllem 25481 opnmbllem0 37035 |
Copyright terms: Public domain | W3C validator |