MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadval Structured version   Visualization version   GIF version

Theorem dyadval 25109
Description: Value of the dyadic rational function 𝐹. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
Assertion
Ref Expression
dyadval ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴𝐹𝐵) = ⟨(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))⟩)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dyadval
StepHypRef Expression
1 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
2 oveq2 7417 . . . 4 (𝑦 = 𝐵 → (2↑𝑦) = (2↑𝐵))
31, 2oveqan12d 7428 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 / (2↑𝑦)) = (𝐴 / (2↑𝐵)))
4 oveq1 7416 . . . 4 (𝑥 = 𝐴 → (𝑥 + 1) = (𝐴 + 1))
54, 2oveqan12d 7428 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥 + 1) / (2↑𝑦)) = ((𝐴 + 1) / (2↑𝐵)))
63, 5opeq12d 4882 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ = ⟨(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))⟩)
7 dyadmbl.1 . 2 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
8 opex 5465 . 2 ⟨(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))⟩ ∈ V
96, 7, 8ovmpoa 7563 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴𝐹𝐵) = ⟨(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  cop 4635  (class class class)co 7409  cmpo 7411  1c1 11111   + caddc 11113   / cdiv 11871  2c2 12267  0cn0 12472  cz 12558  cexp 14027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414
This theorem is referenced by:  dyadovol  25110  dyadss  25111  dyaddisjlem  25112  dyadmaxlem  25114  opnmbllem  25118  opnmbllem0  36524
  Copyright terms: Public domain W3C validator