MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadval Structured version   Visualization version   GIF version

Theorem dyadval 25521
Description: Value of the dyadic rational function 𝐹. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
Assertion
Ref Expression
dyadval ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴𝐹𝐵) = ⟨(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))⟩)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dyadval
StepHypRef Expression
1 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
2 oveq2 7354 . . . 4 (𝑦 = 𝐵 → (2↑𝑦) = (2↑𝐵))
31, 2oveqan12d 7365 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 / (2↑𝑦)) = (𝐴 / (2↑𝐵)))
4 oveq1 7353 . . . 4 (𝑥 = 𝐴 → (𝑥 + 1) = (𝐴 + 1))
54, 2oveqan12d 7365 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥 + 1) / (2↑𝑦)) = ((𝐴 + 1) / (2↑𝐵)))
63, 5opeq12d 4833 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ = ⟨(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))⟩)
7 dyadmbl.1 . 2 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
8 opex 5404 . 2 ⟨(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))⟩ ∈ V
96, 7, 8ovmpoa 7501 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴𝐹𝐵) = ⟨(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cop 4582  (class class class)co 7346  cmpo 7348  1c1 11007   + caddc 11009   / cdiv 11774  2c2 12180  0cn0 12381  cz 12468  cexp 13968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351
This theorem is referenced by:  dyadovol  25522  dyadss  25523  dyaddisjlem  25524  dyadmaxlem  25526  opnmbllem  25530  opnmbllem0  37702
  Copyright terms: Public domain W3C validator