| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dyadval | Structured version Visualization version GIF version | ||
| Description: Value of the dyadic rational function 𝐹. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| Ref | Expression |
|---|---|
| dyadmbl.1 | ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) |
| Ref | Expression |
|---|---|
| dyadval | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴𝐹𝐵) = 〈(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 2 | oveq2 7421 | . . . 4 ⊢ (𝑦 = 𝐵 → (2↑𝑦) = (2↑𝐵)) | |
| 3 | 1, 2 | oveqan12d 7432 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 / (2↑𝑦)) = (𝐴 / (2↑𝐵))) |
| 4 | oveq1 7420 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 + 1) = (𝐴 + 1)) | |
| 5 | 4, 2 | oveqan12d 7432 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑥 + 1) / (2↑𝑦)) = ((𝐴 + 1) / (2↑𝐵))) |
| 6 | 3, 5 | opeq12d 4861 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉 = 〈(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))〉) |
| 7 | dyadmbl.1 | . 2 ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) | |
| 8 | opex 5449 | . 2 ⊢ 〈(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))〉 ∈ V | |
| 9 | 6, 7, 8 | ovmpoa 7570 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴𝐹𝐵) = 〈(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 〈cop 4612 (class class class)co 7413 ∈ cmpo 7415 1c1 11138 + caddc 11140 / cdiv 11902 2c2 12303 ℕ0cn0 12509 ℤcz 12596 ↑cexp 14084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 |
| This theorem is referenced by: dyadovol 25564 dyadss 25565 dyaddisjlem 25566 dyadmaxlem 25568 opnmbllem 25572 opnmbllem0 37622 |
| Copyright terms: Public domain | W3C validator |