MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadval Structured version   Visualization version   GIF version

Theorem dyadval 25652
Description: Value of the dyadic rational function 𝐹. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
Assertion
Ref Expression
dyadval ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴𝐹𝐵) = ⟨(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))⟩)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dyadval
StepHypRef Expression
1 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
2 oveq2 7446 . . . 4 (𝑦 = 𝐵 → (2↑𝑦) = (2↑𝐵))
31, 2oveqan12d 7457 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 / (2↑𝑦)) = (𝐴 / (2↑𝐵)))
4 oveq1 7445 . . . 4 (𝑥 = 𝐴 → (𝑥 + 1) = (𝐴 + 1))
54, 2oveqan12d 7457 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥 + 1) / (2↑𝑦)) = ((𝐴 + 1) / (2↑𝐵)))
63, 5opeq12d 4889 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ = ⟨(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))⟩)
7 dyadmbl.1 . 2 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
8 opex 5478 . 2 ⟨(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))⟩ ∈ V
96, 7, 8ovmpoa 7595 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴𝐹𝐵) = ⟨(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cop 4640  (class class class)co 7438  cmpo 7440  1c1 11163   + caddc 11165   / cdiv 11927  2c2 12328  0cn0 12533  cz 12620  cexp 14108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-iota 6522  df-fun 6571  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443
This theorem is referenced by:  dyadovol  25653  dyadss  25654  dyaddisjlem  25655  dyadmaxlem  25657  opnmbllem  25661  opnmbllem0  37657
  Copyright terms: Public domain W3C validator