| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dyadf | Structured version Visualization version GIF version | ||
| Description: The function 𝐹 returns the endpoints of a dyadic rational covering of the real line. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| Ref | Expression |
|---|---|
| dyadmbl.1 | ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) |
| Ref | Expression |
|---|---|
| dyadf | ⊢ 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 12540 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
| 2 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑥 ∈ ℝ) |
| 3 | 2 | lep1d 12121 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑥 ≤ (𝑥 + 1)) |
| 4 | peano2re 11354 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ) | |
| 5 | 2, 4 | syl 17 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑥 + 1) ∈ ℝ) |
| 6 | 2nn 12266 | . . . . . . . . . 10 ⊢ 2 ∈ ℕ | |
| 7 | nnexpcl 14046 | . . . . . . . . . 10 ⊢ ((2 ∈ ℕ ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℕ) | |
| 8 | 6, 7 | mpan 690 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ0 → (2↑𝑦) ∈ ℕ) |
| 9 | 8 | adantl 481 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℕ) |
| 10 | 9 | nnred 12208 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℝ) |
| 11 | 9 | nngt0d 12242 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 0 < (2↑𝑦)) |
| 12 | lediv1 12055 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ ∧ ((2↑𝑦) ∈ ℝ ∧ 0 < (2↑𝑦))) → (𝑥 ≤ (𝑥 + 1) ↔ (𝑥 / (2↑𝑦)) ≤ ((𝑥 + 1) / (2↑𝑦)))) | |
| 13 | 2, 5, 10, 11, 12 | syl112anc 1376 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑥 ≤ (𝑥 + 1) ↔ (𝑥 / (2↑𝑦)) ≤ ((𝑥 + 1) / (2↑𝑦)))) |
| 14 | 3, 13 | mpbid 232 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑥 / (2↑𝑦)) ≤ ((𝑥 + 1) / (2↑𝑦))) |
| 15 | df-br 5111 | . . . . 5 ⊢ ((𝑥 / (2↑𝑦)) ≤ ((𝑥 + 1) / (2↑𝑦)) ↔ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉 ∈ ≤ ) | |
| 16 | 14, 15 | sylib 218 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉 ∈ ≤ ) |
| 17 | nndivre 12234 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ (2↑𝑦) ∈ ℕ) → (𝑥 / (2↑𝑦)) ∈ ℝ) | |
| 18 | 1, 8, 17 | syl2an 596 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑥 / (2↑𝑦)) ∈ ℝ) |
| 19 | 1, 4 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → (𝑥 + 1) ∈ ℝ) |
| 20 | nndivre 12234 | . . . . . 6 ⊢ (((𝑥 + 1) ∈ ℝ ∧ (2↑𝑦) ∈ ℕ) → ((𝑥 + 1) / (2↑𝑦)) ∈ ℝ) | |
| 21 | 19, 8, 20 | syl2an 596 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ((𝑥 + 1) / (2↑𝑦)) ∈ ℝ) |
| 22 | 18, 21 | opelxpd 5680 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉 ∈ (ℝ × ℝ)) |
| 23 | 16, 22 | elind 4166 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉 ∈ ( ≤ ∩ (ℝ × ℝ))) |
| 24 | 23 | rgen2 3178 | . 2 ⊢ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℕ0 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉 ∈ ( ≤ ∩ (ℝ × ℝ)) |
| 25 | dyadmbl.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) | |
| 26 | 25 | fmpo 8050 | . 2 ⊢ (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℕ0 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉 ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))) |
| 27 | 24, 26 | mpbi 230 | 1 ⊢ 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∩ cin 3916 〈cop 4598 class class class wbr 5110 × cxp 5639 ⟶wf 6510 (class class class)co 7390 ∈ cmpo 7392 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 < clt 11215 ≤ cle 11216 / cdiv 11842 ℕcn 12193 2c2 12248 ℕ0cn0 12449 ℤcz 12536 ↑cexp 14033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-seq 13974 df-exp 14034 |
| This theorem is referenced by: dyaddisj 25504 dyadmax 25506 dyadmbllem 25507 dyadmbl 25508 opnmbllem 25509 opnmbllem0 37657 mblfinlem2 37659 |
| Copyright terms: Public domain | W3C validator |