MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadf Structured version   Visualization version   GIF version

Theorem dyadf 25544
Description: The function 𝐹 returns the endpoints of a dyadic rational covering of the real line. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
Assertion
Ref Expression
dyadf 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
Distinct variable group:   𝑥,𝑦,𝐹

Proof of Theorem dyadf
StepHypRef Expression
1 zre 12592 . . . . . . . 8 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
21adantr 480 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑥 ∈ ℝ)
32lep1d 12173 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑥 ≤ (𝑥 + 1))
4 peano2re 11408 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
52, 4syl 17 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑥 + 1) ∈ ℝ)
6 2nn 12313 . . . . . . . . . 10 2 ∈ ℕ
7 nnexpcl 14092 . . . . . . . . . 10 ((2 ∈ ℕ ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℕ)
86, 7mpan 690 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (2↑𝑦) ∈ ℕ)
98adantl 481 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℕ)
109nnred 12255 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℝ)
119nngt0d 12289 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 0 < (2↑𝑦))
12 lediv1 12107 . . . . . . 7 ((𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ ∧ ((2↑𝑦) ∈ ℝ ∧ 0 < (2↑𝑦))) → (𝑥 ≤ (𝑥 + 1) ↔ (𝑥 / (2↑𝑦)) ≤ ((𝑥 + 1) / (2↑𝑦))))
132, 5, 10, 11, 12syl112anc 1376 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑥 ≤ (𝑥 + 1) ↔ (𝑥 / (2↑𝑦)) ≤ ((𝑥 + 1) / (2↑𝑦))))
143, 13mpbid 232 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑥 / (2↑𝑦)) ≤ ((𝑥 + 1) / (2↑𝑦)))
15 df-br 5120 . . . . 5 ((𝑥 / (2↑𝑦)) ≤ ((𝑥 + 1) / (2↑𝑦)) ↔ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ ≤ )
1614, 15sylib 218 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ ≤ )
17 nndivre 12281 . . . . . 6 ((𝑥 ∈ ℝ ∧ (2↑𝑦) ∈ ℕ) → (𝑥 / (2↑𝑦)) ∈ ℝ)
181, 8, 17syl2an 596 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑥 / (2↑𝑦)) ∈ ℝ)
191, 4syl 17 . . . . . 6 (𝑥 ∈ ℤ → (𝑥 + 1) ∈ ℝ)
20 nndivre 12281 . . . . . 6 (((𝑥 + 1) ∈ ℝ ∧ (2↑𝑦) ∈ ℕ) → ((𝑥 + 1) / (2↑𝑦)) ∈ ℝ)
2119, 8, 20syl2an 596 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ((𝑥 + 1) / (2↑𝑦)) ∈ ℝ)
2218, 21opelxpd 5693 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ (ℝ × ℝ))
2316, 22elind 4175 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
2423rgen2 3184 . 2 𝑥 ∈ ℤ ∀𝑦 ∈ ℕ0 ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ ( ≤ ∩ (ℝ × ℝ))
25 dyadmbl.1 . . 3 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
2625fmpo 8067 . 2 (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℕ0 ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)))
2724, 26mpbi 230 1 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  cin 3925  cop 4607   class class class wbr 5119   × cxp 5652  wf 6527  (class class class)co 7405  cmpo 7407  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   < clt 11269  cle 11270   / cdiv 11894  cn 12240  2c2 12295  0cn0 12501  cz 12588  cexp 14079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-seq 14020  df-exp 14080
This theorem is referenced by:  dyaddisj  25549  dyadmax  25551  dyadmbllem  25552  dyadmbl  25553  opnmbllem  25554  opnmbllem0  37680  mblfinlem2  37682
  Copyright terms: Public domain W3C validator