![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dyadf | Structured version Visualization version GIF version |
Description: The function 𝐹 returns the endpoints of a dyadic rational covering of the real line. (Contributed by Mario Carneiro, 26-Mar-2015.) |
Ref | Expression |
---|---|
dyadmbl.1 | ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) |
Ref | Expression |
---|---|
dyadf | ⊢ 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 12614 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
2 | 1 | adantr 479 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑥 ∈ ℝ) |
3 | 2 | lep1d 12197 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑥 ≤ (𝑥 + 1)) |
4 | peano2re 11437 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ) | |
5 | 2, 4 | syl 17 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑥 + 1) ∈ ℝ) |
6 | 2nn 12337 | . . . . . . . . . 10 ⊢ 2 ∈ ℕ | |
7 | nnexpcl 14094 | . . . . . . . . . 10 ⊢ ((2 ∈ ℕ ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℕ) | |
8 | 6, 7 | mpan 688 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ0 → (2↑𝑦) ∈ ℕ) |
9 | 8 | adantl 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℕ) |
10 | 9 | nnred 12279 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℝ) |
11 | 9 | nngt0d 12313 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 0 < (2↑𝑦)) |
12 | lediv1 12131 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ ∧ ((2↑𝑦) ∈ ℝ ∧ 0 < (2↑𝑦))) → (𝑥 ≤ (𝑥 + 1) ↔ (𝑥 / (2↑𝑦)) ≤ ((𝑥 + 1) / (2↑𝑦)))) | |
13 | 2, 5, 10, 11, 12 | syl112anc 1371 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑥 ≤ (𝑥 + 1) ↔ (𝑥 / (2↑𝑦)) ≤ ((𝑥 + 1) / (2↑𝑦)))) |
14 | 3, 13 | mpbid 231 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑥 / (2↑𝑦)) ≤ ((𝑥 + 1) / (2↑𝑦))) |
15 | df-br 5154 | . . . . 5 ⊢ ((𝑥 / (2↑𝑦)) ≤ ((𝑥 + 1) / (2↑𝑦)) ↔ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉 ∈ ≤ ) | |
16 | 14, 15 | sylib 217 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉 ∈ ≤ ) |
17 | nndivre 12305 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ (2↑𝑦) ∈ ℕ) → (𝑥 / (2↑𝑦)) ∈ ℝ) | |
18 | 1, 8, 17 | syl2an 594 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑥 / (2↑𝑦)) ∈ ℝ) |
19 | 1, 4 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → (𝑥 + 1) ∈ ℝ) |
20 | nndivre 12305 | . . . . . 6 ⊢ (((𝑥 + 1) ∈ ℝ ∧ (2↑𝑦) ∈ ℕ) → ((𝑥 + 1) / (2↑𝑦)) ∈ ℝ) | |
21 | 19, 8, 20 | syl2an 594 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ((𝑥 + 1) / (2↑𝑦)) ∈ ℝ) |
22 | 18, 21 | opelxpd 5721 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉 ∈ (ℝ × ℝ)) |
23 | 16, 22 | elind 4195 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉 ∈ ( ≤ ∩ (ℝ × ℝ))) |
24 | 23 | rgen2 3188 | . 2 ⊢ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℕ0 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉 ∈ ( ≤ ∩ (ℝ × ℝ)) |
25 | dyadmbl.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) | |
26 | 25 | fmpo 8082 | . 2 ⊢ (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℕ0 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉 ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))) |
27 | 24, 26 | mpbi 229 | 1 ⊢ 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ∩ cin 3946 〈cop 4639 class class class wbr 5153 × cxp 5680 ⟶wf 6550 (class class class)co 7424 ∈ cmpo 7426 ℝcr 11157 0cc0 11158 1c1 11159 + caddc 11161 < clt 11298 ≤ cle 11299 / cdiv 11921 ℕcn 12264 2c2 12319 ℕ0cn0 12524 ℤcz 12610 ↑cexp 14081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-n0 12525 df-z 12611 df-uz 12875 df-seq 14022 df-exp 14082 |
This theorem is referenced by: dyaddisj 25616 dyadmax 25618 dyadmbllem 25619 dyadmbl 25620 opnmbllem 25621 opnmbllem0 37357 mblfinlem2 37359 |
Copyright terms: Public domain | W3C validator |