![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dyadf | Structured version Visualization version GIF version |
Description: The function 𝐹 returns the endpoints of a dyadic rational covering of the real line. (Contributed by Mario Carneiro, 26-Mar-2015.) |
Ref | Expression |
---|---|
dyadmbl.1 | ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) |
Ref | Expression |
---|---|
dyadf | ⊢ 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 12511 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
2 | 1 | adantr 482 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑥 ∈ ℝ) |
3 | 2 | lep1d 12094 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑥 ≤ (𝑥 + 1)) |
4 | peano2re 11336 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ) | |
5 | 2, 4 | syl 17 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑥 + 1) ∈ ℝ) |
6 | 2nn 12234 | . . . . . . . . . 10 ⊢ 2 ∈ ℕ | |
7 | nnexpcl 13989 | . . . . . . . . . 10 ⊢ ((2 ∈ ℕ ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℕ) | |
8 | 6, 7 | mpan 689 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ0 → (2↑𝑦) ∈ ℕ) |
9 | 8 | adantl 483 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℕ) |
10 | 9 | nnred 12176 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℝ) |
11 | 9 | nngt0d 12210 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 0 < (2↑𝑦)) |
12 | lediv1 12028 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ ∧ ((2↑𝑦) ∈ ℝ ∧ 0 < (2↑𝑦))) → (𝑥 ≤ (𝑥 + 1) ↔ (𝑥 / (2↑𝑦)) ≤ ((𝑥 + 1) / (2↑𝑦)))) | |
13 | 2, 5, 10, 11, 12 | syl112anc 1375 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑥 ≤ (𝑥 + 1) ↔ (𝑥 / (2↑𝑦)) ≤ ((𝑥 + 1) / (2↑𝑦)))) |
14 | 3, 13 | mpbid 231 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑥 / (2↑𝑦)) ≤ ((𝑥 + 1) / (2↑𝑦))) |
15 | df-br 5110 | . . . . 5 ⊢ ((𝑥 / (2↑𝑦)) ≤ ((𝑥 + 1) / (2↑𝑦)) ↔ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ ≤ ) | |
16 | 14, 15 | sylib 217 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ ≤ ) |
17 | nndivre 12202 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ (2↑𝑦) ∈ ℕ) → (𝑥 / (2↑𝑦)) ∈ ℝ) | |
18 | 1, 8, 17 | syl2an 597 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑥 / (2↑𝑦)) ∈ ℝ) |
19 | 1, 4 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → (𝑥 + 1) ∈ ℝ) |
20 | nndivre 12202 | . . . . . 6 ⊢ (((𝑥 + 1) ∈ ℝ ∧ (2↑𝑦) ∈ ℕ) → ((𝑥 + 1) / (2↑𝑦)) ∈ ℝ) | |
21 | 19, 8, 20 | syl2an 597 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ((𝑥 + 1) / (2↑𝑦)) ∈ ℝ) |
22 | 18, 21 | opelxpd 5675 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ (ℝ × ℝ)) |
23 | 16, 22 | elind 4158 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ ( ≤ ∩ (ℝ × ℝ))) |
24 | 23 | rgen2 3191 | . 2 ⊢ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℕ0 ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) |
25 | dyadmbl.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) | |
26 | 25 | fmpo 8004 | . 2 ⊢ (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℕ0 ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))) |
27 | 24, 26 | mpbi 229 | 1 ⊢ 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3061 ∩ cin 3913 ⟨cop 4596 class class class wbr 5109 × cxp 5635 ⟶wf 6496 (class class class)co 7361 ∈ cmpo 7363 ℝcr 11058 0cc0 11059 1c1 11060 + caddc 11062 < clt 11197 ≤ cle 11198 / cdiv 11820 ℕcn 12161 2c2 12216 ℕ0cn0 12421 ℤcz 12507 ↑cexp 13976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-1st 7925 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-div 11821 df-nn 12162 df-2 12224 df-n0 12422 df-z 12508 df-uz 12772 df-seq 13916 df-exp 13977 |
This theorem is referenced by: dyaddisj 24983 dyadmax 24985 dyadmbllem 24986 dyadmbl 24987 opnmbllem 24988 opnmbllem0 36164 mblfinlem2 36166 |
Copyright terms: Public domain | W3C validator |