MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadss Structured version   Visualization version   GIF version

Theorem dyadss 24758
Description: Two closed dyadic rational intervals are either in a subset relationship or are almost disjoint (the interiors are disjoint). (Contributed by Mario Carneiro, 26-Mar-2015.) (Proof shortened by Mario Carneiro, 26-Apr-2016.)
Hypothesis
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
Assertion
Ref Expression
dyadss (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) → 𝐷𝐶))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐴,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dyadss
StepHypRef Expression
1 simpr 485 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)))
2 simpllr 773 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐵 ∈ ℤ)
3 simplrr 775 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐷 ∈ ℕ0)
4 dyadmbl.1 . . . . . . . . . . 11 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
54dyadval 24756 . . . . . . . . . 10 ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ0) → (𝐵𝐹𝐷) = ⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
62, 3, 5syl2anc 584 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (𝐵𝐹𝐷) = ⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
76fveq2d 6778 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ([,]‘(𝐵𝐹𝐷)) = ([,]‘⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩))
8 df-ov 7278 . . . . . . . 8 ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))) = ([,]‘⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
97, 8eqtr4di 2796 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ([,]‘(𝐵𝐹𝐷)) = ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))))
102zred 12426 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐵 ∈ ℝ)
11 2nn 12046 . . . . . . . . . 10 2 ∈ ℕ
12 nnexpcl 13795 . . . . . . . . . 10 ((2 ∈ ℕ ∧ 𝐷 ∈ ℕ0) → (2↑𝐷) ∈ ℕ)
1311, 3, 12sylancr 587 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (2↑𝐷) ∈ ℕ)
1410, 13nndivred 12027 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (𝐵 / (2↑𝐷)) ∈ ℝ)
15 peano2re 11148 . . . . . . . . . 10 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
1610, 15syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (𝐵 + 1) ∈ ℝ)
1716, 13nndivred 12027 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ)
18 iccssre 13161 . . . . . . . 8 (((𝐵 / (2↑𝐷)) ∈ ℝ ∧ ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ) → ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))) ⊆ ℝ)
1914, 17, 18syl2anc 584 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))) ⊆ ℝ)
209, 19eqsstrd 3959 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ([,]‘(𝐵𝐹𝐷)) ⊆ ℝ)
21 ovolss 24649 . . . . . 6 ((([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∧ ([,]‘(𝐵𝐹𝐷)) ⊆ ℝ) → (vol*‘([,]‘(𝐴𝐹𝐶))) ≤ (vol*‘([,]‘(𝐵𝐹𝐷))))
221, 20, 21syl2anc 584 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (vol*‘([,]‘(𝐴𝐹𝐶))) ≤ (vol*‘([,]‘(𝐵𝐹𝐷))))
23 simplll 772 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐴 ∈ ℤ)
24 simplrl 774 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐶 ∈ ℕ0)
254dyadovol 24757 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (vol*‘([,]‘(𝐴𝐹𝐶))) = (1 / (2↑𝐶)))
2623, 24, 25syl2anc 584 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (vol*‘([,]‘(𝐴𝐹𝐶))) = (1 / (2↑𝐶)))
274dyadovol 24757 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ0) → (vol*‘([,]‘(𝐵𝐹𝐷))) = (1 / (2↑𝐷)))
282, 3, 27syl2anc 584 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (vol*‘([,]‘(𝐵𝐹𝐷))) = (1 / (2↑𝐷)))
2922, 26, 283brtr3d 5105 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (1 / (2↑𝐶)) ≤ (1 / (2↑𝐷)))
30 nnexpcl 13795 . . . . . 6 ((2 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (2↑𝐶) ∈ ℕ)
3111, 24, 30sylancr 587 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (2↑𝐶) ∈ ℕ)
32 nnre 11980 . . . . . . 7 ((2↑𝐷) ∈ ℕ → (2↑𝐷) ∈ ℝ)
33 nngt0 12004 . . . . . . 7 ((2↑𝐷) ∈ ℕ → 0 < (2↑𝐷))
3432, 33jca 512 . . . . . 6 ((2↑𝐷) ∈ ℕ → ((2↑𝐷) ∈ ℝ ∧ 0 < (2↑𝐷)))
35 nnre 11980 . . . . . . 7 ((2↑𝐶) ∈ ℕ → (2↑𝐶) ∈ ℝ)
36 nngt0 12004 . . . . . . 7 ((2↑𝐶) ∈ ℕ → 0 < (2↑𝐶))
3735, 36jca 512 . . . . . 6 ((2↑𝐶) ∈ ℕ → ((2↑𝐶) ∈ ℝ ∧ 0 < (2↑𝐶)))
38 lerec 11858 . . . . . 6 ((((2↑𝐷) ∈ ℝ ∧ 0 < (2↑𝐷)) ∧ ((2↑𝐶) ∈ ℝ ∧ 0 < (2↑𝐶))) → ((2↑𝐷) ≤ (2↑𝐶) ↔ (1 / (2↑𝐶)) ≤ (1 / (2↑𝐷))))
3934, 37, 38syl2an 596 . . . . 5 (((2↑𝐷) ∈ ℕ ∧ (2↑𝐶) ∈ ℕ) → ((2↑𝐷) ≤ (2↑𝐶) ↔ (1 / (2↑𝐶)) ≤ (1 / (2↑𝐷))))
4013, 31, 39syl2anc 584 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ((2↑𝐷) ≤ (2↑𝐶) ↔ (1 / (2↑𝐶)) ≤ (1 / (2↑𝐷))))
4129, 40mpbird 256 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (2↑𝐷) ≤ (2↑𝐶))
42 2re 12047 . . . . 5 2 ∈ ℝ
4342a1i 11 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 2 ∈ ℝ)
443nn0zd 12424 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐷 ∈ ℤ)
4524nn0zd 12424 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐶 ∈ ℤ)
46 1lt2 12144 . . . . 5 1 < 2
4746a1i 11 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 1 < 2)
4843, 44, 45, 47leexp2d 13969 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (𝐷𝐶 ↔ (2↑𝐷) ≤ (2↑𝐶)))
4941, 48mpbird 256 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐷𝐶)
5049ex 413 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) → 𝐷𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wss 3887  cop 4567   class class class wbr 5074  cfv 6433  (class class class)co 7275  cmpo 7277  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  [,]cicc 13082  cexp 13782  vol*covol 24626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-rest 17133  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-bases 22096  df-cmp 22538  df-ovol 24628
This theorem is referenced by:  dyadmaxlem  24761
  Copyright terms: Public domain W3C validator