Proof of Theorem dyadss
| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) |
| 2 | | simpllr 775 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐵 ∈ ℤ) |
| 3 | | simplrr 777 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐷 ∈
ℕ0) |
| 4 | | dyadmbl.1 |
. . . . . . . . . . 11
⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) |
| 5 | 4 | dyadval 25550 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ0)
→ (𝐵𝐹𝐷) = 〈(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))〉) |
| 6 | 2, 3, 5 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (𝐵𝐹𝐷) = 〈(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))〉) |
| 7 | 6 | fveq2d 6885 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ([,]‘(𝐵𝐹𝐷)) = ([,]‘〈(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))〉)) |
| 8 | | df-ov 7413 |
. . . . . . . 8
⊢ ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))) = ([,]‘〈(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))〉) |
| 9 | 7, 8 | eqtr4di 2789 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ([,]‘(𝐵𝐹𝐷)) = ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷)))) |
| 10 | 2 | zred 12702 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐵 ∈ ℝ) |
| 11 | | 2nn 12318 |
. . . . . . . . . 10
⊢ 2 ∈
ℕ |
| 12 | | nnexpcl 14097 |
. . . . . . . . . 10
⊢ ((2
∈ ℕ ∧ 𝐷
∈ ℕ0) → (2↑𝐷) ∈ ℕ) |
| 13 | 11, 3, 12 | sylancr 587 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (2↑𝐷) ∈ ℕ) |
| 14 | 10, 13 | nndivred 12299 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (𝐵 / (2↑𝐷)) ∈ ℝ) |
| 15 | | peano2re 11413 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℝ → (𝐵 + 1) ∈
ℝ) |
| 16 | 10, 15 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (𝐵 + 1) ∈ ℝ) |
| 17 | 16, 13 | nndivred 12299 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ) |
| 18 | | iccssre 13451 |
. . . . . . . 8
⊢ (((𝐵 / (2↑𝐷)) ∈ ℝ ∧ ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ) → ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))) ⊆ ℝ) |
| 19 | 14, 17, 18 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))) ⊆ ℝ) |
| 20 | 9, 19 | eqsstrd 3998 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ([,]‘(𝐵𝐹𝐷)) ⊆ ℝ) |
| 21 | | ovolss 25443 |
. . . . . 6
⊢
((([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∧ ([,]‘(𝐵𝐹𝐷)) ⊆ ℝ) →
(vol*‘([,]‘(𝐴𝐹𝐶))) ≤ (vol*‘([,]‘(𝐵𝐹𝐷)))) |
| 22 | 1, 20, 21 | syl2anc 584 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (vol*‘([,]‘(𝐴𝐹𝐶))) ≤ (vol*‘([,]‘(𝐵𝐹𝐷)))) |
| 23 | | simplll 774 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐴 ∈ ℤ) |
| 24 | | simplrl 776 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐶 ∈
ℕ0) |
| 25 | 4 | dyadovol 25551 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℕ0)
→ (vol*‘([,]‘(𝐴𝐹𝐶))) = (1 / (2↑𝐶))) |
| 26 | 23, 24, 25 | syl2anc 584 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (vol*‘([,]‘(𝐴𝐹𝐶))) = (1 / (2↑𝐶))) |
| 27 | 4 | dyadovol 25551 |
. . . . . 6
⊢ ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ0)
→ (vol*‘([,]‘(𝐵𝐹𝐷))) = (1 / (2↑𝐷))) |
| 28 | 2, 3, 27 | syl2anc 584 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (vol*‘([,]‘(𝐵𝐹𝐷))) = (1 / (2↑𝐷))) |
| 29 | 22, 26, 28 | 3brtr3d 5155 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (1 / (2↑𝐶)) ≤ (1 / (2↑𝐷))) |
| 30 | | nnexpcl 14097 |
. . . . . 6
⊢ ((2
∈ ℕ ∧ 𝐶
∈ ℕ0) → (2↑𝐶) ∈ ℕ) |
| 31 | 11, 24, 30 | sylancr 587 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (2↑𝐶) ∈ ℕ) |
| 32 | | nnre 12252 |
. . . . . . 7
⊢
((2↑𝐷) ∈
ℕ → (2↑𝐷)
∈ ℝ) |
| 33 | | nngt0 12276 |
. . . . . . 7
⊢
((2↑𝐷) ∈
ℕ → 0 < (2↑𝐷)) |
| 34 | 32, 33 | jca 511 |
. . . . . 6
⊢
((2↑𝐷) ∈
ℕ → ((2↑𝐷)
∈ ℝ ∧ 0 < (2↑𝐷))) |
| 35 | | nnre 12252 |
. . . . . . 7
⊢
((2↑𝐶) ∈
ℕ → (2↑𝐶)
∈ ℝ) |
| 36 | | nngt0 12276 |
. . . . . . 7
⊢
((2↑𝐶) ∈
ℕ → 0 < (2↑𝐶)) |
| 37 | 35, 36 | jca 511 |
. . . . . 6
⊢
((2↑𝐶) ∈
ℕ → ((2↑𝐶)
∈ ℝ ∧ 0 < (2↑𝐶))) |
| 38 | | lerec 12130 |
. . . . . 6
⊢
((((2↑𝐷) ∈
ℝ ∧ 0 < (2↑𝐷)) ∧ ((2↑𝐶) ∈ ℝ ∧ 0 < (2↑𝐶))) → ((2↑𝐷) ≤ (2↑𝐶) ↔ (1 / (2↑𝐶)) ≤ (1 / (2↑𝐷)))) |
| 39 | 34, 37, 38 | syl2an 596 |
. . . . 5
⊢
(((2↑𝐷) ∈
ℕ ∧ (2↑𝐶)
∈ ℕ) → ((2↑𝐷) ≤ (2↑𝐶) ↔ (1 / (2↑𝐶)) ≤ (1 / (2↑𝐷)))) |
| 40 | 13, 31, 39 | syl2anc 584 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ((2↑𝐷) ≤ (2↑𝐶) ↔ (1 / (2↑𝐶)) ≤ (1 / (2↑𝐷)))) |
| 41 | 29, 40 | mpbird 257 |
. . 3
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (2↑𝐷) ≤ (2↑𝐶)) |
| 42 | | 2re 12319 |
. . . . 5
⊢ 2 ∈
ℝ |
| 43 | 42 | a1i 11 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 2 ∈
ℝ) |
| 44 | 3 | nn0zd 12619 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐷 ∈ ℤ) |
| 45 | 24 | nn0zd 12619 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐶 ∈ ℤ) |
| 46 | | 1lt2 12416 |
. . . . 5
⊢ 1 <
2 |
| 47 | 46 | a1i 11 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 1 < 2) |
| 48 | 43, 44, 45, 47 | leexp2d 14275 |
. . 3
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (𝐷 ≤ 𝐶 ↔ (2↑𝐷) ≤ (2↑𝐶))) |
| 49 | 41, 48 | mpbird 257 |
. 2
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐷 ≤ 𝐶) |
| 50 | 49 | ex 412 |
1
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0
∧ 𝐷 ∈
ℕ0)) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) → 𝐷 ≤ 𝐶)) |