MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadovol Structured version   Visualization version   GIF version

Theorem dyadovol 23766
Description: Volume of a dyadic rational interval. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
Assertion
Ref Expression
dyadovol ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (vol*‘([,]‘(𝐴𝐹𝐵))) = (1 / (2↑𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dyadovol
StepHypRef Expression
1 dyadmbl.1 . . . . . 6 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
21dyadval 23765 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴𝐹𝐵) = ⟨(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))⟩)
32fveq2d 6441 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ([,]‘(𝐴𝐹𝐵)) = ([,]‘⟨(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))⟩))
4 df-ov 6913 . . . 4 ((𝐴 / (2↑𝐵))[,]((𝐴 + 1) / (2↑𝐵))) = ([,]‘⟨(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))⟩)
53, 4syl6eqr 2879 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ([,]‘(𝐴𝐹𝐵)) = ((𝐴 / (2↑𝐵))[,]((𝐴 + 1) / (2↑𝐵))))
65fveq2d 6441 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (vol*‘([,]‘(𝐴𝐹𝐵))) = (vol*‘((𝐴 / (2↑𝐵))[,]((𝐴 + 1) / (2↑𝐵)))))
7 zre 11715 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
8 2nn 11431 . . . . 5 2 ∈ ℕ
9 nnexpcl 13174 . . . . 5 ((2 ∈ ℕ ∧ 𝐵 ∈ ℕ0) → (2↑𝐵) ∈ ℕ)
108, 9mpan 681 . . . 4 (𝐵 ∈ ℕ0 → (2↑𝐵) ∈ ℕ)
11 nndivre 11399 . . . 4 ((𝐴 ∈ ℝ ∧ (2↑𝐵) ∈ ℕ) → (𝐴 / (2↑𝐵)) ∈ ℝ)
127, 10, 11syl2an 589 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 / (2↑𝐵)) ∈ ℝ)
13 peano2re 10535 . . . . 5 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
147, 13syl 17 . . . 4 (𝐴 ∈ ℤ → (𝐴 + 1) ∈ ℝ)
15 nndivre 11399 . . . 4 (((𝐴 + 1) ∈ ℝ ∧ (2↑𝐵) ∈ ℕ) → ((𝐴 + 1) / (2↑𝐵)) ∈ ℝ)
1614, 10, 15syl2an 589 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ((𝐴 + 1) / (2↑𝐵)) ∈ ℝ)
177adantr 474 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → 𝐴 ∈ ℝ)
1817lep1d 11292 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → 𝐴 ≤ (𝐴 + 1))
1917, 13syl 17 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 + 1) ∈ ℝ)
2010adantl 475 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (2↑𝐵) ∈ ℕ)
2120nnred 11374 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (2↑𝐵) ∈ ℝ)
2220nngt0d 11407 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → 0 < (2↑𝐵))
23 lediv1 11225 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ ∧ ((2↑𝐵) ∈ ℝ ∧ 0 < (2↑𝐵))) → (𝐴 ≤ (𝐴 + 1) ↔ (𝐴 / (2↑𝐵)) ≤ ((𝐴 + 1) / (2↑𝐵))))
2417, 19, 21, 22, 23syl112anc 1497 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 ≤ (𝐴 + 1) ↔ (𝐴 / (2↑𝐵)) ≤ ((𝐴 + 1) / (2↑𝐵))))
2518, 24mpbid 224 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 / (2↑𝐵)) ≤ ((𝐴 + 1) / (2↑𝐵)))
26 ovolicc 23696 . . 3 (((𝐴 / (2↑𝐵)) ∈ ℝ ∧ ((𝐴 + 1) / (2↑𝐵)) ∈ ℝ ∧ (𝐴 / (2↑𝐵)) ≤ ((𝐴 + 1) / (2↑𝐵))) → (vol*‘((𝐴 / (2↑𝐵))[,]((𝐴 + 1) / (2↑𝐵)))) = (((𝐴 + 1) / (2↑𝐵)) − (𝐴 / (2↑𝐵))))
2712, 16, 25, 26syl3anc 1494 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (vol*‘((𝐴 / (2↑𝐵))[,]((𝐴 + 1) / (2↑𝐵)))) = (((𝐴 + 1) / (2↑𝐵)) − (𝐴 / (2↑𝐵))))
2819recnd 10392 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 + 1) ∈ ℂ)
2917recnd 10392 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → 𝐴 ∈ ℂ)
3021recnd 10392 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (2↑𝐵) ∈ ℂ)
3120nnne0d 11408 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (2↑𝐵) ≠ 0)
3228, 29, 30, 31divsubdird 11173 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (((𝐴 + 1) − 𝐴) / (2↑𝐵)) = (((𝐴 + 1) / (2↑𝐵)) − (𝐴 / (2↑𝐵))))
33 ax-1cn 10317 . . . . 5 1 ∈ ℂ
34 pncan2 10615 . . . . 5 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 𝐴) = 1)
3529, 33, 34sylancl 580 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ((𝐴 + 1) − 𝐴) = 1)
3635oveq1d 6925 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (((𝐴 + 1) − 𝐴) / (2↑𝐵)) = (1 / (2↑𝐵)))
3732, 36eqtr3d 2863 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (((𝐴 + 1) / (2↑𝐵)) − (𝐴 / (2↑𝐵))) = (1 / (2↑𝐵)))
386, 27, 373eqtrd 2865 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (vol*‘([,]‘(𝐴𝐹𝐵))) = (1 / (2↑𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  cop 4405   class class class wbr 4875  cfv 6127  (class class class)co 6910  cmpt2 6912  cc 10257  cr 10258  0cc0 10259  1c1 10260   + caddc 10262   < clt 10398  cle 10399  cmin 10592   / cdiv 11016  cn 11357  2c2 11413  0cn0 11625  cz 11711  [,]cicc 12473  cexp 13161  vol*covol 23635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-fi 8592  df-sup 8623  df-inf 8624  df-oi 8691  df-card 9085  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-n0 11626  df-z 11712  df-uz 11976  df-q 12079  df-rp 12120  df-xneg 12239  df-xadd 12240  df-xmul 12241  df-ioo 12474  df-ico 12476  df-icc 12477  df-fz 12627  df-fzo 12768  df-seq 13103  df-exp 13162  df-hash 13418  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-clim 14603  df-sum 14801  df-rest 16443  df-topgen 16464  df-psmet 20105  df-xmet 20106  df-met 20107  df-bl 20108  df-mopn 20109  df-top 21076  df-topon 21093  df-bases 21128  df-cmp 21568  df-ovol 23637
This theorem is referenced by:  dyadss  23767
  Copyright terms: Public domain W3C validator