| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dyadovol | Structured version Visualization version GIF version | ||
| Description: Volume of a dyadic rational interval. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| Ref | Expression |
|---|---|
| dyadmbl.1 | ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) |
| Ref | Expression |
|---|---|
| dyadovol | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (vol*‘([,]‘(𝐴𝐹𝐵))) = (1 / (2↑𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dyadmbl.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) | |
| 2 | 1 | dyadval 25500 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴𝐹𝐵) = 〈(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))〉) |
| 3 | 2 | fveq2d 6865 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ([,]‘(𝐴𝐹𝐵)) = ([,]‘〈(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))〉)) |
| 4 | df-ov 7393 | . . . 4 ⊢ ((𝐴 / (2↑𝐵))[,]((𝐴 + 1) / (2↑𝐵))) = ([,]‘〈(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))〉) | |
| 5 | 3, 4 | eqtr4di 2783 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ([,]‘(𝐴𝐹𝐵)) = ((𝐴 / (2↑𝐵))[,]((𝐴 + 1) / (2↑𝐵)))) |
| 6 | 5 | fveq2d 6865 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (vol*‘([,]‘(𝐴𝐹𝐵))) = (vol*‘((𝐴 / (2↑𝐵))[,]((𝐴 + 1) / (2↑𝐵))))) |
| 7 | zre 12540 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 8 | 2nn 12266 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 9 | nnexpcl 14046 | . . . . 5 ⊢ ((2 ∈ ℕ ∧ 𝐵 ∈ ℕ0) → (2↑𝐵) ∈ ℕ) | |
| 10 | 8, 9 | mpan 690 | . . . 4 ⊢ (𝐵 ∈ ℕ0 → (2↑𝐵) ∈ ℕ) |
| 11 | nndivre 12234 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (2↑𝐵) ∈ ℕ) → (𝐴 / (2↑𝐵)) ∈ ℝ) | |
| 12 | 7, 10, 11 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 / (2↑𝐵)) ∈ ℝ) |
| 13 | peano2re 11354 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | |
| 14 | 7, 13 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℤ → (𝐴 + 1) ∈ ℝ) |
| 15 | nndivre 12234 | . . . 4 ⊢ (((𝐴 + 1) ∈ ℝ ∧ (2↑𝐵) ∈ ℕ) → ((𝐴 + 1) / (2↑𝐵)) ∈ ℝ) | |
| 16 | 14, 10, 15 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ((𝐴 + 1) / (2↑𝐵)) ∈ ℝ) |
| 17 | 7 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → 𝐴 ∈ ℝ) |
| 18 | 17 | lep1d 12121 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → 𝐴 ≤ (𝐴 + 1)) |
| 19 | 17, 13 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 + 1) ∈ ℝ) |
| 20 | 10 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (2↑𝐵) ∈ ℕ) |
| 21 | 20 | nnred 12208 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (2↑𝐵) ∈ ℝ) |
| 22 | 20 | nngt0d 12242 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → 0 < (2↑𝐵)) |
| 23 | lediv1 12055 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ ∧ ((2↑𝐵) ∈ ℝ ∧ 0 < (2↑𝐵))) → (𝐴 ≤ (𝐴 + 1) ↔ (𝐴 / (2↑𝐵)) ≤ ((𝐴 + 1) / (2↑𝐵)))) | |
| 24 | 17, 19, 21, 22, 23 | syl112anc 1376 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 ≤ (𝐴 + 1) ↔ (𝐴 / (2↑𝐵)) ≤ ((𝐴 + 1) / (2↑𝐵)))) |
| 25 | 18, 24 | mpbid 232 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 / (2↑𝐵)) ≤ ((𝐴 + 1) / (2↑𝐵))) |
| 26 | ovolicc 25431 | . . 3 ⊢ (((𝐴 / (2↑𝐵)) ∈ ℝ ∧ ((𝐴 + 1) / (2↑𝐵)) ∈ ℝ ∧ (𝐴 / (2↑𝐵)) ≤ ((𝐴 + 1) / (2↑𝐵))) → (vol*‘((𝐴 / (2↑𝐵))[,]((𝐴 + 1) / (2↑𝐵)))) = (((𝐴 + 1) / (2↑𝐵)) − (𝐴 / (2↑𝐵)))) | |
| 27 | 12, 16, 25, 26 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (vol*‘((𝐴 / (2↑𝐵))[,]((𝐴 + 1) / (2↑𝐵)))) = (((𝐴 + 1) / (2↑𝐵)) − (𝐴 / (2↑𝐵)))) |
| 28 | 19 | recnd 11209 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 + 1) ∈ ℂ) |
| 29 | 17 | recnd 11209 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → 𝐴 ∈ ℂ) |
| 30 | 21 | recnd 11209 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (2↑𝐵) ∈ ℂ) |
| 31 | 20 | nnne0d 12243 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (2↑𝐵) ≠ 0) |
| 32 | 28, 29, 30, 31 | divsubdird 12004 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (((𝐴 + 1) − 𝐴) / (2↑𝐵)) = (((𝐴 + 1) / (2↑𝐵)) − (𝐴 / (2↑𝐵)))) |
| 33 | ax-1cn 11133 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 34 | pncan2 11435 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 𝐴) = 1) | |
| 35 | 29, 33, 34 | sylancl 586 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ((𝐴 + 1) − 𝐴) = 1) |
| 36 | 35 | oveq1d 7405 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (((𝐴 + 1) − 𝐴) / (2↑𝐵)) = (1 / (2↑𝐵))) |
| 37 | 32, 36 | eqtr3d 2767 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (((𝐴 + 1) / (2↑𝐵)) − (𝐴 / (2↑𝐵))) = (1 / (2↑𝐵))) |
| 38 | 6, 27, 37 | 3eqtrd 2769 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (vol*‘([,]‘(𝐴𝐹𝐵))) = (1 / (2↑𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4598 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 < clt 11215 ≤ cle 11216 − cmin 11412 / cdiv 11842 ℕcn 12193 2c2 12248 ℕ0cn0 12449 ℤcz 12536 [,]cicc 13316 ↑cexp 14033 vol*covol 25370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-rest 17392 df-topgen 17413 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-top 22788 df-topon 22805 df-bases 22840 df-cmp 23281 df-ovol 25372 |
| This theorem is referenced by: dyadss 25502 |
| Copyright terms: Public domain | W3C validator |