Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dyadovol | Structured version Visualization version GIF version |
Description: Volume of a dyadic rational interval. (Contributed by Mario Carneiro, 26-Mar-2015.) |
Ref | Expression |
---|---|
dyadmbl.1 | ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) |
Ref | Expression |
---|---|
dyadovol | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (vol*‘([,]‘(𝐴𝐹𝐵))) = (1 / (2↑𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dyadmbl.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) | |
2 | 1 | dyadval 24756 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴𝐹𝐵) = 〈(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))〉) |
3 | 2 | fveq2d 6778 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ([,]‘(𝐴𝐹𝐵)) = ([,]‘〈(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))〉)) |
4 | df-ov 7278 | . . . 4 ⊢ ((𝐴 / (2↑𝐵))[,]((𝐴 + 1) / (2↑𝐵))) = ([,]‘〈(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))〉) | |
5 | 3, 4 | eqtr4di 2796 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ([,]‘(𝐴𝐹𝐵)) = ((𝐴 / (2↑𝐵))[,]((𝐴 + 1) / (2↑𝐵)))) |
6 | 5 | fveq2d 6778 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (vol*‘([,]‘(𝐴𝐹𝐵))) = (vol*‘((𝐴 / (2↑𝐵))[,]((𝐴 + 1) / (2↑𝐵))))) |
7 | zre 12323 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
8 | 2nn 12046 | . . . . 5 ⊢ 2 ∈ ℕ | |
9 | nnexpcl 13795 | . . . . 5 ⊢ ((2 ∈ ℕ ∧ 𝐵 ∈ ℕ0) → (2↑𝐵) ∈ ℕ) | |
10 | 8, 9 | mpan 687 | . . . 4 ⊢ (𝐵 ∈ ℕ0 → (2↑𝐵) ∈ ℕ) |
11 | nndivre 12014 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (2↑𝐵) ∈ ℕ) → (𝐴 / (2↑𝐵)) ∈ ℝ) | |
12 | 7, 10, 11 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 / (2↑𝐵)) ∈ ℝ) |
13 | peano2re 11148 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | |
14 | 7, 13 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℤ → (𝐴 + 1) ∈ ℝ) |
15 | nndivre 12014 | . . . 4 ⊢ (((𝐴 + 1) ∈ ℝ ∧ (2↑𝐵) ∈ ℕ) → ((𝐴 + 1) / (2↑𝐵)) ∈ ℝ) | |
16 | 14, 10, 15 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ((𝐴 + 1) / (2↑𝐵)) ∈ ℝ) |
17 | 7 | adantr 481 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → 𝐴 ∈ ℝ) |
18 | 17 | lep1d 11906 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → 𝐴 ≤ (𝐴 + 1)) |
19 | 17, 13 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 + 1) ∈ ℝ) |
20 | 10 | adantl 482 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (2↑𝐵) ∈ ℕ) |
21 | 20 | nnred 11988 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (2↑𝐵) ∈ ℝ) |
22 | 20 | nngt0d 12022 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → 0 < (2↑𝐵)) |
23 | lediv1 11840 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ ∧ ((2↑𝐵) ∈ ℝ ∧ 0 < (2↑𝐵))) → (𝐴 ≤ (𝐴 + 1) ↔ (𝐴 / (2↑𝐵)) ≤ ((𝐴 + 1) / (2↑𝐵)))) | |
24 | 17, 19, 21, 22, 23 | syl112anc 1373 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 ≤ (𝐴 + 1) ↔ (𝐴 / (2↑𝐵)) ≤ ((𝐴 + 1) / (2↑𝐵)))) |
25 | 18, 24 | mpbid 231 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 / (2↑𝐵)) ≤ ((𝐴 + 1) / (2↑𝐵))) |
26 | ovolicc 24687 | . . 3 ⊢ (((𝐴 / (2↑𝐵)) ∈ ℝ ∧ ((𝐴 + 1) / (2↑𝐵)) ∈ ℝ ∧ (𝐴 / (2↑𝐵)) ≤ ((𝐴 + 1) / (2↑𝐵))) → (vol*‘((𝐴 / (2↑𝐵))[,]((𝐴 + 1) / (2↑𝐵)))) = (((𝐴 + 1) / (2↑𝐵)) − (𝐴 / (2↑𝐵)))) | |
27 | 12, 16, 25, 26 | syl3anc 1370 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (vol*‘((𝐴 / (2↑𝐵))[,]((𝐴 + 1) / (2↑𝐵)))) = (((𝐴 + 1) / (2↑𝐵)) − (𝐴 / (2↑𝐵)))) |
28 | 19 | recnd 11003 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 + 1) ∈ ℂ) |
29 | 17 | recnd 11003 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → 𝐴 ∈ ℂ) |
30 | 21 | recnd 11003 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (2↑𝐵) ∈ ℂ) |
31 | 20 | nnne0d 12023 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (2↑𝐵) ≠ 0) |
32 | 28, 29, 30, 31 | divsubdird 11790 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (((𝐴 + 1) − 𝐴) / (2↑𝐵)) = (((𝐴 + 1) / (2↑𝐵)) − (𝐴 / (2↑𝐵)))) |
33 | ax-1cn 10929 | . . . . 5 ⊢ 1 ∈ ℂ | |
34 | pncan2 11228 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 𝐴) = 1) | |
35 | 29, 33, 34 | sylancl 586 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ((𝐴 + 1) − 𝐴) = 1) |
36 | 35 | oveq1d 7290 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (((𝐴 + 1) − 𝐴) / (2↑𝐵)) = (1 / (2↑𝐵))) |
37 | 32, 36 | eqtr3d 2780 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (((𝐴 + 1) / (2↑𝐵)) − (𝐴 / (2↑𝐵))) = (1 / (2↑𝐵))) |
38 | 6, 27, 37 | 3eqtrd 2782 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (vol*‘([,]‘(𝐴𝐹𝐵))) = (1 / (2↑𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 〈cop 4567 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 ℂcc 10869 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 < clt 11009 ≤ cle 11010 − cmin 11205 / cdiv 11632 ℕcn 11973 2c2 12028 ℕ0cn0 12233 ℤcz 12319 [,]cicc 13082 ↑cexp 13782 vol*covol 24626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-rest 17133 df-topgen 17154 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-top 22043 df-topon 22060 df-bases 22096 df-cmp 22538 df-ovol 24628 |
This theorem is referenced by: dyadss 24758 |
Copyright terms: Public domain | W3C validator |