![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dyadovol | Structured version Visualization version GIF version |
Description: Volume of a dyadic rational interval. (Contributed by Mario Carneiro, 26-Mar-2015.) |
Ref | Expression |
---|---|
dyadmbl.1 | ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) |
Ref | Expression |
---|---|
dyadovol | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (vol*‘([,]‘(𝐴𝐹𝐵))) = (1 / (2↑𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dyadmbl.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) | |
2 | 1 | dyadval 23765 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴𝐹𝐵) = 〈(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))〉) |
3 | 2 | fveq2d 6441 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ([,]‘(𝐴𝐹𝐵)) = ([,]‘〈(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))〉)) |
4 | df-ov 6913 | . . . 4 ⊢ ((𝐴 / (2↑𝐵))[,]((𝐴 + 1) / (2↑𝐵))) = ([,]‘〈(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))〉) | |
5 | 3, 4 | syl6eqr 2879 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ([,]‘(𝐴𝐹𝐵)) = ((𝐴 / (2↑𝐵))[,]((𝐴 + 1) / (2↑𝐵)))) |
6 | 5 | fveq2d 6441 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (vol*‘([,]‘(𝐴𝐹𝐵))) = (vol*‘((𝐴 / (2↑𝐵))[,]((𝐴 + 1) / (2↑𝐵))))) |
7 | zre 11715 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
8 | 2nn 11431 | . . . . 5 ⊢ 2 ∈ ℕ | |
9 | nnexpcl 13174 | . . . . 5 ⊢ ((2 ∈ ℕ ∧ 𝐵 ∈ ℕ0) → (2↑𝐵) ∈ ℕ) | |
10 | 8, 9 | mpan 681 | . . . 4 ⊢ (𝐵 ∈ ℕ0 → (2↑𝐵) ∈ ℕ) |
11 | nndivre 11399 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (2↑𝐵) ∈ ℕ) → (𝐴 / (2↑𝐵)) ∈ ℝ) | |
12 | 7, 10, 11 | syl2an 589 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 / (2↑𝐵)) ∈ ℝ) |
13 | peano2re 10535 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | |
14 | 7, 13 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℤ → (𝐴 + 1) ∈ ℝ) |
15 | nndivre 11399 | . . . 4 ⊢ (((𝐴 + 1) ∈ ℝ ∧ (2↑𝐵) ∈ ℕ) → ((𝐴 + 1) / (2↑𝐵)) ∈ ℝ) | |
16 | 14, 10, 15 | syl2an 589 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ((𝐴 + 1) / (2↑𝐵)) ∈ ℝ) |
17 | 7 | adantr 474 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → 𝐴 ∈ ℝ) |
18 | 17 | lep1d 11292 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → 𝐴 ≤ (𝐴 + 1)) |
19 | 17, 13 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 + 1) ∈ ℝ) |
20 | 10 | adantl 475 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (2↑𝐵) ∈ ℕ) |
21 | 20 | nnred 11374 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (2↑𝐵) ∈ ℝ) |
22 | 20 | nngt0d 11407 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → 0 < (2↑𝐵)) |
23 | lediv1 11225 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ ∧ ((2↑𝐵) ∈ ℝ ∧ 0 < (2↑𝐵))) → (𝐴 ≤ (𝐴 + 1) ↔ (𝐴 / (2↑𝐵)) ≤ ((𝐴 + 1) / (2↑𝐵)))) | |
24 | 17, 19, 21, 22, 23 | syl112anc 1497 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 ≤ (𝐴 + 1) ↔ (𝐴 / (2↑𝐵)) ≤ ((𝐴 + 1) / (2↑𝐵)))) |
25 | 18, 24 | mpbid 224 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 / (2↑𝐵)) ≤ ((𝐴 + 1) / (2↑𝐵))) |
26 | ovolicc 23696 | . . 3 ⊢ (((𝐴 / (2↑𝐵)) ∈ ℝ ∧ ((𝐴 + 1) / (2↑𝐵)) ∈ ℝ ∧ (𝐴 / (2↑𝐵)) ≤ ((𝐴 + 1) / (2↑𝐵))) → (vol*‘((𝐴 / (2↑𝐵))[,]((𝐴 + 1) / (2↑𝐵)))) = (((𝐴 + 1) / (2↑𝐵)) − (𝐴 / (2↑𝐵)))) | |
27 | 12, 16, 25, 26 | syl3anc 1494 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (vol*‘((𝐴 / (2↑𝐵))[,]((𝐴 + 1) / (2↑𝐵)))) = (((𝐴 + 1) / (2↑𝐵)) − (𝐴 / (2↑𝐵)))) |
28 | 19 | recnd 10392 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 + 1) ∈ ℂ) |
29 | 17 | recnd 10392 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → 𝐴 ∈ ℂ) |
30 | 21 | recnd 10392 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (2↑𝐵) ∈ ℂ) |
31 | 20 | nnne0d 11408 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (2↑𝐵) ≠ 0) |
32 | 28, 29, 30, 31 | divsubdird 11173 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (((𝐴 + 1) − 𝐴) / (2↑𝐵)) = (((𝐴 + 1) / (2↑𝐵)) − (𝐴 / (2↑𝐵)))) |
33 | ax-1cn 10317 | . . . . 5 ⊢ 1 ∈ ℂ | |
34 | pncan2 10615 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 𝐴) = 1) | |
35 | 29, 33, 34 | sylancl 580 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ((𝐴 + 1) − 𝐴) = 1) |
36 | 35 | oveq1d 6925 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (((𝐴 + 1) − 𝐴) / (2↑𝐵)) = (1 / (2↑𝐵))) |
37 | 32, 36 | eqtr3d 2863 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (((𝐴 + 1) / (2↑𝐵)) − (𝐴 / (2↑𝐵))) = (1 / (2↑𝐵))) |
38 | 6, 27, 37 | 3eqtrd 2865 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (vol*‘([,]‘(𝐴𝐹𝐵))) = (1 / (2↑𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 〈cop 4405 class class class wbr 4875 ‘cfv 6127 (class class class)co 6910 ↦ cmpt2 6912 ℂcc 10257 ℝcr 10258 0cc0 10259 1c1 10260 + caddc 10262 < clt 10398 ≤ cle 10399 − cmin 10592 / cdiv 11016 ℕcn 11357 2c2 11413 ℕ0cn0 11625 ℤcz 11711 [,]cicc 12473 ↑cexp 13161 vol*covol 23635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-inf2 8822 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-fal 1670 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-se 5306 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-isom 6136 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-oadd 7835 df-er 8014 df-map 8129 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-fi 8592 df-sup 8623 df-inf 8624 df-oi 8691 df-card 9085 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-2 11421 df-3 11422 df-n0 11626 df-z 11712 df-uz 11976 df-q 12079 df-rp 12120 df-xneg 12239 df-xadd 12240 df-xmul 12241 df-ioo 12474 df-ico 12476 df-icc 12477 df-fz 12627 df-fzo 12768 df-seq 13103 df-exp 13162 df-hash 13418 df-cj 14223 df-re 14224 df-im 14225 df-sqrt 14359 df-abs 14360 df-clim 14603 df-sum 14801 df-rest 16443 df-topgen 16464 df-psmet 20105 df-xmet 20106 df-met 20107 df-bl 20108 df-mopn 20109 df-top 21076 df-topon 21093 df-bases 21128 df-cmp 21568 df-ovol 23637 |
This theorem is referenced by: dyadss 23767 |
Copyright terms: Public domain | W3C validator |