| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dyadovol | Structured version Visualization version GIF version | ||
| Description: Volume of a dyadic rational interval. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| Ref | Expression |
|---|---|
| dyadmbl.1 | ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) |
| Ref | Expression |
|---|---|
| dyadovol | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (vol*‘([,]‘(𝐴𝐹𝐵))) = (1 / (2↑𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dyadmbl.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) | |
| 2 | 1 | dyadval 25493 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴𝐹𝐵) = 〈(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))〉) |
| 3 | 2 | fveq2d 6862 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ([,]‘(𝐴𝐹𝐵)) = ([,]‘〈(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))〉)) |
| 4 | df-ov 7390 | . . . 4 ⊢ ((𝐴 / (2↑𝐵))[,]((𝐴 + 1) / (2↑𝐵))) = ([,]‘〈(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))〉) | |
| 5 | 3, 4 | eqtr4di 2782 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ([,]‘(𝐴𝐹𝐵)) = ((𝐴 / (2↑𝐵))[,]((𝐴 + 1) / (2↑𝐵)))) |
| 6 | 5 | fveq2d 6862 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (vol*‘([,]‘(𝐴𝐹𝐵))) = (vol*‘((𝐴 / (2↑𝐵))[,]((𝐴 + 1) / (2↑𝐵))))) |
| 7 | zre 12533 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 8 | 2nn 12259 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 9 | nnexpcl 14039 | . . . . 5 ⊢ ((2 ∈ ℕ ∧ 𝐵 ∈ ℕ0) → (2↑𝐵) ∈ ℕ) | |
| 10 | 8, 9 | mpan 690 | . . . 4 ⊢ (𝐵 ∈ ℕ0 → (2↑𝐵) ∈ ℕ) |
| 11 | nndivre 12227 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (2↑𝐵) ∈ ℕ) → (𝐴 / (2↑𝐵)) ∈ ℝ) | |
| 12 | 7, 10, 11 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 / (2↑𝐵)) ∈ ℝ) |
| 13 | peano2re 11347 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | |
| 14 | 7, 13 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℤ → (𝐴 + 1) ∈ ℝ) |
| 15 | nndivre 12227 | . . . 4 ⊢ (((𝐴 + 1) ∈ ℝ ∧ (2↑𝐵) ∈ ℕ) → ((𝐴 + 1) / (2↑𝐵)) ∈ ℝ) | |
| 16 | 14, 10, 15 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ((𝐴 + 1) / (2↑𝐵)) ∈ ℝ) |
| 17 | 7 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → 𝐴 ∈ ℝ) |
| 18 | 17 | lep1d 12114 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → 𝐴 ≤ (𝐴 + 1)) |
| 19 | 17, 13 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 + 1) ∈ ℝ) |
| 20 | 10 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (2↑𝐵) ∈ ℕ) |
| 21 | 20 | nnred 12201 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (2↑𝐵) ∈ ℝ) |
| 22 | 20 | nngt0d 12235 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → 0 < (2↑𝐵)) |
| 23 | lediv1 12048 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ ∧ ((2↑𝐵) ∈ ℝ ∧ 0 < (2↑𝐵))) → (𝐴 ≤ (𝐴 + 1) ↔ (𝐴 / (2↑𝐵)) ≤ ((𝐴 + 1) / (2↑𝐵)))) | |
| 24 | 17, 19, 21, 22, 23 | syl112anc 1376 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 ≤ (𝐴 + 1) ↔ (𝐴 / (2↑𝐵)) ≤ ((𝐴 + 1) / (2↑𝐵)))) |
| 25 | 18, 24 | mpbid 232 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 / (2↑𝐵)) ≤ ((𝐴 + 1) / (2↑𝐵))) |
| 26 | ovolicc 25424 | . . 3 ⊢ (((𝐴 / (2↑𝐵)) ∈ ℝ ∧ ((𝐴 + 1) / (2↑𝐵)) ∈ ℝ ∧ (𝐴 / (2↑𝐵)) ≤ ((𝐴 + 1) / (2↑𝐵))) → (vol*‘((𝐴 / (2↑𝐵))[,]((𝐴 + 1) / (2↑𝐵)))) = (((𝐴 + 1) / (2↑𝐵)) − (𝐴 / (2↑𝐵)))) | |
| 27 | 12, 16, 25, 26 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (vol*‘((𝐴 / (2↑𝐵))[,]((𝐴 + 1) / (2↑𝐵)))) = (((𝐴 + 1) / (2↑𝐵)) − (𝐴 / (2↑𝐵)))) |
| 28 | 19 | recnd 11202 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 + 1) ∈ ℂ) |
| 29 | 17 | recnd 11202 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → 𝐴 ∈ ℂ) |
| 30 | 21 | recnd 11202 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (2↑𝐵) ∈ ℂ) |
| 31 | 20 | nnne0d 12236 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (2↑𝐵) ≠ 0) |
| 32 | 28, 29, 30, 31 | divsubdird 11997 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (((𝐴 + 1) − 𝐴) / (2↑𝐵)) = (((𝐴 + 1) / (2↑𝐵)) − (𝐴 / (2↑𝐵)))) |
| 33 | ax-1cn 11126 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 34 | pncan2 11428 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 𝐴) = 1) | |
| 35 | 29, 33, 34 | sylancl 586 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ((𝐴 + 1) − 𝐴) = 1) |
| 36 | 35 | oveq1d 7402 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (((𝐴 + 1) − 𝐴) / (2↑𝐵)) = (1 / (2↑𝐵))) |
| 37 | 32, 36 | eqtr3d 2766 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (((𝐴 + 1) / (2↑𝐵)) − (𝐴 / (2↑𝐵))) = (1 / (2↑𝐵))) |
| 38 | 6, 27, 37 | 3eqtrd 2768 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (vol*‘([,]‘(𝐴𝐹𝐵))) = (1 / (2↑𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4595 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 < clt 11208 ≤ cle 11209 − cmin 11405 / cdiv 11835 ℕcn 12186 2c2 12241 ℕ0cn0 12442 ℤcz 12529 [,]cicc 13309 ↑cexp 14026 vol*covol 25363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-rest 17385 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-bases 22833 df-cmp 23274 df-ovol 25365 |
| This theorem is referenced by: dyadss 25495 |
| Copyright terms: Public domain | W3C validator |