Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efgmval | Structured version Visualization version GIF version |
Description: Value of the formal inverse operation for the generating set of a free group. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
efgmval.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
Ref | Expression |
---|---|
efgmval | ⊢ ((𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 2o) → (𝐴𝑀𝐵) = 〈𝐴, (1o ∖ 𝐵)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4801 | . 2 ⊢ (𝑎 = 𝐴 → 〈𝑎, (1o ∖ 𝑏)〉 = 〈𝐴, (1o ∖ 𝑏)〉) | |
2 | difeq2 4047 | . . 3 ⊢ (𝑏 = 𝐵 → (1o ∖ 𝑏) = (1o ∖ 𝐵)) | |
3 | 2 | opeq2d 4808 | . 2 ⊢ (𝑏 = 𝐵 → 〈𝐴, (1o ∖ 𝑏)〉 = 〈𝐴, (1o ∖ 𝐵)〉) |
4 | efgmval.m | . . 3 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
5 | opeq1 4801 | . . . 4 ⊢ (𝑦 = 𝑎 → 〈𝑦, (1o ∖ 𝑧)〉 = 〈𝑎, (1o ∖ 𝑧)〉) | |
6 | difeq2 4047 | . . . . 5 ⊢ (𝑧 = 𝑏 → (1o ∖ 𝑧) = (1o ∖ 𝑏)) | |
7 | 6 | opeq2d 4808 | . . . 4 ⊢ (𝑧 = 𝑏 → 〈𝑎, (1o ∖ 𝑧)〉 = 〈𝑎, (1o ∖ 𝑏)〉) |
8 | 5, 7 | cbvmpov 7348 | . . 3 ⊢ (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) = (𝑎 ∈ 𝐼, 𝑏 ∈ 2o ↦ 〈𝑎, (1o ∖ 𝑏)〉) |
9 | 4, 8 | eqtri 2766 | . 2 ⊢ 𝑀 = (𝑎 ∈ 𝐼, 𝑏 ∈ 2o ↦ 〈𝑎, (1o ∖ 𝑏)〉) |
10 | opex 5373 | . 2 ⊢ 〈𝐴, (1o ∖ 𝐵)〉 ∈ V | |
11 | 1, 3, 9, 10 | ovmpo 7411 | 1 ⊢ ((𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 2o) → (𝐴𝑀𝐵) = 〈𝐴, (1o ∖ 𝐵)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 〈cop 4564 (class class class)co 7255 ∈ cmpo 7257 1oc1o 8260 2oc2o 8261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 |
This theorem is referenced by: efgmnvl 19235 efgval2 19245 vrgpinv 19290 frgpuptinv 19292 frgpuplem 19293 frgpnabllem1 19389 |
Copyright terms: Public domain | W3C validator |