MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgmval Structured version   Visualization version   GIF version

Theorem efgmval 19754
Description: Value of the formal inverse operation for the generating set of a free group. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypothesis
Ref Expression
efgmval.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
Assertion
Ref Expression
efgmval ((𝐴𝐼𝐵 ∈ 2o) → (𝐴𝑀𝐵) = ⟨𝐴, (1o𝐵)⟩)
Distinct variable group:   𝑦,𝑧,𝐼
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝐵(𝑦,𝑧)   𝑀(𝑦,𝑧)

Proof of Theorem efgmval
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 4897 . 2 (𝑎 = 𝐴 → ⟨𝑎, (1o𝑏)⟩ = ⟨𝐴, (1o𝑏)⟩)
2 difeq2 4143 . . 3 (𝑏 = 𝐵 → (1o𝑏) = (1o𝐵))
32opeq2d 4904 . 2 (𝑏 = 𝐵 → ⟨𝐴, (1o𝑏)⟩ = ⟨𝐴, (1o𝐵)⟩)
4 efgmval.m . . 3 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
5 opeq1 4897 . . . 4 (𝑦 = 𝑎 → ⟨𝑦, (1o𝑧)⟩ = ⟨𝑎, (1o𝑧)⟩)
6 difeq2 4143 . . . . 5 (𝑧 = 𝑏 → (1o𝑧) = (1o𝑏))
76opeq2d 4904 . . . 4 (𝑧 = 𝑏 → ⟨𝑎, (1o𝑧)⟩ = ⟨𝑎, (1o𝑏)⟩)
85, 7cbvmpov 7545 . . 3 (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) = (𝑎𝐼, 𝑏 ∈ 2o ↦ ⟨𝑎, (1o𝑏)⟩)
94, 8eqtri 2768 . 2 𝑀 = (𝑎𝐼, 𝑏 ∈ 2o ↦ ⟨𝑎, (1o𝑏)⟩)
10 opex 5484 . 2 𝐴, (1o𝐵)⟩ ∈ V
111, 3, 9, 10ovmpo 7610 1 ((𝐴𝐼𝐵 ∈ 2o) → (𝐴𝑀𝐵) = ⟨𝐴, (1o𝐵)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cdif 3973  cop 4654  (class class class)co 7448  cmpo 7450  1oc1o 8515  2oc2o 8516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453
This theorem is referenced by:  efgmnvl  19756  efgval2  19766  vrgpinv  19811  frgpuptinv  19813  frgpuplem  19814  frgpnabllem1  19915
  Copyright terms: Public domain W3C validator