Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efgmval | Structured version Visualization version GIF version |
Description: Value of the formal inverse operation for the generating set of a free group. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
efgmval.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
Ref | Expression |
---|---|
efgmval | ⊢ ((𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 2o) → (𝐴𝑀𝐵) = 〈𝐴, (1o ∖ 𝐵)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4804 | . 2 ⊢ (𝑎 = 𝐴 → 〈𝑎, (1o ∖ 𝑏)〉 = 〈𝐴, (1o ∖ 𝑏)〉) | |
2 | difeq2 4051 | . . 3 ⊢ (𝑏 = 𝐵 → (1o ∖ 𝑏) = (1o ∖ 𝐵)) | |
3 | 2 | opeq2d 4811 | . 2 ⊢ (𝑏 = 𝐵 → 〈𝐴, (1o ∖ 𝑏)〉 = 〈𝐴, (1o ∖ 𝐵)〉) |
4 | efgmval.m | . . 3 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
5 | opeq1 4804 | . . . 4 ⊢ (𝑦 = 𝑎 → 〈𝑦, (1o ∖ 𝑧)〉 = 〈𝑎, (1o ∖ 𝑧)〉) | |
6 | difeq2 4051 | . . . . 5 ⊢ (𝑧 = 𝑏 → (1o ∖ 𝑧) = (1o ∖ 𝑏)) | |
7 | 6 | opeq2d 4811 | . . . 4 ⊢ (𝑧 = 𝑏 → 〈𝑎, (1o ∖ 𝑧)〉 = 〈𝑎, (1o ∖ 𝑏)〉) |
8 | 5, 7 | cbvmpov 7370 | . . 3 ⊢ (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) = (𝑎 ∈ 𝐼, 𝑏 ∈ 2o ↦ 〈𝑎, (1o ∖ 𝑏)〉) |
9 | 4, 8 | eqtri 2766 | . 2 ⊢ 𝑀 = (𝑎 ∈ 𝐼, 𝑏 ∈ 2o ↦ 〈𝑎, (1o ∖ 𝑏)〉) |
10 | opex 5379 | . 2 ⊢ 〈𝐴, (1o ∖ 𝐵)〉 ∈ V | |
11 | 1, 3, 9, 10 | ovmpo 7433 | 1 ⊢ ((𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 2o) → (𝐴𝑀𝐵) = 〈𝐴, (1o ∖ 𝐵)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 〈cop 4567 (class class class)co 7275 ∈ cmpo 7277 1oc1o 8290 2oc2o 8291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 |
This theorem is referenced by: efgmnvl 19320 efgval2 19330 vrgpinv 19375 frgpuptinv 19377 frgpuplem 19378 frgpnabllem1 19474 |
Copyright terms: Public domain | W3C validator |