![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgmval | Structured version Visualization version GIF version |
Description: Value of the formal inverse operation for the generating set of a free group. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
efgmval.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
Ref | Expression |
---|---|
efgmval | ⊢ ((𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 2o) → (𝐴𝑀𝐵) = 〈𝐴, (1o ∖ 𝐵)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4636 | . 2 ⊢ (𝑎 = 𝐴 → 〈𝑎, (1o ∖ 𝑏)〉 = 〈𝐴, (1o ∖ 𝑏)〉) | |
2 | difeq2 3945 | . . 3 ⊢ (𝑏 = 𝐵 → (1o ∖ 𝑏) = (1o ∖ 𝐵)) | |
3 | 2 | opeq2d 4643 | . 2 ⊢ (𝑏 = 𝐵 → 〈𝐴, (1o ∖ 𝑏)〉 = 〈𝐴, (1o ∖ 𝐵)〉) |
4 | efgmval.m | . . 3 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
5 | opeq1 4636 | . . . 4 ⊢ (𝑦 = 𝑎 → 〈𝑦, (1o ∖ 𝑧)〉 = 〈𝑎, (1o ∖ 𝑧)〉) | |
6 | difeq2 3945 | . . . . 5 ⊢ (𝑧 = 𝑏 → (1o ∖ 𝑧) = (1o ∖ 𝑏)) | |
7 | 6 | opeq2d 4643 | . . . 4 ⊢ (𝑧 = 𝑏 → 〈𝑎, (1o ∖ 𝑧)〉 = 〈𝑎, (1o ∖ 𝑏)〉) |
8 | 5, 7 | cbvmpt2v 7012 | . . 3 ⊢ (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) = (𝑎 ∈ 𝐼, 𝑏 ∈ 2o ↦ 〈𝑎, (1o ∖ 𝑏)〉) |
9 | 4, 8 | eqtri 2802 | . 2 ⊢ 𝑀 = (𝑎 ∈ 𝐼, 𝑏 ∈ 2o ↦ 〈𝑎, (1o ∖ 𝑏)〉) |
10 | opex 5164 | . 2 ⊢ 〈𝐴, (1o ∖ 𝐵)〉 ∈ V | |
11 | 1, 3, 9, 10 | ovmpt2 7073 | 1 ⊢ ((𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 2o) → (𝐴𝑀𝐵) = 〈𝐴, (1o ∖ 𝐵)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∖ cdif 3789 〈cop 4404 (class class class)co 6922 ↦ cmpt2 6924 1oc1o 7836 2oc2o 7837 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-iota 6099 df-fun 6137 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 |
This theorem is referenced by: efgmnvl 18511 efgval2 18521 vrgpinv 18568 frgpuptinv 18570 frgpuplem 18571 frgpnabllem1 18662 |
Copyright terms: Public domain | W3C validator |