![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgmval | Structured version Visualization version GIF version |
Description: Value of the formal inverse operation for the generating set of a free group. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
efgmval.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o ∖ 𝑧)⟩) |
Ref | Expression |
---|---|
efgmval | ⊢ ((𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 2o) → (𝐴𝑀𝐵) = ⟨𝐴, (1o ∖ 𝐵)⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4872 | . 2 ⊢ (𝑎 = 𝐴 → ⟨𝑎, (1o ∖ 𝑏)⟩ = ⟨𝐴, (1o ∖ 𝑏)⟩) | |
2 | difeq2 4115 | . . 3 ⊢ (𝑏 = 𝐵 → (1o ∖ 𝑏) = (1o ∖ 𝐵)) | |
3 | 2 | opeq2d 4879 | . 2 ⊢ (𝑏 = 𝐵 → ⟨𝐴, (1o ∖ 𝑏)⟩ = ⟨𝐴, (1o ∖ 𝐵)⟩) |
4 | efgmval.m | . . 3 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o ∖ 𝑧)⟩) | |
5 | opeq1 4872 | . . . 4 ⊢ (𝑦 = 𝑎 → ⟨𝑦, (1o ∖ 𝑧)⟩ = ⟨𝑎, (1o ∖ 𝑧)⟩) | |
6 | difeq2 4115 | . . . . 5 ⊢ (𝑧 = 𝑏 → (1o ∖ 𝑧) = (1o ∖ 𝑏)) | |
7 | 6 | opeq2d 4879 | . . . 4 ⊢ (𝑧 = 𝑏 → ⟨𝑎, (1o ∖ 𝑧)⟩ = ⟨𝑎, (1o ∖ 𝑏)⟩) |
8 | 5, 7 | cbvmpov 7506 | . . 3 ⊢ (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o ∖ 𝑧)⟩) = (𝑎 ∈ 𝐼, 𝑏 ∈ 2o ↦ ⟨𝑎, (1o ∖ 𝑏)⟩) |
9 | 4, 8 | eqtri 2758 | . 2 ⊢ 𝑀 = (𝑎 ∈ 𝐼, 𝑏 ∈ 2o ↦ ⟨𝑎, (1o ∖ 𝑏)⟩) |
10 | opex 5463 | . 2 ⊢ ⟨𝐴, (1o ∖ 𝐵)⟩ ∈ V | |
11 | 1, 3, 9, 10 | ovmpo 7570 | 1 ⊢ ((𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 2o) → (𝐴𝑀𝐵) = ⟨𝐴, (1o ∖ 𝐵)⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∖ cdif 3944 ⟨cop 4633 (class class class)co 7411 ∈ cmpo 7413 1oc1o 8461 2oc2o 8462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 |
This theorem is referenced by: efgmnvl 19623 efgval2 19633 vrgpinv 19678 frgpuptinv 19680 frgpuplem 19681 frgpnabllem1 19782 |
Copyright terms: Public domain | W3C validator |