MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgmval Structured version   Visualization version   GIF version

Theorem efgmval 19405
Description: Value of the formal inverse operation for the generating set of a free group. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypothesis
Ref Expression
efgmval.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
Assertion
Ref Expression
efgmval ((𝐴𝐼𝐵 ∈ 2o) → (𝐴𝑀𝐵) = ⟨𝐴, (1o𝐵)⟩)
Distinct variable group:   𝑦,𝑧,𝐼
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝐵(𝑦,𝑧)   𝑀(𝑦,𝑧)

Proof of Theorem efgmval
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 4816 . 2 (𝑎 = 𝐴 → ⟨𝑎, (1o𝑏)⟩ = ⟨𝐴, (1o𝑏)⟩)
2 difeq2 4062 . . 3 (𝑏 = 𝐵 → (1o𝑏) = (1o𝐵))
32opeq2d 4823 . 2 (𝑏 = 𝐵 → ⟨𝐴, (1o𝑏)⟩ = ⟨𝐴, (1o𝐵)⟩)
4 efgmval.m . . 3 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
5 opeq1 4816 . . . 4 (𝑦 = 𝑎 → ⟨𝑦, (1o𝑧)⟩ = ⟨𝑎, (1o𝑧)⟩)
6 difeq2 4062 . . . . 5 (𝑧 = 𝑏 → (1o𝑧) = (1o𝑏))
76opeq2d 4823 . . . 4 (𝑧 = 𝑏 → ⟨𝑎, (1o𝑧)⟩ = ⟨𝑎, (1o𝑏)⟩)
85, 7cbvmpov 7424 . . 3 (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) = (𝑎𝐼, 𝑏 ∈ 2o ↦ ⟨𝑎, (1o𝑏)⟩)
94, 8eqtri 2764 . 2 𝑀 = (𝑎𝐼, 𝑏 ∈ 2o ↦ ⟨𝑎, (1o𝑏)⟩)
10 opex 5403 . 2 𝐴, (1o𝐵)⟩ ∈ V
111, 3, 9, 10ovmpo 7487 1 ((𝐴𝐼𝐵 ∈ 2o) → (𝐴𝑀𝐵) = ⟨𝐴, (1o𝐵)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  cdif 3894  cop 4578  (class class class)co 7329  cmpo 7331  1oc1o 8352  2oc2o 8353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pr 5369
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3727  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6425  df-fun 6475  df-fv 6481  df-ov 7332  df-oprab 7333  df-mpo 7334
This theorem is referenced by:  efgmnvl  19407  efgval2  19417  vrgpinv  19462  frgpuptinv  19464  frgpuplem  19465  frgpnabllem1  19561
  Copyright terms: Public domain W3C validator