MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgmval Structured version   Visualization version   GIF version

Theorem efgmval 19318
Description: Value of the formal inverse operation for the generating set of a free group. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypothesis
Ref Expression
efgmval.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
Assertion
Ref Expression
efgmval ((𝐴𝐼𝐵 ∈ 2o) → (𝐴𝑀𝐵) = ⟨𝐴, (1o𝐵)⟩)
Distinct variable group:   𝑦,𝑧,𝐼
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝐵(𝑦,𝑧)   𝑀(𝑦,𝑧)

Proof of Theorem efgmval
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 4804 . 2 (𝑎 = 𝐴 → ⟨𝑎, (1o𝑏)⟩ = ⟨𝐴, (1o𝑏)⟩)
2 difeq2 4051 . . 3 (𝑏 = 𝐵 → (1o𝑏) = (1o𝐵))
32opeq2d 4811 . 2 (𝑏 = 𝐵 → ⟨𝐴, (1o𝑏)⟩ = ⟨𝐴, (1o𝐵)⟩)
4 efgmval.m . . 3 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
5 opeq1 4804 . . . 4 (𝑦 = 𝑎 → ⟨𝑦, (1o𝑧)⟩ = ⟨𝑎, (1o𝑧)⟩)
6 difeq2 4051 . . . . 5 (𝑧 = 𝑏 → (1o𝑧) = (1o𝑏))
76opeq2d 4811 . . . 4 (𝑧 = 𝑏 → ⟨𝑎, (1o𝑧)⟩ = ⟨𝑎, (1o𝑏)⟩)
85, 7cbvmpov 7370 . . 3 (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) = (𝑎𝐼, 𝑏 ∈ 2o ↦ ⟨𝑎, (1o𝑏)⟩)
94, 8eqtri 2766 . 2 𝑀 = (𝑎𝐼, 𝑏 ∈ 2o ↦ ⟨𝑎, (1o𝑏)⟩)
10 opex 5379 . 2 𝐴, (1o𝐵)⟩ ∈ V
111, 3, 9, 10ovmpo 7433 1 ((𝐴𝐼𝐵 ∈ 2o) → (𝐴𝑀𝐵) = ⟨𝐴, (1o𝐵)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cdif 3884  cop 4567  (class class class)co 7275  cmpo 7277  1oc1o 8290  2oc2o 8291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280
This theorem is referenced by:  efgmnvl  19320  efgval2  19330  vrgpinv  19375  frgpuptinv  19377  frgpuplem  19378  frgpnabllem1  19474
  Copyright terms: Public domain W3C validator