| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efgmval | Structured version Visualization version GIF version | ||
| Description: Value of the formal inverse operation for the generating set of a free group. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| Ref | Expression |
|---|---|
| efgmval.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| Ref | Expression |
|---|---|
| efgmval | ⊢ ((𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 2o) → (𝐴𝑀𝐵) = 〈𝐴, (1o ∖ 𝐵)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4840 | . 2 ⊢ (𝑎 = 𝐴 → 〈𝑎, (1o ∖ 𝑏)〉 = 〈𝐴, (1o ∖ 𝑏)〉) | |
| 2 | difeq2 4086 | . . 3 ⊢ (𝑏 = 𝐵 → (1o ∖ 𝑏) = (1o ∖ 𝐵)) | |
| 3 | 2 | opeq2d 4847 | . 2 ⊢ (𝑏 = 𝐵 → 〈𝐴, (1o ∖ 𝑏)〉 = 〈𝐴, (1o ∖ 𝐵)〉) |
| 4 | efgmval.m | . . 3 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
| 5 | opeq1 4840 | . . . 4 ⊢ (𝑦 = 𝑎 → 〈𝑦, (1o ∖ 𝑧)〉 = 〈𝑎, (1o ∖ 𝑧)〉) | |
| 6 | difeq2 4086 | . . . . 5 ⊢ (𝑧 = 𝑏 → (1o ∖ 𝑧) = (1o ∖ 𝑏)) | |
| 7 | 6 | opeq2d 4847 | . . . 4 ⊢ (𝑧 = 𝑏 → 〈𝑎, (1o ∖ 𝑧)〉 = 〈𝑎, (1o ∖ 𝑏)〉) |
| 8 | 5, 7 | cbvmpov 7487 | . . 3 ⊢ (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) = (𝑎 ∈ 𝐼, 𝑏 ∈ 2o ↦ 〈𝑎, (1o ∖ 𝑏)〉) |
| 9 | 4, 8 | eqtri 2753 | . 2 ⊢ 𝑀 = (𝑎 ∈ 𝐼, 𝑏 ∈ 2o ↦ 〈𝑎, (1o ∖ 𝑏)〉) |
| 10 | opex 5427 | . 2 ⊢ 〈𝐴, (1o ∖ 𝐵)〉 ∈ V | |
| 11 | 1, 3, 9, 10 | ovmpo 7552 | 1 ⊢ ((𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 2o) → (𝐴𝑀𝐵) = 〈𝐴, (1o ∖ 𝐵)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 〈cop 4598 (class class class)co 7390 ∈ cmpo 7392 1oc1o 8430 2oc2o 8431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 |
| This theorem is referenced by: efgmnvl 19651 efgval2 19661 vrgpinv 19706 frgpuptinv 19708 frgpuplem 19709 frgpnabllem1 19810 |
| Copyright terms: Public domain | W3C validator |