| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elxp2 5708 | . . 3
⊢ (𝐴 ∈ (𝐼 × 2o) ↔ ∃𝑎 ∈ 𝐼 ∃𝑏 ∈ 2o 𝐴 = 〈𝑎, 𝑏〉) | 
| 2 |  | frgpuptinv.m | . . . . . . . . . 10
⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | 
| 3 | 2 | efgmval 19731 | . . . . . . . . 9
⊢ ((𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o) → (𝑎𝑀𝑏) = 〈𝑎, (1o ∖ 𝑏)〉) | 
| 4 | 3 | adantl 481 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑎𝑀𝑏) = 〈𝑎, (1o ∖ 𝑏)〉) | 
| 5 | 4 | fveq2d 6909 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇‘(𝑎𝑀𝑏)) = (𝑇‘〈𝑎, (1o ∖ 𝑏)〉)) | 
| 6 |  | df-ov 7435 | . . . . . . 7
⊢ (𝑎𝑇(1o ∖ 𝑏)) = (𝑇‘〈𝑎, (1o ∖ 𝑏)〉) | 
| 7 | 5, 6 | eqtr4di 2794 | . . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇‘(𝑎𝑀𝑏)) = (𝑎𝑇(1o ∖ 𝑏))) | 
| 8 |  | elpri 4648 | . . . . . . . . 9
⊢ (𝑏 ∈ {∅, 1o}
→ (𝑏 = ∅ ∨
𝑏 =
1o)) | 
| 9 |  | df2o3 8515 | . . . . . . . . 9
⊢
2o = {∅, 1o} | 
| 10 | 8, 9 | eleq2s 2858 | . . . . . . . 8
⊢ (𝑏 ∈ 2o →
(𝑏 = ∅ ∨ 𝑏 =
1o)) | 
| 11 |  | simpr 484 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → 𝑎 ∈ 𝐼) | 
| 12 |  | 1oex 8517 | . . . . . . . . . . . . . 14
⊢
1o ∈ V | 
| 13 | 12 | prid2 4762 | . . . . . . . . . . . . 13
⊢
1o ∈ {∅, 1o} | 
| 14 | 13, 9 | eleqtrri 2839 | . . . . . . . . . . . 12
⊢
1o ∈ 2o | 
| 15 |  | 1n0 8527 | . . . . . . . . . . . . . . . 16
⊢
1o ≠ ∅ | 
| 16 |  | neeq1 3002 | . . . . . . . . . . . . . . . 16
⊢ (𝑧 = 1o → (𝑧 ≠ ∅ ↔
1o ≠ ∅)) | 
| 17 | 15, 16 | mpbiri 258 | . . . . . . . . . . . . . . 15
⊢ (𝑧 = 1o → 𝑧 ≠ ∅) | 
| 18 |  | ifnefalse 4536 | . . . . . . . . . . . . . . 15
⊢ (𝑧 ≠ ∅ → if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) = (𝑁‘(𝐹‘𝑦))) | 
| 19 | 17, 18 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝑧 = 1o → if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) = (𝑁‘(𝐹‘𝑦))) | 
| 20 |  | fveq2 6905 | . . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑎 → (𝐹‘𝑦) = (𝐹‘𝑎)) | 
| 21 | 20 | fveq2d 6909 | . . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑎 → (𝑁‘(𝐹‘𝑦)) = (𝑁‘(𝐹‘𝑎))) | 
| 22 | 19, 21 | sylan9eqr 2798 | . . . . . . . . . . . . 13
⊢ ((𝑦 = 𝑎 ∧ 𝑧 = 1o) → if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) = (𝑁‘(𝐹‘𝑎))) | 
| 23 |  | frgpup.t | . . . . . . . . . . . . 13
⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) | 
| 24 |  | fvex 6918 | . . . . . . . . . . . . 13
⊢ (𝑁‘(𝐹‘𝑎)) ∈ V | 
| 25 | 22, 23, 24 | ovmpoa 7589 | . . . . . . . . . . . 12
⊢ ((𝑎 ∈ 𝐼 ∧ 1o ∈ 2o)
→ (𝑎𝑇1o) = (𝑁‘(𝐹‘𝑎))) | 
| 26 | 11, 14, 25 | sylancl 586 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (𝑎𝑇1o) = (𝑁‘(𝐹‘𝑎))) | 
| 27 |  | 0ex 5306 | . . . . . . . . . . . . . . 15
⊢ ∅
∈ V | 
| 28 | 27 | prid1 4761 | . . . . . . . . . . . . . 14
⊢ ∅
∈ {∅, 1o} | 
| 29 | 28, 9 | eleqtrri 2839 | . . . . . . . . . . . . 13
⊢ ∅
∈ 2o | 
| 30 |  | iftrue 4530 | . . . . . . . . . . . . . . 15
⊢ (𝑧 = ∅ → if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) = (𝐹‘𝑦)) | 
| 31 | 30, 20 | sylan9eqr 2798 | . . . . . . . . . . . . . 14
⊢ ((𝑦 = 𝑎 ∧ 𝑧 = ∅) → if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) = (𝐹‘𝑎)) | 
| 32 |  | fvex 6918 | . . . . . . . . . . . . . 14
⊢ (𝐹‘𝑎) ∈ V | 
| 33 | 31, 23, 32 | ovmpoa 7589 | . . . . . . . . . . . . 13
⊢ ((𝑎 ∈ 𝐼 ∧ ∅ ∈ 2o) →
(𝑎𝑇∅) = (𝐹‘𝑎)) | 
| 34 | 11, 29, 33 | sylancl 586 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (𝑎𝑇∅) = (𝐹‘𝑎)) | 
| 35 | 34 | fveq2d 6909 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (𝑁‘(𝑎𝑇∅)) = (𝑁‘(𝐹‘𝑎))) | 
| 36 | 26, 35 | eqtr4d 2779 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (𝑎𝑇1o) = (𝑁‘(𝑎𝑇∅))) | 
| 37 |  | difeq2 4119 | . . . . . . . . . . . . 13
⊢ (𝑏 = ∅ → (1o
∖ 𝑏) = (1o
∖ ∅)) | 
| 38 |  | dif0 4377 | . . . . . . . . . . . . 13
⊢
(1o ∖ ∅) = 1o | 
| 39 | 37, 38 | eqtrdi 2792 | . . . . . . . . . . . 12
⊢ (𝑏 = ∅ → (1o
∖ 𝑏) =
1o) | 
| 40 | 39 | oveq2d 7448 | . . . . . . . . . . 11
⊢ (𝑏 = ∅ → (𝑎𝑇(1o ∖ 𝑏)) = (𝑎𝑇1o)) | 
| 41 |  | oveq2 7440 | . . . . . . . . . . . 12
⊢ (𝑏 = ∅ → (𝑎𝑇𝑏) = (𝑎𝑇∅)) | 
| 42 | 41 | fveq2d 6909 | . . . . . . . . . . 11
⊢ (𝑏 = ∅ → (𝑁‘(𝑎𝑇𝑏)) = (𝑁‘(𝑎𝑇∅))) | 
| 43 | 40, 42 | eqeq12d 2752 | . . . . . . . . . 10
⊢ (𝑏 = ∅ → ((𝑎𝑇(1o ∖ 𝑏)) = (𝑁‘(𝑎𝑇𝑏)) ↔ (𝑎𝑇1o) = (𝑁‘(𝑎𝑇∅)))) | 
| 44 | 36, 43 | syl5ibrcom 247 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (𝑏 = ∅ → (𝑎𝑇(1o ∖ 𝑏)) = (𝑁‘(𝑎𝑇𝑏)))) | 
| 45 | 36 | fveq2d 6909 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (𝑁‘(𝑎𝑇1o)) = (𝑁‘(𝑁‘(𝑎𝑇∅)))) | 
| 46 |  | frgpup.h | . . . . . . . . . . . 12
⊢ (𝜑 → 𝐻 ∈ Grp) | 
| 47 |  | frgpup.a | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | 
| 48 | 47 | ffvelcdmda 7103 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (𝐹‘𝑎) ∈ 𝐵) | 
| 49 | 34, 48 | eqeltrd 2840 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (𝑎𝑇∅) ∈ 𝐵) | 
| 50 |  | frgpup.b | . . . . . . . . . . . . 13
⊢ 𝐵 = (Base‘𝐻) | 
| 51 |  | frgpup.n | . . . . . . . . . . . . 13
⊢ 𝑁 = (invg‘𝐻) | 
| 52 | 50, 51 | grpinvinv 19024 | . . . . . . . . . . . 12
⊢ ((𝐻 ∈ Grp ∧ (𝑎𝑇∅) ∈ 𝐵) → (𝑁‘(𝑁‘(𝑎𝑇∅))) = (𝑎𝑇∅)) | 
| 53 | 46, 49, 52 | syl2an2r 685 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (𝑁‘(𝑁‘(𝑎𝑇∅))) = (𝑎𝑇∅)) | 
| 54 | 45, 53 | eqtr2d 2777 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (𝑎𝑇∅) = (𝑁‘(𝑎𝑇1o))) | 
| 55 |  | difeq2 4119 | . . . . . . . . . . . . 13
⊢ (𝑏 = 1o →
(1o ∖ 𝑏) =
(1o ∖ 1o)) | 
| 56 |  | difid 4375 | . . . . . . . . . . . . 13
⊢
(1o ∖ 1o) = ∅ | 
| 57 | 55, 56 | eqtrdi 2792 | . . . . . . . . . . . 12
⊢ (𝑏 = 1o →
(1o ∖ 𝑏) =
∅) | 
| 58 | 57 | oveq2d 7448 | . . . . . . . . . . 11
⊢ (𝑏 = 1o → (𝑎𝑇(1o ∖ 𝑏)) = (𝑎𝑇∅)) | 
| 59 |  | oveq2 7440 | . . . . . . . . . . . 12
⊢ (𝑏 = 1o → (𝑎𝑇𝑏) = (𝑎𝑇1o)) | 
| 60 | 59 | fveq2d 6909 | . . . . . . . . . . 11
⊢ (𝑏 = 1o → (𝑁‘(𝑎𝑇𝑏)) = (𝑁‘(𝑎𝑇1o))) | 
| 61 | 58, 60 | eqeq12d 2752 | . . . . . . . . . 10
⊢ (𝑏 = 1o → ((𝑎𝑇(1o ∖ 𝑏)) = (𝑁‘(𝑎𝑇𝑏)) ↔ (𝑎𝑇∅) = (𝑁‘(𝑎𝑇1o)))) | 
| 62 | 54, 61 | syl5ibrcom 247 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (𝑏 = 1o → (𝑎𝑇(1o ∖ 𝑏)) = (𝑁‘(𝑎𝑇𝑏)))) | 
| 63 | 44, 62 | jaod 859 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((𝑏 = ∅ ∨ 𝑏 = 1o) → (𝑎𝑇(1o ∖ 𝑏)) = (𝑁‘(𝑎𝑇𝑏)))) | 
| 64 | 10, 63 | syl5 34 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (𝑏 ∈ 2o → (𝑎𝑇(1o ∖ 𝑏)) = (𝑁‘(𝑎𝑇𝑏)))) | 
| 65 | 64 | impr 454 | . . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑎𝑇(1o ∖ 𝑏)) = (𝑁‘(𝑎𝑇𝑏))) | 
| 66 | 7, 65 | eqtrd 2776 | . . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇‘(𝑎𝑀𝑏)) = (𝑁‘(𝑎𝑇𝑏))) | 
| 67 |  | fveq2 6905 | . . . . . . . 8
⊢ (𝐴 = 〈𝑎, 𝑏〉 → (𝑀‘𝐴) = (𝑀‘〈𝑎, 𝑏〉)) | 
| 68 |  | df-ov 7435 | . . . . . . . 8
⊢ (𝑎𝑀𝑏) = (𝑀‘〈𝑎, 𝑏〉) | 
| 69 | 67, 68 | eqtr4di 2794 | . . . . . . 7
⊢ (𝐴 = 〈𝑎, 𝑏〉 → (𝑀‘𝐴) = (𝑎𝑀𝑏)) | 
| 70 | 69 | fveq2d 6909 | . . . . . 6
⊢ (𝐴 = 〈𝑎, 𝑏〉 → (𝑇‘(𝑀‘𝐴)) = (𝑇‘(𝑎𝑀𝑏))) | 
| 71 |  | fveq2 6905 | . . . . . . . 8
⊢ (𝐴 = 〈𝑎, 𝑏〉 → (𝑇‘𝐴) = (𝑇‘〈𝑎, 𝑏〉)) | 
| 72 |  | df-ov 7435 | . . . . . . . 8
⊢ (𝑎𝑇𝑏) = (𝑇‘〈𝑎, 𝑏〉) | 
| 73 | 71, 72 | eqtr4di 2794 | . . . . . . 7
⊢ (𝐴 = 〈𝑎, 𝑏〉 → (𝑇‘𝐴) = (𝑎𝑇𝑏)) | 
| 74 | 73 | fveq2d 6909 | . . . . . 6
⊢ (𝐴 = 〈𝑎, 𝑏〉 → (𝑁‘(𝑇‘𝐴)) = (𝑁‘(𝑎𝑇𝑏))) | 
| 75 | 70, 74 | eqeq12d 2752 | . . . . 5
⊢ (𝐴 = 〈𝑎, 𝑏〉 → ((𝑇‘(𝑀‘𝐴)) = (𝑁‘(𝑇‘𝐴)) ↔ (𝑇‘(𝑎𝑀𝑏)) = (𝑁‘(𝑎𝑇𝑏)))) | 
| 76 | 66, 75 | syl5ibrcom 247 | . . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐴 = 〈𝑎, 𝑏〉 → (𝑇‘(𝑀‘𝐴)) = (𝑁‘(𝑇‘𝐴)))) | 
| 77 | 76 | rexlimdvva 3212 | . . 3
⊢ (𝜑 → (∃𝑎 ∈ 𝐼 ∃𝑏 ∈ 2o 𝐴 = 〈𝑎, 𝑏〉 → (𝑇‘(𝑀‘𝐴)) = (𝑁‘(𝑇‘𝐴)))) | 
| 78 | 1, 77 | biimtrid 242 | . 2
⊢ (𝜑 → (𝐴 ∈ (𝐼 × 2o) → (𝑇‘(𝑀‘𝐴)) = (𝑁‘(𝑇‘𝐴)))) | 
| 79 | 78 | imp 406 | 1
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐼 × 2o)) → (𝑇‘(𝑀‘𝐴)) = (𝑁‘(𝑇‘𝐴))) |