| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efgmf | Structured version Visualization version GIF version | ||
| Description: The formal inverse operation is an endofunction on the generating set. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| Ref | Expression |
|---|---|
| efgmval.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| Ref | Expression |
|---|---|
| efgmf | ⊢ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2oconcl 8470 | . . . 4 ⊢ (𝑧 ∈ 2o → (1o ∖ 𝑧) ∈ 2o) | |
| 2 | opelxpi 5678 | . . . 4 ⊢ ((𝑦 ∈ 𝐼 ∧ (1o ∖ 𝑧) ∈ 2o) → 〈𝑦, (1o ∖ 𝑧)〉 ∈ (𝐼 × 2o)) | |
| 3 | 1, 2 | sylan2 593 | . . 3 ⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2o) → 〈𝑦, (1o ∖ 𝑧)〉 ∈ (𝐼 × 2o)) |
| 4 | 3 | rgen2 3178 | . 2 ⊢ ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o 〈𝑦, (1o ∖ 𝑧)〉 ∈ (𝐼 × 2o) |
| 5 | efgmval.m | . . 3 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
| 6 | 5 | fmpo 8050 | . 2 ⊢ (∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o 〈𝑦, (1o ∖ 𝑧)〉 ∈ (𝐼 × 2o) ↔ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) |
| 7 | 4, 6 | mpbi 230 | 1 ⊢ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∖ cdif 3914 〈cop 4598 × cxp 5639 ⟶wf 6510 ∈ cmpo 7392 1oc1o 8430 2oc2o 8431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-1o 8437 df-2o 8438 |
| This theorem is referenced by: efgtf 19659 efgtlen 19663 efginvrel2 19664 efginvrel1 19665 efgredleme 19680 efgredlemc 19682 efgcpbllemb 19692 frgp0 19697 frgpinv 19701 vrgpinv 19706 frgpnabllem1 19810 |
| Copyright terms: Public domain | W3C validator |