MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgmf Structured version   Visualization version   GIF version

Theorem efgmf 19694
Description: The formal inverse operation is an endofunction on the generating set. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypothesis
Ref Expression
efgmval.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
Assertion
Ref Expression
efgmf 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)
Distinct variable group:   𝑦,𝑧,𝐼
Allowed substitution hints:   𝑀(𝑦,𝑧)

Proof of Theorem efgmf
StepHypRef Expression
1 2oconcl 8515 . . . 4 (𝑧 ∈ 2o → (1o𝑧) ∈ 2o)
2 opelxpi 5691 . . . 4 ((𝑦𝐼 ∧ (1o𝑧) ∈ 2o) → ⟨𝑦, (1o𝑧)⟩ ∈ (𝐼 × 2o))
31, 2sylan2 593 . . 3 ((𝑦𝐼𝑧 ∈ 2o) → ⟨𝑦, (1o𝑧)⟩ ∈ (𝐼 × 2o))
43rgen2 3184 . 2 𝑦𝐼𝑧 ∈ 2o𝑦, (1o𝑧)⟩ ∈ (𝐼 × 2o)
5 efgmval.m . . 3 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
65fmpo 8067 . 2 (∀𝑦𝐼𝑧 ∈ 2o𝑦, (1o𝑧)⟩ ∈ (𝐼 × 2o) ↔ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o))
74, 6mpbi 230 1 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  wral 3051  cdif 3923  cop 4607   × cxp 5652  wf 6527  cmpo 7407  1oc1o 8473  2oc2o 8474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-1o 8480  df-2o 8481
This theorem is referenced by:  efgtf  19703  efgtlen  19707  efginvrel2  19708  efginvrel1  19709  efgredleme  19724  efgredlemc  19726  efgcpbllemb  19736  frgp0  19741  frgpinv  19745  vrgpinv  19750  frgpnabllem1  19854
  Copyright terms: Public domain W3C validator