| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efgmf | Structured version Visualization version GIF version | ||
| Description: The formal inverse operation is an endofunction on the generating set. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| Ref | Expression |
|---|---|
| efgmval.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| Ref | Expression |
|---|---|
| efgmf | ⊢ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2oconcl 8421 | . . . 4 ⊢ (𝑧 ∈ 2o → (1o ∖ 𝑧) ∈ 2o) | |
| 2 | opelxpi 5656 | . . . 4 ⊢ ((𝑦 ∈ 𝐼 ∧ (1o ∖ 𝑧) ∈ 2o) → 〈𝑦, (1o ∖ 𝑧)〉 ∈ (𝐼 × 2o)) | |
| 3 | 1, 2 | sylan2 593 | . . 3 ⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2o) → 〈𝑦, (1o ∖ 𝑧)〉 ∈ (𝐼 × 2o)) |
| 4 | 3 | rgen2 3169 | . 2 ⊢ ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o 〈𝑦, (1o ∖ 𝑧)〉 ∈ (𝐼 × 2o) |
| 5 | efgmval.m | . . 3 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
| 6 | 5 | fmpo 8003 | . 2 ⊢ (∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o 〈𝑦, (1o ∖ 𝑧)〉 ∈ (𝐼 × 2o) ↔ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) |
| 7 | 4, 6 | mpbi 230 | 1 ⊢ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3900 〈cop 4583 × cxp 5617 ⟶wf 6478 ∈ cmpo 7351 1oc1o 8381 2oc2o 8382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-1o 8388 df-2o 8389 |
| This theorem is referenced by: efgtf 19601 efgtlen 19605 efginvrel2 19606 efginvrel1 19607 efgredleme 19622 efgredlemc 19624 efgcpbllemb 19634 frgp0 19639 frgpinv 19643 vrgpinv 19648 frgpnabllem1 19752 |
| Copyright terms: Public domain | W3C validator |