| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efgmf | Structured version Visualization version GIF version | ||
| Description: The formal inverse operation is an endofunction on the generating set. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| Ref | Expression |
|---|---|
| efgmval.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| Ref | Expression |
|---|---|
| efgmf | ⊢ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2oconcl 8418 | . . . 4 ⊢ (𝑧 ∈ 2o → (1o ∖ 𝑧) ∈ 2o) | |
| 2 | opelxpi 5651 | . . . 4 ⊢ ((𝑦 ∈ 𝐼 ∧ (1o ∖ 𝑧) ∈ 2o) → 〈𝑦, (1o ∖ 𝑧)〉 ∈ (𝐼 × 2o)) | |
| 3 | 1, 2 | sylan2 593 | . . 3 ⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2o) → 〈𝑦, (1o ∖ 𝑧)〉 ∈ (𝐼 × 2o)) |
| 4 | 3 | rgen2 3172 | . 2 ⊢ ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o 〈𝑦, (1o ∖ 𝑧)〉 ∈ (𝐼 × 2o) |
| 5 | efgmval.m | . . 3 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
| 6 | 5 | fmpo 8000 | . 2 ⊢ (∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o 〈𝑦, (1o ∖ 𝑧)〉 ∈ (𝐼 × 2o) ↔ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) |
| 7 | 4, 6 | mpbi 230 | 1 ⊢ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∖ cdif 3894 〈cop 4579 × cxp 5612 ⟶wf 6477 ∈ cmpo 7348 1oc1o 8378 2oc2o 8379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-1o 8385 df-2o 8386 |
| This theorem is referenced by: efgtf 19634 efgtlen 19638 efginvrel2 19639 efginvrel1 19640 efgredleme 19655 efgredlemc 19657 efgcpbllemb 19667 frgp0 19672 frgpinv 19676 vrgpinv 19681 frgpnabllem1 19785 |
| Copyright terms: Public domain | W3C validator |