MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgmf Structured version   Visualization version   GIF version

Theorem efgmf 19319
Description: The formal inverse operation is an endofunction on the generating set. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypothesis
Ref Expression
efgmval.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
Assertion
Ref Expression
efgmf 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)
Distinct variable group:   𝑦,𝑧,𝐼
Allowed substitution hints:   𝑀(𝑦,𝑧)

Proof of Theorem efgmf
StepHypRef Expression
1 2oconcl 8333 . . . 4 (𝑧 ∈ 2o → (1o𝑧) ∈ 2o)
2 opelxpi 5626 . . . 4 ((𝑦𝐼 ∧ (1o𝑧) ∈ 2o) → ⟨𝑦, (1o𝑧)⟩ ∈ (𝐼 × 2o))
31, 2sylan2 593 . . 3 ((𝑦𝐼𝑧 ∈ 2o) → ⟨𝑦, (1o𝑧)⟩ ∈ (𝐼 × 2o))
43rgen2 3120 . 2 𝑦𝐼𝑧 ∈ 2o𝑦, (1o𝑧)⟩ ∈ (𝐼 × 2o)
5 efgmval.m . . 3 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
65fmpo 7908 . 2 (∀𝑦𝐼𝑧 ∈ 2o𝑦, (1o𝑧)⟩ ∈ (𝐼 × 2o) ↔ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o))
74, 6mpbi 229 1 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  wral 3064  cdif 3884  cop 4567   × cxp 5587  wf 6429  cmpo 7277  1oc1o 8290  2oc2o 8291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-1o 8297  df-2o 8298
This theorem is referenced by:  efgtf  19328  efgtlen  19332  efginvrel2  19333  efginvrel1  19334  efgredleme  19349  efgredlemc  19351  efgcpbllemb  19361  frgp0  19366  frgpinv  19370  vrgpinv  19375  frgpnabllem1  19474
  Copyright terms: Public domain W3C validator