| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efgmf | Structured version Visualization version GIF version | ||
| Description: The formal inverse operation is an endofunction on the generating set. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| Ref | Expression |
|---|---|
| efgmval.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| Ref | Expression |
|---|---|
| efgmf | ⊢ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2oconcl 8515 | . . . 4 ⊢ (𝑧 ∈ 2o → (1o ∖ 𝑧) ∈ 2o) | |
| 2 | opelxpi 5691 | . . . 4 ⊢ ((𝑦 ∈ 𝐼 ∧ (1o ∖ 𝑧) ∈ 2o) → 〈𝑦, (1o ∖ 𝑧)〉 ∈ (𝐼 × 2o)) | |
| 3 | 1, 2 | sylan2 593 | . . 3 ⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2o) → 〈𝑦, (1o ∖ 𝑧)〉 ∈ (𝐼 × 2o)) |
| 4 | 3 | rgen2 3184 | . 2 ⊢ ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o 〈𝑦, (1o ∖ 𝑧)〉 ∈ (𝐼 × 2o) |
| 5 | efgmval.m | . . 3 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
| 6 | 5 | fmpo 8067 | . 2 ⊢ (∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o 〈𝑦, (1o ∖ 𝑧)〉 ∈ (𝐼 × 2o) ↔ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) |
| 7 | 4, 6 | mpbi 230 | 1 ⊢ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∖ cdif 3923 〈cop 4607 × cxp 5652 ⟶wf 6527 ∈ cmpo 7407 1oc1o 8473 2oc2o 8474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-1o 8480 df-2o 8481 |
| This theorem is referenced by: efgtf 19703 efgtlen 19707 efginvrel2 19708 efginvrel1 19709 efgredleme 19724 efgredlemc 19726 efgcpbllemb 19736 frgp0 19741 frgpinv 19745 vrgpinv 19750 frgpnabllem1 19854 |
| Copyright terms: Public domain | W3C validator |