MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgmf Structured version   Visualization version   GIF version

Theorem efgmf 19643
Description: The formal inverse operation is an endofunction on the generating set. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypothesis
Ref Expression
efgmval.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
Assertion
Ref Expression
efgmf 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)
Distinct variable group:   𝑦,𝑧,𝐼
Allowed substitution hints:   𝑀(𝑦,𝑧)

Proof of Theorem efgmf
StepHypRef Expression
1 2oconcl 8467 . . . 4 (𝑧 ∈ 2o → (1o𝑧) ∈ 2o)
2 opelxpi 5675 . . . 4 ((𝑦𝐼 ∧ (1o𝑧) ∈ 2o) → ⟨𝑦, (1o𝑧)⟩ ∈ (𝐼 × 2o))
31, 2sylan2 593 . . 3 ((𝑦𝐼𝑧 ∈ 2o) → ⟨𝑦, (1o𝑧)⟩ ∈ (𝐼 × 2o))
43rgen2 3177 . 2 𝑦𝐼𝑧 ∈ 2o𝑦, (1o𝑧)⟩ ∈ (𝐼 × 2o)
5 efgmval.m . . 3 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
65fmpo 8047 . 2 (∀𝑦𝐼𝑧 ∈ 2o𝑦, (1o𝑧)⟩ ∈ (𝐼 × 2o) ↔ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o))
74, 6mpbi 230 1 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wral 3044  cdif 3911  cop 4595   × cxp 5636  wf 6507  cmpo 7389  1oc1o 8427  2oc2o 8428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-1o 8434  df-2o 8435
This theorem is referenced by:  efgtf  19652  efgtlen  19656  efginvrel2  19657  efginvrel1  19658  efgredleme  19673  efgredlemc  19675  efgcpbllemb  19685  frgp0  19690  frgpinv  19694  vrgpinv  19699  frgpnabllem1  19803
  Copyright terms: Public domain W3C validator