| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vrgpinv | Structured version Visualization version GIF version | ||
| Description: The inverse of a generating element is represented by 〈𝐴, 1〉 instead of 〈𝐴, 0〉. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| vrgpfval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| vrgpfval.u | ⊢ 𝑈 = (varFGrp‘𝐼) |
| vrgpf.m | ⊢ 𝐺 = (freeGrp‘𝐼) |
| vrgpinv.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| vrgpinv | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑁‘(𝑈‘𝐴)) = [〈“〈𝐴, 1o〉”〉] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vrgpfval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 2 | vrgpfval.u | . . . 4 ⊢ 𝑈 = (varFGrp‘𝐼) | |
| 3 | 1, 2 | vrgpval 19680 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) |
| 4 | 3 | fveq2d 6826 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑁‘(𝑈‘𝐴)) = (𝑁‘[〈“〈𝐴, ∅〉”〉] ∼ )) |
| 5 | simpr 484 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 𝐴 ∈ 𝐼) | |
| 6 | 0ex 5245 | . . . . . . . 8 ⊢ ∅ ∈ V | |
| 7 | 6 | prid1 4715 | . . . . . . 7 ⊢ ∅ ∈ {∅, 1o} |
| 8 | df2o3 8393 | . . . . . . 7 ⊢ 2o = {∅, 1o} | |
| 9 | 7, 8 | eleqtrri 2830 | . . . . . 6 ⊢ ∅ ∈ 2o |
| 10 | opelxpi 5653 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐼 ∧ ∅ ∈ 2o) → 〈𝐴, ∅〉 ∈ (𝐼 × 2o)) | |
| 11 | 5, 9, 10 | sylancl 586 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 〈𝐴, ∅〉 ∈ (𝐼 × 2o)) |
| 12 | 11 | s1cld 14511 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 〈“〈𝐴, ∅〉”〉 ∈ Word (𝐼 × 2o)) |
| 13 | simpl 482 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 𝐼 ∈ 𝑉) | |
| 14 | 2on 8398 | . . . . . 6 ⊢ 2o ∈ On | |
| 15 | xpexg 7683 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V) | |
| 16 | 13, 14, 15 | sylancl 586 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝐼 × 2o) ∈ V) |
| 17 | wrdexg 14431 | . . . . 5 ⊢ ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V) | |
| 18 | fvi 6898 | . . . . 5 ⊢ (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) | |
| 19 | 16, 17, 18 | 3syl 18 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) |
| 20 | 12, 19 | eleqtrrd 2834 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 〈“〈𝐴, ∅〉”〉 ∈ ( I ‘Word (𝐼 × 2o))) |
| 21 | eqid 2731 | . . . 4 ⊢ ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o)) | |
| 22 | vrgpf.m | . . . 4 ⊢ 𝐺 = (freeGrp‘𝐼) | |
| 23 | vrgpinv.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
| 24 | eqid 2731 | . . . 4 ⊢ (𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) = (𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) | |
| 25 | 21, 22, 1, 23, 24 | frgpinv 19677 | . . 3 ⊢ (〈“〈𝐴, ∅〉”〉 ∈ ( I ‘Word (𝐼 × 2o)) → (𝑁‘[〈“〈𝐴, ∅〉”〉] ∼ ) = [((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ (reverse‘〈“〈𝐴, ∅〉”〉))] ∼ ) |
| 26 | 20, 25 | syl 17 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑁‘[〈“〈𝐴, ∅〉”〉] ∼ ) = [((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ (reverse‘〈“〈𝐴, ∅〉”〉))] ∼ ) |
| 27 | revs1 14672 | . . . . . 6 ⊢ (reverse‘〈“〈𝐴, ∅〉”〉) = 〈“〈𝐴, ∅〉”〉 | |
| 28 | 27 | a1i 11 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (reverse‘〈“〈𝐴, ∅〉”〉) = 〈“〈𝐴, ∅〉”〉) |
| 29 | 28 | coeq2d 5802 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ (reverse‘〈“〈𝐴, ∅〉”〉)) = ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ 〈“〈𝐴, ∅〉”〉)) |
| 30 | 24 | efgmf 19626 | . . . . 5 ⊢ (𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉):(𝐼 × 2o)⟶(𝐼 × 2o) |
| 31 | s1co 14740 | . . . . 5 ⊢ ((〈𝐴, ∅〉 ∈ (𝐼 × 2o) ∧ (𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉):(𝐼 × 2o)⟶(𝐼 × 2o)) → ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ 〈“〈𝐴, ∅〉”〉) = 〈“((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)‘〈𝐴, ∅〉)”〉) | |
| 32 | 11, 30, 31 | sylancl 586 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ 〈“〈𝐴, ∅〉”〉) = 〈“((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)‘〈𝐴, ∅〉)”〉) |
| 33 | 24 | efgmval 19625 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐼 ∧ ∅ ∈ 2o) → (𝐴(𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)∅) = 〈𝐴, (1o ∖ ∅)〉) |
| 34 | 5, 9, 33 | sylancl 586 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝐴(𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)∅) = 〈𝐴, (1o ∖ ∅)〉) |
| 35 | df-ov 7349 | . . . . . 6 ⊢ (𝐴(𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)∅) = ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)‘〈𝐴, ∅〉) | |
| 36 | dif0 4328 | . . . . . . 7 ⊢ (1o ∖ ∅) = 1o | |
| 37 | 36 | opeq2i 4829 | . . . . . 6 ⊢ 〈𝐴, (1o ∖ ∅)〉 = 〈𝐴, 1o〉 |
| 38 | 34, 35, 37 | 3eqtr3g 2789 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)‘〈𝐴, ∅〉) = 〈𝐴, 1o〉) |
| 39 | 38 | s1eqd 14509 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 〈“((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)‘〈𝐴, ∅〉)”〉 = 〈“〈𝐴, 1o〉”〉) |
| 40 | 29, 32, 39 | 3eqtrd 2770 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ (reverse‘〈“〈𝐴, ∅〉”〉)) = 〈“〈𝐴, 1o〉”〉) |
| 41 | 40 | eceq1d 8662 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → [((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ (reverse‘〈“〈𝐴, ∅〉”〉))] ∼ = [〈“〈𝐴, 1o〉”〉] ∼ ) |
| 42 | 4, 26, 41 | 3eqtrd 2770 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑁‘(𝑈‘𝐴)) = [〈“〈𝐴, 1o〉”〉] ∼ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3899 ∅c0 4283 {cpr 4578 〈cop 4582 I cid 5510 × cxp 5614 ∘ ccom 5620 Oncon0 6306 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 1oc1o 8378 2oc2o 8379 [cec 8620 Word cword 14420 〈“cs1 14503 reversecreverse 14665 invgcminusg 18847 ~FG cefg 19619 freeGrpcfrgp 19620 varFGrpcvrgp 19621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-ot 4585 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-ec 8624 df-qs 8628 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-lsw 14470 df-concat 14478 df-s1 14504 df-substr 14549 df-pfx 14579 df-splice 14657 df-reverse 14666 df-s2 14755 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-0g 17345 df-imas 17412 df-qus 17413 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-frmd 18757 df-grp 18849 df-minusg 18850 df-efg 19622 df-frgp 19623 df-vrgp 19624 |
| This theorem is referenced by: frgpup3lem 19690 |
| Copyright terms: Public domain | W3C validator |