| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vrgpinv | Structured version Visualization version GIF version | ||
| Description: The inverse of a generating element is represented by 〈𝐴, 1〉 instead of 〈𝐴, 0〉. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| vrgpfval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| vrgpfval.u | ⊢ 𝑈 = (varFGrp‘𝐼) |
| vrgpf.m | ⊢ 𝐺 = (freeGrp‘𝐼) |
| vrgpinv.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| vrgpinv | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑁‘(𝑈‘𝐴)) = [〈“〈𝐴, 1o〉”〉] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vrgpfval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 2 | vrgpfval.u | . . . 4 ⊢ 𝑈 = (varFGrp‘𝐼) | |
| 3 | 1, 2 | vrgpval 19664 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) |
| 4 | 3 | fveq2d 6830 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑁‘(𝑈‘𝐴)) = (𝑁‘[〈“〈𝐴, ∅〉”〉] ∼ )) |
| 5 | simpr 484 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 𝐴 ∈ 𝐼) | |
| 6 | 0ex 5249 | . . . . . . . 8 ⊢ ∅ ∈ V | |
| 7 | 6 | prid1 4716 | . . . . . . 7 ⊢ ∅ ∈ {∅, 1o} |
| 8 | df2o3 8403 | . . . . . . 7 ⊢ 2o = {∅, 1o} | |
| 9 | 7, 8 | eleqtrri 2827 | . . . . . 6 ⊢ ∅ ∈ 2o |
| 10 | opelxpi 5660 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐼 ∧ ∅ ∈ 2o) → 〈𝐴, ∅〉 ∈ (𝐼 × 2o)) | |
| 11 | 5, 9, 10 | sylancl 586 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 〈𝐴, ∅〉 ∈ (𝐼 × 2o)) |
| 12 | 11 | s1cld 14528 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 〈“〈𝐴, ∅〉”〉 ∈ Word (𝐼 × 2o)) |
| 13 | simpl 482 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 𝐼 ∈ 𝑉) | |
| 14 | 2on 8408 | . . . . . 6 ⊢ 2o ∈ On | |
| 15 | xpexg 7690 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V) | |
| 16 | 13, 14, 15 | sylancl 586 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝐼 × 2o) ∈ V) |
| 17 | wrdexg 14449 | . . . . 5 ⊢ ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V) | |
| 18 | fvi 6903 | . . . . 5 ⊢ (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) | |
| 19 | 16, 17, 18 | 3syl 18 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) |
| 20 | 12, 19 | eleqtrrd 2831 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 〈“〈𝐴, ∅〉”〉 ∈ ( I ‘Word (𝐼 × 2o))) |
| 21 | eqid 2729 | . . . 4 ⊢ ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o)) | |
| 22 | vrgpf.m | . . . 4 ⊢ 𝐺 = (freeGrp‘𝐼) | |
| 23 | vrgpinv.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
| 24 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) = (𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) | |
| 25 | 21, 22, 1, 23, 24 | frgpinv 19661 | . . 3 ⊢ (〈“〈𝐴, ∅〉”〉 ∈ ( I ‘Word (𝐼 × 2o)) → (𝑁‘[〈“〈𝐴, ∅〉”〉] ∼ ) = [((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ (reverse‘〈“〈𝐴, ∅〉”〉))] ∼ ) |
| 26 | 20, 25 | syl 17 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑁‘[〈“〈𝐴, ∅〉”〉] ∼ ) = [((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ (reverse‘〈“〈𝐴, ∅〉”〉))] ∼ ) |
| 27 | revs1 14689 | . . . . . 6 ⊢ (reverse‘〈“〈𝐴, ∅〉”〉) = 〈“〈𝐴, ∅〉”〉 | |
| 28 | 27 | a1i 11 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (reverse‘〈“〈𝐴, ∅〉”〉) = 〈“〈𝐴, ∅〉”〉) |
| 29 | 28 | coeq2d 5809 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ (reverse‘〈“〈𝐴, ∅〉”〉)) = ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ 〈“〈𝐴, ∅〉”〉)) |
| 30 | 24 | efgmf 19610 | . . . . 5 ⊢ (𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉):(𝐼 × 2o)⟶(𝐼 × 2o) |
| 31 | s1co 14758 | . . . . 5 ⊢ ((〈𝐴, ∅〉 ∈ (𝐼 × 2o) ∧ (𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉):(𝐼 × 2o)⟶(𝐼 × 2o)) → ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ 〈“〈𝐴, ∅〉”〉) = 〈“((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)‘〈𝐴, ∅〉)”〉) | |
| 32 | 11, 30, 31 | sylancl 586 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ 〈“〈𝐴, ∅〉”〉) = 〈“((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)‘〈𝐴, ∅〉)”〉) |
| 33 | 24 | efgmval 19609 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐼 ∧ ∅ ∈ 2o) → (𝐴(𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)∅) = 〈𝐴, (1o ∖ ∅)〉) |
| 34 | 5, 9, 33 | sylancl 586 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝐴(𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)∅) = 〈𝐴, (1o ∖ ∅)〉) |
| 35 | df-ov 7356 | . . . . . 6 ⊢ (𝐴(𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)∅) = ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)‘〈𝐴, ∅〉) | |
| 36 | dif0 4331 | . . . . . . 7 ⊢ (1o ∖ ∅) = 1o | |
| 37 | 36 | opeq2i 4831 | . . . . . 6 ⊢ 〈𝐴, (1o ∖ ∅)〉 = 〈𝐴, 1o〉 |
| 38 | 34, 35, 37 | 3eqtr3g 2787 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)‘〈𝐴, ∅〉) = 〈𝐴, 1o〉) |
| 39 | 38 | s1eqd 14526 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 〈“((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)‘〈𝐴, ∅〉)”〉 = 〈“〈𝐴, 1o〉”〉) |
| 40 | 29, 32, 39 | 3eqtrd 2768 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ (reverse‘〈“〈𝐴, ∅〉”〉)) = 〈“〈𝐴, 1o〉”〉) |
| 41 | 40 | eceq1d 8672 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → [((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ (reverse‘〈“〈𝐴, ∅〉”〉))] ∼ = [〈“〈𝐴, 1o〉”〉] ∼ ) |
| 42 | 4, 26, 41 | 3eqtrd 2768 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑁‘(𝑈‘𝐴)) = [〈“〈𝐴, 1o〉”〉] ∼ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∖ cdif 3902 ∅c0 4286 {cpr 4581 〈cop 4585 I cid 5517 × cxp 5621 ∘ ccom 5627 Oncon0 6311 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 1oc1o 8388 2oc2o 8389 [cec 8630 Word cword 14438 〈“cs1 14520 reversecreverse 14682 invgcminusg 18831 ~FG cefg 19603 freeGrpcfrgp 19604 varFGrpcvrgp 19605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-ec 8634 df-qs 8638 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-xnn0 12476 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-fzo 13576 df-hash 14256 df-word 14439 df-lsw 14488 df-concat 14496 df-s1 14521 df-substr 14566 df-pfx 14596 df-splice 14674 df-reverse 14683 df-s2 14773 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17139 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-0g 17363 df-imas 17430 df-qus 17431 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-frmd 18741 df-grp 18833 df-minusg 18834 df-efg 19606 df-frgp 19607 df-vrgp 19608 |
| This theorem is referenced by: frgpup3lem 19674 |
| Copyright terms: Public domain | W3C validator |