| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vrgpinv | Structured version Visualization version GIF version | ||
| Description: The inverse of a generating element is represented by 〈𝐴, 1〉 instead of 〈𝐴, 0〉. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| vrgpfval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| vrgpfval.u | ⊢ 𝑈 = (varFGrp‘𝐼) |
| vrgpf.m | ⊢ 𝐺 = (freeGrp‘𝐼) |
| vrgpinv.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| vrgpinv | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑁‘(𝑈‘𝐴)) = [〈“〈𝐴, 1o〉”〉] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vrgpfval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 2 | vrgpfval.u | . . . 4 ⊢ 𝑈 = (varFGrp‘𝐼) | |
| 3 | 1, 2 | vrgpval 19753 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) |
| 4 | 3 | fveq2d 6885 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑁‘(𝑈‘𝐴)) = (𝑁‘[〈“〈𝐴, ∅〉”〉] ∼ )) |
| 5 | simpr 484 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 𝐴 ∈ 𝐼) | |
| 6 | 0ex 5282 | . . . . . . . 8 ⊢ ∅ ∈ V | |
| 7 | 6 | prid1 4743 | . . . . . . 7 ⊢ ∅ ∈ {∅, 1o} |
| 8 | df2o3 8493 | . . . . . . 7 ⊢ 2o = {∅, 1o} | |
| 9 | 7, 8 | eleqtrri 2834 | . . . . . 6 ⊢ ∅ ∈ 2o |
| 10 | opelxpi 5696 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐼 ∧ ∅ ∈ 2o) → 〈𝐴, ∅〉 ∈ (𝐼 × 2o)) | |
| 11 | 5, 9, 10 | sylancl 586 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 〈𝐴, ∅〉 ∈ (𝐼 × 2o)) |
| 12 | 11 | s1cld 14626 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 〈“〈𝐴, ∅〉”〉 ∈ Word (𝐼 × 2o)) |
| 13 | simpl 482 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 𝐼 ∈ 𝑉) | |
| 14 | 2on 8499 | . . . . . 6 ⊢ 2o ∈ On | |
| 15 | xpexg 7749 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V) | |
| 16 | 13, 14, 15 | sylancl 586 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝐼 × 2o) ∈ V) |
| 17 | wrdexg 14547 | . . . . 5 ⊢ ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V) | |
| 18 | fvi 6960 | . . . . 5 ⊢ (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) | |
| 19 | 16, 17, 18 | 3syl 18 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) |
| 20 | 12, 19 | eleqtrrd 2838 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 〈“〈𝐴, ∅〉”〉 ∈ ( I ‘Word (𝐼 × 2o))) |
| 21 | eqid 2736 | . . . 4 ⊢ ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o)) | |
| 22 | vrgpf.m | . . . 4 ⊢ 𝐺 = (freeGrp‘𝐼) | |
| 23 | vrgpinv.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
| 24 | eqid 2736 | . . . 4 ⊢ (𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) = (𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) | |
| 25 | 21, 22, 1, 23, 24 | frgpinv 19750 | . . 3 ⊢ (〈“〈𝐴, ∅〉”〉 ∈ ( I ‘Word (𝐼 × 2o)) → (𝑁‘[〈“〈𝐴, ∅〉”〉] ∼ ) = [((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ (reverse‘〈“〈𝐴, ∅〉”〉))] ∼ ) |
| 26 | 20, 25 | syl 17 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑁‘[〈“〈𝐴, ∅〉”〉] ∼ ) = [((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ (reverse‘〈“〈𝐴, ∅〉”〉))] ∼ ) |
| 27 | revs1 14788 | . . . . . 6 ⊢ (reverse‘〈“〈𝐴, ∅〉”〉) = 〈“〈𝐴, ∅〉”〉 | |
| 28 | 27 | a1i 11 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (reverse‘〈“〈𝐴, ∅〉”〉) = 〈“〈𝐴, ∅〉”〉) |
| 29 | 28 | coeq2d 5847 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ (reverse‘〈“〈𝐴, ∅〉”〉)) = ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ 〈“〈𝐴, ∅〉”〉)) |
| 30 | 24 | efgmf 19699 | . . . . 5 ⊢ (𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉):(𝐼 × 2o)⟶(𝐼 × 2o) |
| 31 | s1co 14857 | . . . . 5 ⊢ ((〈𝐴, ∅〉 ∈ (𝐼 × 2o) ∧ (𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉):(𝐼 × 2o)⟶(𝐼 × 2o)) → ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ 〈“〈𝐴, ∅〉”〉) = 〈“((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)‘〈𝐴, ∅〉)”〉) | |
| 32 | 11, 30, 31 | sylancl 586 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ 〈“〈𝐴, ∅〉”〉) = 〈“((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)‘〈𝐴, ∅〉)”〉) |
| 33 | 24 | efgmval 19698 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐼 ∧ ∅ ∈ 2o) → (𝐴(𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)∅) = 〈𝐴, (1o ∖ ∅)〉) |
| 34 | 5, 9, 33 | sylancl 586 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝐴(𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)∅) = 〈𝐴, (1o ∖ ∅)〉) |
| 35 | df-ov 7413 | . . . . . 6 ⊢ (𝐴(𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)∅) = ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)‘〈𝐴, ∅〉) | |
| 36 | dif0 4358 | . . . . . . 7 ⊢ (1o ∖ ∅) = 1o | |
| 37 | 36 | opeq2i 4858 | . . . . . 6 ⊢ 〈𝐴, (1o ∖ ∅)〉 = 〈𝐴, 1o〉 |
| 38 | 34, 35, 37 | 3eqtr3g 2794 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)‘〈𝐴, ∅〉) = 〈𝐴, 1o〉) |
| 39 | 38 | s1eqd 14624 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 〈“((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)‘〈𝐴, ∅〉)”〉 = 〈“〈𝐴, 1o〉”〉) |
| 40 | 29, 32, 39 | 3eqtrd 2775 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ (reverse‘〈“〈𝐴, ∅〉”〉)) = 〈“〈𝐴, 1o〉”〉) |
| 41 | 40 | eceq1d 8764 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → [((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ (reverse‘〈“〈𝐴, ∅〉”〉))] ∼ = [〈“〈𝐴, 1o〉”〉] ∼ ) |
| 42 | 4, 26, 41 | 3eqtrd 2775 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑁‘(𝑈‘𝐴)) = [〈“〈𝐴, 1o〉”〉] ∼ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∖ cdif 3928 ∅c0 4313 {cpr 4608 〈cop 4612 I cid 5552 × cxp 5657 ∘ ccom 5663 Oncon0 6357 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 1oc1o 8478 2oc2o 8479 [cec 8722 Word cword 14536 〈“cs1 14618 reversecreverse 14781 invgcminusg 18922 ~FG cefg 19692 freeGrpcfrgp 19693 varFGrpcvrgp 19694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-ec 8726 df-qs 8730 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-xnn0 12580 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-fzo 13677 df-hash 14354 df-word 14537 df-lsw 14586 df-concat 14594 df-s1 14619 df-substr 14664 df-pfx 14694 df-splice 14773 df-reverse 14782 df-s2 14872 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-0g 17460 df-imas 17527 df-qus 17528 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-frmd 18832 df-grp 18924 df-minusg 18925 df-efg 19695 df-frgp 19696 df-vrgp 19697 |
| This theorem is referenced by: frgpup3lem 19763 |
| Copyright terms: Public domain | W3C validator |