MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vrgpinv Structured version   Visualization version   GIF version

Theorem vrgpinv 19113
Description: The inverse of a generating element is represented by 𝐴, 1⟩ instead of 𝐴, 0⟩. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
vrgpfval.r = ( ~FG𝐼)
vrgpfval.u 𝑈 = (varFGrp𝐼)
vrgpf.m 𝐺 = (freeGrp‘𝐼)
vrgpinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
vrgpinv ((𝐼𝑉𝐴𝐼) → (𝑁‘(𝑈𝐴)) = [⟨“⟨𝐴, 1o⟩”⟩] )

Proof of Theorem vrgpinv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vrgpfval.r . . . 4 = ( ~FG𝐼)
2 vrgpfval.u . . . 4 𝑈 = (varFGrp𝐼)
31, 2vrgpval 19111 . . 3 ((𝐼𝑉𝐴𝐼) → (𝑈𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] )
43fveq2d 6699 . 2 ((𝐼𝑉𝐴𝐼) → (𝑁‘(𝑈𝐴)) = (𝑁‘[⟨“⟨𝐴, ∅⟩”⟩] ))
5 simpr 488 . . . . . 6 ((𝐼𝑉𝐴𝐼) → 𝐴𝐼)
6 0ex 5185 . . . . . . . 8 ∅ ∈ V
76prid1 4664 . . . . . . 7 ∅ ∈ {∅, 1o}
8 df2o3 8195 . . . . . . 7 2o = {∅, 1o}
97, 8eleqtrri 2830 . . . . . 6 ∅ ∈ 2o
10 opelxpi 5573 . . . . . 6 ((𝐴𝐼 ∧ ∅ ∈ 2o) → ⟨𝐴, ∅⟩ ∈ (𝐼 × 2o))
115, 9, 10sylancl 589 . . . . 5 ((𝐼𝑉𝐴𝐼) → ⟨𝐴, ∅⟩ ∈ (𝐼 × 2o))
1211s1cld 14125 . . . 4 ((𝐼𝑉𝐴𝐼) → ⟨“⟨𝐴, ∅⟩”⟩ ∈ Word (𝐼 × 2o))
13 simpl 486 . . . . . 6 ((𝐼𝑉𝐴𝐼) → 𝐼𝑉)
14 2on 8188 . . . . . 6 2o ∈ On
15 xpexg 7513 . . . . . 6 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
1613, 14, 15sylancl 589 . . . . 5 ((𝐼𝑉𝐴𝐼) → (𝐼 × 2o) ∈ V)
17 wrdexg 14044 . . . . 5 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
18 fvi 6765 . . . . 5 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
1916, 17, 183syl 18 . . . 4 ((𝐼𝑉𝐴𝐼) → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
2012, 19eleqtrrd 2834 . . 3 ((𝐼𝑉𝐴𝐼) → ⟨“⟨𝐴, ∅⟩”⟩ ∈ ( I ‘Word (𝐼 × 2o)))
21 eqid 2736 . . . 4 ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o))
22 vrgpf.m . . . 4 𝐺 = (freeGrp‘𝐼)
23 vrgpinv.n . . . 4 𝑁 = (invg𝐺)
24 eqid 2736 . . . 4 (𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) = (𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)
2521, 22, 1, 23, 24frgpinv 19108 . . 3 (⟨“⟨𝐴, ∅⟩”⟩ ∈ ( I ‘Word (𝐼 × 2o)) → (𝑁‘[⟨“⟨𝐴, ∅⟩”⟩] ) = [((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ (reverse‘⟨“⟨𝐴, ∅⟩”⟩))] )
2620, 25syl 17 . 2 ((𝐼𝑉𝐴𝐼) → (𝑁‘[⟨“⟨𝐴, ∅⟩”⟩] ) = [((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ (reverse‘⟨“⟨𝐴, ∅⟩”⟩))] )
27 revs1 14295 . . . . . 6 (reverse‘⟨“⟨𝐴, ∅⟩”⟩) = ⟨“⟨𝐴, ∅⟩”⟩
2827a1i 11 . . . . 5 ((𝐼𝑉𝐴𝐼) → (reverse‘⟨“⟨𝐴, ∅⟩”⟩) = ⟨“⟨𝐴, ∅⟩”⟩)
2928coeq2d 5716 . . . 4 ((𝐼𝑉𝐴𝐼) → ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ (reverse‘⟨“⟨𝐴, ∅⟩”⟩)) = ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ ⟨“⟨𝐴, ∅⟩”⟩))
3024efgmf 19057 . . . . 5 (𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩):(𝐼 × 2o)⟶(𝐼 × 2o)
31 s1co 14363 . . . . 5 ((⟨𝐴, ∅⟩ ∈ (𝐼 × 2o) ∧ (𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩):(𝐼 × 2o)⟶(𝐼 × 2o)) → ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ ⟨“⟨𝐴, ∅⟩”⟩) = ⟨“((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)‘⟨𝐴, ∅⟩)”⟩)
3211, 30, 31sylancl 589 . . . 4 ((𝐼𝑉𝐴𝐼) → ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ ⟨“⟨𝐴, ∅⟩”⟩) = ⟨“((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)‘⟨𝐴, ∅⟩)”⟩)
3324efgmval 19056 . . . . . . 7 ((𝐴𝐼 ∧ ∅ ∈ 2o) → (𝐴(𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)∅) = ⟨𝐴, (1o ∖ ∅)⟩)
345, 9, 33sylancl 589 . . . . . 6 ((𝐼𝑉𝐴𝐼) → (𝐴(𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)∅) = ⟨𝐴, (1o ∖ ∅)⟩)
35 df-ov 7194 . . . . . 6 (𝐴(𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)∅) = ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)‘⟨𝐴, ∅⟩)
36 dif0 4273 . . . . . . 7 (1o ∖ ∅) = 1o
3736opeq2i 4774 . . . . . 6 𝐴, (1o ∖ ∅)⟩ = ⟨𝐴, 1o
3834, 35, 373eqtr3g 2794 . . . . 5 ((𝐼𝑉𝐴𝐼) → ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)‘⟨𝐴, ∅⟩) = ⟨𝐴, 1o⟩)
3938s1eqd 14123 . . . 4 ((𝐼𝑉𝐴𝐼) → ⟨“((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)‘⟨𝐴, ∅⟩)”⟩ = ⟨“⟨𝐴, 1o⟩”⟩)
4029, 32, 393eqtrd 2775 . . 3 ((𝐼𝑉𝐴𝐼) → ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ (reverse‘⟨“⟨𝐴, ∅⟩”⟩)) = ⟨“⟨𝐴, 1o⟩”⟩)
4140eceq1d 8408 . 2 ((𝐼𝑉𝐴𝐼) → [((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ (reverse‘⟨“⟨𝐴, ∅⟩”⟩))] = [⟨“⟨𝐴, 1o⟩”⟩] )
424, 26, 413eqtrd 2775 1 ((𝐼𝑉𝐴𝐼) → (𝑁‘(𝑈𝐴)) = [⟨“⟨𝐴, 1o⟩”⟩] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  Vcvv 3398  cdif 3850  c0 4223  {cpr 4529  cop 4533   I cid 5439   × cxp 5534  ccom 5540  Oncon0 6191  wf 6354  cfv 6358  (class class class)co 7191  cmpo 7193  1oc1o 8173  2oc2o 8174  [cec 8367  Word cword 14034  ⟨“cs1 14117  reversecreverse 14288  invgcminusg 18320   ~FG cefg 19050  freeGrpcfrgp 19051  varFGrpcvrgp 19052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-ot 4536  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-er 8369  df-ec 8371  df-qs 8375  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-inf 9037  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-xnn0 12128  df-z 12142  df-dec 12259  df-uz 12404  df-fz 13061  df-fzo 13204  df-hash 13862  df-word 14035  df-lsw 14083  df-concat 14091  df-s1 14118  df-substr 14171  df-pfx 14201  df-splice 14280  df-reverse 14289  df-s2 14378  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-plusg 16762  df-mulr 16763  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-0g 16900  df-imas 16967  df-qus 16968  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-frmd 18230  df-grp 18322  df-minusg 18323  df-efg 19053  df-frgp 19054  df-vrgp 19055
This theorem is referenced by:  frgpup3lem  19121
  Copyright terms: Public domain W3C validator