MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vrgpinv Structured version   Visualization version   GIF version

Theorem vrgpinv 19699
Description: The inverse of a generating element is represented by 𝐴, 1⟩ instead of 𝐴, 0⟩. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
vrgpfval.r = ( ~FG𝐼)
vrgpfval.u 𝑈 = (varFGrp𝐼)
vrgpf.m 𝐺 = (freeGrp‘𝐼)
vrgpinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
vrgpinv ((𝐼𝑉𝐴𝐼) → (𝑁‘(𝑈𝐴)) = [⟨“⟨𝐴, 1o⟩”⟩] )

Proof of Theorem vrgpinv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vrgpfval.r . . . 4 = ( ~FG𝐼)
2 vrgpfval.u . . . 4 𝑈 = (varFGrp𝐼)
31, 2vrgpval 19697 . . 3 ((𝐼𝑉𝐴𝐼) → (𝑈𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] )
43fveq2d 6862 . 2 ((𝐼𝑉𝐴𝐼) → (𝑁‘(𝑈𝐴)) = (𝑁‘[⟨“⟨𝐴, ∅⟩”⟩] ))
5 simpr 484 . . . . . 6 ((𝐼𝑉𝐴𝐼) → 𝐴𝐼)
6 0ex 5262 . . . . . . . 8 ∅ ∈ V
76prid1 4726 . . . . . . 7 ∅ ∈ {∅, 1o}
8 df2o3 8442 . . . . . . 7 2o = {∅, 1o}
97, 8eleqtrri 2827 . . . . . 6 ∅ ∈ 2o
10 opelxpi 5675 . . . . . 6 ((𝐴𝐼 ∧ ∅ ∈ 2o) → ⟨𝐴, ∅⟩ ∈ (𝐼 × 2o))
115, 9, 10sylancl 586 . . . . 5 ((𝐼𝑉𝐴𝐼) → ⟨𝐴, ∅⟩ ∈ (𝐼 × 2o))
1211s1cld 14568 . . . 4 ((𝐼𝑉𝐴𝐼) → ⟨“⟨𝐴, ∅⟩”⟩ ∈ Word (𝐼 × 2o))
13 simpl 482 . . . . . 6 ((𝐼𝑉𝐴𝐼) → 𝐼𝑉)
14 2on 8447 . . . . . 6 2o ∈ On
15 xpexg 7726 . . . . . 6 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
1613, 14, 15sylancl 586 . . . . 5 ((𝐼𝑉𝐴𝐼) → (𝐼 × 2o) ∈ V)
17 wrdexg 14489 . . . . 5 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
18 fvi 6937 . . . . 5 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
1916, 17, 183syl 18 . . . 4 ((𝐼𝑉𝐴𝐼) → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
2012, 19eleqtrrd 2831 . . 3 ((𝐼𝑉𝐴𝐼) → ⟨“⟨𝐴, ∅⟩”⟩ ∈ ( I ‘Word (𝐼 × 2o)))
21 eqid 2729 . . . 4 ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o))
22 vrgpf.m . . . 4 𝐺 = (freeGrp‘𝐼)
23 vrgpinv.n . . . 4 𝑁 = (invg𝐺)
24 eqid 2729 . . . 4 (𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) = (𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)
2521, 22, 1, 23, 24frgpinv 19694 . . 3 (⟨“⟨𝐴, ∅⟩”⟩ ∈ ( I ‘Word (𝐼 × 2o)) → (𝑁‘[⟨“⟨𝐴, ∅⟩”⟩] ) = [((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ (reverse‘⟨“⟨𝐴, ∅⟩”⟩))] )
2620, 25syl 17 . 2 ((𝐼𝑉𝐴𝐼) → (𝑁‘[⟨“⟨𝐴, ∅⟩”⟩] ) = [((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ (reverse‘⟨“⟨𝐴, ∅⟩”⟩))] )
27 revs1 14730 . . . . . 6 (reverse‘⟨“⟨𝐴, ∅⟩”⟩) = ⟨“⟨𝐴, ∅⟩”⟩
2827a1i 11 . . . . 5 ((𝐼𝑉𝐴𝐼) → (reverse‘⟨“⟨𝐴, ∅⟩”⟩) = ⟨“⟨𝐴, ∅⟩”⟩)
2928coeq2d 5826 . . . 4 ((𝐼𝑉𝐴𝐼) → ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ (reverse‘⟨“⟨𝐴, ∅⟩”⟩)) = ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ ⟨“⟨𝐴, ∅⟩”⟩))
3024efgmf 19643 . . . . 5 (𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩):(𝐼 × 2o)⟶(𝐼 × 2o)
31 s1co 14799 . . . . 5 ((⟨𝐴, ∅⟩ ∈ (𝐼 × 2o) ∧ (𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩):(𝐼 × 2o)⟶(𝐼 × 2o)) → ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ ⟨“⟨𝐴, ∅⟩”⟩) = ⟨“((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)‘⟨𝐴, ∅⟩)”⟩)
3211, 30, 31sylancl 586 . . . 4 ((𝐼𝑉𝐴𝐼) → ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ ⟨“⟨𝐴, ∅⟩”⟩) = ⟨“((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)‘⟨𝐴, ∅⟩)”⟩)
3324efgmval 19642 . . . . . . 7 ((𝐴𝐼 ∧ ∅ ∈ 2o) → (𝐴(𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)∅) = ⟨𝐴, (1o ∖ ∅)⟩)
345, 9, 33sylancl 586 . . . . . 6 ((𝐼𝑉𝐴𝐼) → (𝐴(𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)∅) = ⟨𝐴, (1o ∖ ∅)⟩)
35 df-ov 7390 . . . . . 6 (𝐴(𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)∅) = ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)‘⟨𝐴, ∅⟩)
36 dif0 4341 . . . . . . 7 (1o ∖ ∅) = 1o
3736opeq2i 4841 . . . . . 6 𝐴, (1o ∖ ∅)⟩ = ⟨𝐴, 1o
3834, 35, 373eqtr3g 2787 . . . . 5 ((𝐼𝑉𝐴𝐼) → ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)‘⟨𝐴, ∅⟩) = ⟨𝐴, 1o⟩)
3938s1eqd 14566 . . . 4 ((𝐼𝑉𝐴𝐼) → ⟨“((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)‘⟨𝐴, ∅⟩)”⟩ = ⟨“⟨𝐴, 1o⟩”⟩)
4029, 32, 393eqtrd 2768 . . 3 ((𝐼𝑉𝐴𝐼) → ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ (reverse‘⟨“⟨𝐴, ∅⟩”⟩)) = ⟨“⟨𝐴, 1o⟩”⟩)
4140eceq1d 8711 . 2 ((𝐼𝑉𝐴𝐼) → [((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ (reverse‘⟨“⟨𝐴, ∅⟩”⟩))] = [⟨“⟨𝐴, 1o⟩”⟩] )
424, 26, 413eqtrd 2768 1 ((𝐼𝑉𝐴𝐼) → (𝑁‘(𝑈𝐴)) = [⟨“⟨𝐴, 1o⟩”⟩] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cdif 3911  c0 4296  {cpr 4591  cop 4595   I cid 5532   × cxp 5636  ccom 5642  Oncon0 6332  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  1oc1o 8427  2oc2o 8428  [cec 8669  Word cword 14478  ⟨“cs1 14560  reversecreverse 14723  invgcminusg 18866   ~FG cefg 19636  freeGrpcfrgp 19637  varFGrpcvrgp 19638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-splice 14715  df-reverse 14724  df-s2 14814  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-0g 17404  df-imas 17471  df-qus 17472  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-frmd 18776  df-grp 18868  df-minusg 18869  df-efg 19639  df-frgp 19640  df-vrgp 19641
This theorem is referenced by:  frgpup3lem  19707
  Copyright terms: Public domain W3C validator