Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vrgpinv Structured version   Visualization version   GIF version

Theorem vrgpinv 18891
 Description: The inverse of a generating element is represented by ⟨𝐴, 1⟩ instead of ⟨𝐴, 0⟩. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
vrgpfval.r = ( ~FG𝐼)
vrgpfval.u 𝑈 = (varFGrp𝐼)
vrgpf.m 𝐺 = (freeGrp‘𝐼)
vrgpinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
vrgpinv ((𝐼𝑉𝐴𝐼) → (𝑁‘(𝑈𝐴)) = [⟨“⟨𝐴, 1o⟩”⟩] )

Proof of Theorem vrgpinv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vrgpfval.r . . . 4 = ( ~FG𝐼)
2 vrgpfval.u . . . 4 𝑈 = (varFGrp𝐼)
31, 2vrgpval 18889 . . 3 ((𝐼𝑉𝐴𝐼) → (𝑈𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] )
43fveq2d 6653 . 2 ((𝐼𝑉𝐴𝐼) → (𝑁‘(𝑈𝐴)) = (𝑁‘[⟨“⟨𝐴, ∅⟩”⟩] ))
5 simpr 488 . . . . . 6 ((𝐼𝑉𝐴𝐼) → 𝐴𝐼)
6 0ex 5178 . . . . . . . 8 ∅ ∈ V
76prid1 4661 . . . . . . 7 ∅ ∈ {∅, 1o}
8 df2o3 8104 . . . . . . 7 2o = {∅, 1o}
97, 8eleqtrri 2892 . . . . . 6 ∅ ∈ 2o
10 opelxpi 5560 . . . . . 6 ((𝐴𝐼 ∧ ∅ ∈ 2o) → ⟨𝐴, ∅⟩ ∈ (𝐼 × 2o))
115, 9, 10sylancl 589 . . . . 5 ((𝐼𝑉𝐴𝐼) → ⟨𝐴, ∅⟩ ∈ (𝐼 × 2o))
1211s1cld 13952 . . . 4 ((𝐼𝑉𝐴𝐼) → ⟨“⟨𝐴, ∅⟩”⟩ ∈ Word (𝐼 × 2o))
13 simpl 486 . . . . . 6 ((𝐼𝑉𝐴𝐼) → 𝐼𝑉)
14 2on 8098 . . . . . 6 2o ∈ On
15 xpexg 7457 . . . . . 6 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
1613, 14, 15sylancl 589 . . . . 5 ((𝐼𝑉𝐴𝐼) → (𝐼 × 2o) ∈ V)
17 wrdexg 13871 . . . . 5 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
18 fvi 6719 . . . . 5 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
1916, 17, 183syl 18 . . . 4 ((𝐼𝑉𝐴𝐼) → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
2012, 19eleqtrrd 2896 . . 3 ((𝐼𝑉𝐴𝐼) → ⟨“⟨𝐴, ∅⟩”⟩ ∈ ( I ‘Word (𝐼 × 2o)))
21 eqid 2801 . . . 4 ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o))
22 vrgpf.m . . . 4 𝐺 = (freeGrp‘𝐼)
23 vrgpinv.n . . . 4 𝑁 = (invg𝐺)
24 eqid 2801 . . . 4 (𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) = (𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)
2521, 22, 1, 23, 24frgpinv 18886 . . 3 (⟨“⟨𝐴, ∅⟩”⟩ ∈ ( I ‘Word (𝐼 × 2o)) → (𝑁‘[⟨“⟨𝐴, ∅⟩”⟩] ) = [((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ (reverse‘⟨“⟨𝐴, ∅⟩”⟩))] )
2620, 25syl 17 . 2 ((𝐼𝑉𝐴𝐼) → (𝑁‘[⟨“⟨𝐴, ∅⟩”⟩] ) = [((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ (reverse‘⟨“⟨𝐴, ∅⟩”⟩))] )
27 revs1 14122 . . . . . 6 (reverse‘⟨“⟨𝐴, ∅⟩”⟩) = ⟨“⟨𝐴, ∅⟩”⟩
2827a1i 11 . . . . 5 ((𝐼𝑉𝐴𝐼) → (reverse‘⟨“⟨𝐴, ∅⟩”⟩) = ⟨“⟨𝐴, ∅⟩”⟩)
2928coeq2d 5701 . . . 4 ((𝐼𝑉𝐴𝐼) → ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ (reverse‘⟨“⟨𝐴, ∅⟩”⟩)) = ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ ⟨“⟨𝐴, ∅⟩”⟩))
3024efgmf 18835 . . . . 5 (𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩):(𝐼 × 2o)⟶(𝐼 × 2o)
31 s1co 14190 . . . . 5 ((⟨𝐴, ∅⟩ ∈ (𝐼 × 2o) ∧ (𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩):(𝐼 × 2o)⟶(𝐼 × 2o)) → ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ ⟨“⟨𝐴, ∅⟩”⟩) = ⟨“((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)‘⟨𝐴, ∅⟩)”⟩)
3211, 30, 31sylancl 589 . . . 4 ((𝐼𝑉𝐴𝐼) → ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ ⟨“⟨𝐴, ∅⟩”⟩) = ⟨“((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)‘⟨𝐴, ∅⟩)”⟩)
3324efgmval 18834 . . . . . . 7 ((𝐴𝐼 ∧ ∅ ∈ 2o) → (𝐴(𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)∅) = ⟨𝐴, (1o ∖ ∅)⟩)
345, 9, 33sylancl 589 . . . . . 6 ((𝐼𝑉𝐴𝐼) → (𝐴(𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)∅) = ⟨𝐴, (1o ∖ ∅)⟩)
35 df-ov 7142 . . . . . 6 (𝐴(𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)∅) = ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)‘⟨𝐴, ∅⟩)
36 dif0 4289 . . . . . . 7 (1o ∖ ∅) = 1o
3736opeq2i 4772 . . . . . 6 𝐴, (1o ∖ ∅)⟩ = ⟨𝐴, 1o
3834, 35, 373eqtr3g 2859 . . . . 5 ((𝐼𝑉𝐴𝐼) → ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)‘⟨𝐴, ∅⟩) = ⟨𝐴, 1o⟩)
3938s1eqd 13950 . . . 4 ((𝐼𝑉𝐴𝐼) → ⟨“((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)‘⟨𝐴, ∅⟩)”⟩ = ⟨“⟨𝐴, 1o⟩”⟩)
4029, 32, 393eqtrd 2840 . . 3 ((𝐼𝑉𝐴𝐼) → ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ (reverse‘⟨“⟨𝐴, ∅⟩”⟩)) = ⟨“⟨𝐴, 1o⟩”⟩)
4140eceq1d 8315 . 2 ((𝐼𝑉𝐴𝐼) → [((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ (reverse‘⟨“⟨𝐴, ∅⟩”⟩))] = [⟨“⟨𝐴, 1o⟩”⟩] )
424, 26, 413eqtrd 2840 1 ((𝐼𝑉𝐴𝐼) → (𝑁‘(𝑈𝐴)) = [⟨“⟨𝐴, 1o⟩”⟩] )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112  Vcvv 3444   ∖ cdif 3881  ∅c0 4246  {cpr 4530  ⟨cop 4534   I cid 5427   × cxp 5521   ∘ ccom 5527  Oncon0 6163  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139   ∈ cmpo 7141  1oc1o 8082  2oc2o 8083  [cec 8274  Word cword 13861  ⟨“cs1 13944  reversecreverse 14115  invgcminusg 18100   ~FG cefg 18828  freeGrpcfrgp 18829  varFGrpcvrgp 18830 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-ot 4537  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-ec 8278  df-qs 8282  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-xnn0 11960  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-fzo 13033  df-hash 13691  df-word 13862  df-lsw 13910  df-concat 13918  df-s1 13945  df-substr 13998  df-pfx 14028  df-splice 14107  df-reverse 14116  df-s2 14205  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-plusg 16574  df-mulr 16575  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-0g 16711  df-imas 16777  df-qus 16778  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-frmd 18010  df-grp 18102  df-minusg 18103  df-efg 18831  df-frgp 18832  df-vrgp 18833 This theorem is referenced by:  frgpup3lem  18899
 Copyright terms: Public domain W3C validator