MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vrgpinv Structured version   Visualization version   GIF version

Theorem vrgpinv 19788
Description: The inverse of a generating element is represented by 𝐴, 1⟩ instead of 𝐴, 0⟩. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
vrgpfval.r = ( ~FG𝐼)
vrgpfval.u 𝑈 = (varFGrp𝐼)
vrgpf.m 𝐺 = (freeGrp‘𝐼)
vrgpinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
vrgpinv ((𝐼𝑉𝐴𝐼) → (𝑁‘(𝑈𝐴)) = [⟨“⟨𝐴, 1o⟩”⟩] )

Proof of Theorem vrgpinv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vrgpfval.r . . . 4 = ( ~FG𝐼)
2 vrgpfval.u . . . 4 𝑈 = (varFGrp𝐼)
31, 2vrgpval 19786 . . 3 ((𝐼𝑉𝐴𝐼) → (𝑈𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] )
43fveq2d 6909 . 2 ((𝐼𝑉𝐴𝐼) → (𝑁‘(𝑈𝐴)) = (𝑁‘[⟨“⟨𝐴, ∅⟩”⟩] ))
5 simpr 484 . . . . . 6 ((𝐼𝑉𝐴𝐼) → 𝐴𝐼)
6 0ex 5306 . . . . . . . 8 ∅ ∈ V
76prid1 4761 . . . . . . 7 ∅ ∈ {∅, 1o}
8 df2o3 8515 . . . . . . 7 2o = {∅, 1o}
97, 8eleqtrri 2839 . . . . . 6 ∅ ∈ 2o
10 opelxpi 5721 . . . . . 6 ((𝐴𝐼 ∧ ∅ ∈ 2o) → ⟨𝐴, ∅⟩ ∈ (𝐼 × 2o))
115, 9, 10sylancl 586 . . . . 5 ((𝐼𝑉𝐴𝐼) → ⟨𝐴, ∅⟩ ∈ (𝐼 × 2o))
1211s1cld 14642 . . . 4 ((𝐼𝑉𝐴𝐼) → ⟨“⟨𝐴, ∅⟩”⟩ ∈ Word (𝐼 × 2o))
13 simpl 482 . . . . . 6 ((𝐼𝑉𝐴𝐼) → 𝐼𝑉)
14 2on 8521 . . . . . 6 2o ∈ On
15 xpexg 7771 . . . . . 6 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
1613, 14, 15sylancl 586 . . . . 5 ((𝐼𝑉𝐴𝐼) → (𝐼 × 2o) ∈ V)
17 wrdexg 14563 . . . . 5 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
18 fvi 6984 . . . . 5 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
1916, 17, 183syl 18 . . . 4 ((𝐼𝑉𝐴𝐼) → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
2012, 19eleqtrrd 2843 . . 3 ((𝐼𝑉𝐴𝐼) → ⟨“⟨𝐴, ∅⟩”⟩ ∈ ( I ‘Word (𝐼 × 2o)))
21 eqid 2736 . . . 4 ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o))
22 vrgpf.m . . . 4 𝐺 = (freeGrp‘𝐼)
23 vrgpinv.n . . . 4 𝑁 = (invg𝐺)
24 eqid 2736 . . . 4 (𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) = (𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)
2521, 22, 1, 23, 24frgpinv 19783 . . 3 (⟨“⟨𝐴, ∅⟩”⟩ ∈ ( I ‘Word (𝐼 × 2o)) → (𝑁‘[⟨“⟨𝐴, ∅⟩”⟩] ) = [((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ (reverse‘⟨“⟨𝐴, ∅⟩”⟩))] )
2620, 25syl 17 . 2 ((𝐼𝑉𝐴𝐼) → (𝑁‘[⟨“⟨𝐴, ∅⟩”⟩] ) = [((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ (reverse‘⟨“⟨𝐴, ∅⟩”⟩))] )
27 revs1 14804 . . . . . 6 (reverse‘⟨“⟨𝐴, ∅⟩”⟩) = ⟨“⟨𝐴, ∅⟩”⟩
2827a1i 11 . . . . 5 ((𝐼𝑉𝐴𝐼) → (reverse‘⟨“⟨𝐴, ∅⟩”⟩) = ⟨“⟨𝐴, ∅⟩”⟩)
2928coeq2d 5872 . . . 4 ((𝐼𝑉𝐴𝐼) → ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ (reverse‘⟨“⟨𝐴, ∅⟩”⟩)) = ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ ⟨“⟨𝐴, ∅⟩”⟩))
3024efgmf 19732 . . . . 5 (𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩):(𝐼 × 2o)⟶(𝐼 × 2o)
31 s1co 14873 . . . . 5 ((⟨𝐴, ∅⟩ ∈ (𝐼 × 2o) ∧ (𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩):(𝐼 × 2o)⟶(𝐼 × 2o)) → ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ ⟨“⟨𝐴, ∅⟩”⟩) = ⟨“((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)‘⟨𝐴, ∅⟩)”⟩)
3211, 30, 31sylancl 586 . . . 4 ((𝐼𝑉𝐴𝐼) → ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ ⟨“⟨𝐴, ∅⟩”⟩) = ⟨“((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)‘⟨𝐴, ∅⟩)”⟩)
3324efgmval 19731 . . . . . . 7 ((𝐴𝐼 ∧ ∅ ∈ 2o) → (𝐴(𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)∅) = ⟨𝐴, (1o ∖ ∅)⟩)
345, 9, 33sylancl 586 . . . . . 6 ((𝐼𝑉𝐴𝐼) → (𝐴(𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)∅) = ⟨𝐴, (1o ∖ ∅)⟩)
35 df-ov 7435 . . . . . 6 (𝐴(𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)∅) = ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)‘⟨𝐴, ∅⟩)
36 dif0 4377 . . . . . . 7 (1o ∖ ∅) = 1o
3736opeq2i 4876 . . . . . 6 𝐴, (1o ∖ ∅)⟩ = ⟨𝐴, 1o
3834, 35, 373eqtr3g 2799 . . . . 5 ((𝐼𝑉𝐴𝐼) → ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)‘⟨𝐴, ∅⟩) = ⟨𝐴, 1o⟩)
3938s1eqd 14640 . . . 4 ((𝐼𝑉𝐴𝐼) → ⟨“((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩)‘⟨𝐴, ∅⟩)”⟩ = ⟨“⟨𝐴, 1o⟩”⟩)
4029, 32, 393eqtrd 2780 . . 3 ((𝐼𝑉𝐴𝐼) → ((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ (reverse‘⟨“⟨𝐴, ∅⟩”⟩)) = ⟨“⟨𝐴, 1o⟩”⟩)
4140eceq1d 8786 . 2 ((𝐼𝑉𝐴𝐼) → [((𝑥𝐼, 𝑦 ∈ 2o ↦ ⟨𝑥, (1o𝑦)⟩) ∘ (reverse‘⟨“⟨𝐴, ∅⟩”⟩))] = [⟨“⟨𝐴, 1o⟩”⟩] )
424, 26, 413eqtrd 2780 1 ((𝐼𝑉𝐴𝐼) → (𝑁‘(𝑈𝐴)) = [⟨“⟨𝐴, 1o⟩”⟩] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3479  cdif 3947  c0 4332  {cpr 4627  cop 4631   I cid 5576   × cxp 5682  ccom 5688  Oncon0 6383  wf 6556  cfv 6560  (class class class)co 7432  cmpo 7434  1oc1o 8500  2oc2o 8501  [cec 8744  Word cword 14553  ⟨“cs1 14634  reversecreverse 14797  invgcminusg 18953   ~FG cefg 19725  freeGrpcfrgp 19726  varFGrpcvrgp 19727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-ot 4634  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-ec 8748  df-qs 8752  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-xnn0 12602  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-fzo 13696  df-hash 14371  df-word 14554  df-lsw 14602  df-concat 14610  df-s1 14635  df-substr 14680  df-pfx 14710  df-splice 14789  df-reverse 14798  df-s2 14888  df-struct 17185  df-slot 17220  df-ndx 17232  df-base 17249  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-0g 17487  df-imas 17554  df-qus 17555  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-frmd 18863  df-grp 18955  df-minusg 18956  df-efg 19728  df-frgp 19729  df-vrgp 19730
This theorem is referenced by:  frgpup3lem  19796
  Copyright terms: Public domain W3C validator