Step | Hyp | Ref
| Expression |
1 | | vrgpfval.r |
. . . 4
β’ βΌ = (
~FG βπΌ) |
2 | | vrgpfval.u |
. . . 4
β’ π =
(varFGrpβπΌ) |
3 | 1, 2 | vrgpval 19677 |
. . 3
β’ ((πΌ β π β§ π΄ β πΌ) β (πβπ΄) = [β¨ββ¨π΄, β
β©ββ©] βΌ
) |
4 | 3 | fveq2d 6895 |
. 2
β’ ((πΌ β π β§ π΄ β πΌ) β (πβ(πβπ΄)) = (πβ[β¨ββ¨π΄, β
β©ββ©] βΌ
)) |
5 | | simpr 484 |
. . . . . 6
β’ ((πΌ β π β§ π΄ β πΌ) β π΄ β πΌ) |
6 | | 0ex 5307 |
. . . . . . . 8
β’ β
β V |
7 | 6 | prid1 4766 |
. . . . . . 7
β’ β
β {β
, 1o} |
8 | | df2o3 8477 |
. . . . . . 7
β’
2o = {β
, 1o} |
9 | 7, 8 | eleqtrri 2831 |
. . . . . 6
β’ β
β 2o |
10 | | opelxpi 5713 |
. . . . . 6
β’ ((π΄ β πΌ β§ β
β 2o) β
β¨π΄, β
β©
β (πΌ Γ
2o)) |
11 | 5, 9, 10 | sylancl 585 |
. . . . 5
β’ ((πΌ β π β§ π΄ β πΌ) β β¨π΄, β
β© β (πΌ Γ 2o)) |
12 | 11 | s1cld 14558 |
. . . 4
β’ ((πΌ β π β§ π΄ β πΌ) β β¨ββ¨π΄, β
β©ββ©
β Word (πΌ Γ
2o)) |
13 | | simpl 482 |
. . . . . 6
β’ ((πΌ β π β§ π΄ β πΌ) β πΌ β π) |
14 | | 2on 8483 |
. . . . . 6
β’
2o β On |
15 | | xpexg 7740 |
. . . . . 6
β’ ((πΌ β π β§ 2o β On) β
(πΌ Γ 2o)
β V) |
16 | 13, 14, 15 | sylancl 585 |
. . . . 5
β’ ((πΌ β π β§ π΄ β πΌ) β (πΌ Γ 2o) β
V) |
17 | | wrdexg 14479 |
. . . . 5
β’ ((πΌ Γ 2o) β V
β Word (πΌ Γ
2o) β V) |
18 | | fvi 6967 |
. . . . 5
β’ (Word
(πΌ Γ 2o)
β V β ( I βWord (πΌ Γ 2o)) = Word (πΌ Γ
2o)) |
19 | 16, 17, 18 | 3syl 18 |
. . . 4
β’ ((πΌ β π β§ π΄ β πΌ) β ( I βWord (πΌ Γ 2o)) = Word (πΌ Γ
2o)) |
20 | 12, 19 | eleqtrrd 2835 |
. . 3
β’ ((πΌ β π β§ π΄ β πΌ) β β¨ββ¨π΄, β
β©ββ©
β ( I βWord (πΌ
Γ 2o))) |
21 | | eqid 2731 |
. . . 4
β’ ( I
βWord (πΌ Γ
2o)) = ( I βWord (πΌ Γ 2o)) |
22 | | vrgpf.m |
. . . 4
β’ πΊ = (freeGrpβπΌ) |
23 | | vrgpinv.n |
. . . 4
β’ π = (invgβπΊ) |
24 | | eqid 2731 |
. . . 4
β’ (π₯ β πΌ, π¦ β 2o β¦ β¨π₯, (1o β π¦)β©) = (π₯ β πΌ, π¦ β 2o β¦ β¨π₯, (1o β π¦)β©) |
25 | 21, 22, 1, 23, 24 | frgpinv 19674 |
. . 3
β’
(β¨ββ¨π΄, β
β©ββ© β ( I
βWord (πΌ Γ
2o)) β (πβ[β¨ββ¨π΄, β
β©ββ©] βΌ ) =
[((π₯ β πΌ, π¦ β 2o β¦ β¨π₯, (1o β π¦)β©) β
(reverseββ¨ββ¨π΄, β
β©ββ©))] βΌ
) |
26 | 20, 25 | syl 17 |
. 2
β’ ((πΌ β π β§ π΄ β πΌ) β (πβ[β¨ββ¨π΄, β
β©ββ©] βΌ ) =
[((π₯ β πΌ, π¦ β 2o β¦ β¨π₯, (1o β π¦)β©) β
(reverseββ¨ββ¨π΄, β
β©ββ©))] βΌ
) |
27 | | revs1 14720 |
. . . . . 6
β’
(reverseββ¨ββ¨π΄, β
β©ββ©) =
β¨ββ¨π΄,
β
β©ββ© |
28 | 27 | a1i 11 |
. . . . 5
β’ ((πΌ β π β§ π΄ β πΌ) β
(reverseββ¨ββ¨π΄, β
β©ββ©) =
β¨ββ¨π΄,
β
β©ββ©) |
29 | 28 | coeq2d 5862 |
. . . 4
β’ ((πΌ β π β§ π΄ β πΌ) β ((π₯ β πΌ, π¦ β 2o β¦ β¨π₯, (1o β π¦)β©) β
(reverseββ¨ββ¨π΄, β
β©ββ©)) = ((π₯ β πΌ, π¦ β 2o β¦ β¨π₯, (1o β π¦)β©) β
β¨ββ¨π΄,
β
β©ββ©)) |
30 | 24 | efgmf 19623 |
. . . . 5
β’ (π₯ β πΌ, π¦ β 2o β¦ β¨π₯, (1o β π¦)β©):(πΌ Γ 2o)βΆ(πΌ Γ
2o) |
31 | | s1co 14789 |
. . . . 5
β’
((β¨π΄,
β
β© β (πΌ
Γ 2o) β§ (π₯ β πΌ, π¦ β 2o β¦ β¨π₯, (1o β π¦)β©):(πΌ Γ 2o)βΆ(πΌ Γ 2o)) β
((π₯ β πΌ, π¦ β 2o β¦ β¨π₯, (1o β π¦)β©) β
β¨ββ¨π΄,
β
β©ββ©) = β¨β((π₯ β πΌ, π¦ β 2o β¦ β¨π₯, (1o β π¦)β©)ββ¨π΄,
β
β©)ββ©) |
32 | 11, 30, 31 | sylancl 585 |
. . . 4
β’ ((πΌ β π β§ π΄ β πΌ) β ((π₯ β πΌ, π¦ β 2o β¦ β¨π₯, (1o β π¦)β©) β
β¨ββ¨π΄,
β
β©ββ©) = β¨β((π₯ β πΌ, π¦ β 2o β¦ β¨π₯, (1o β π¦)β©)ββ¨π΄,
β
β©)ββ©) |
33 | 24 | efgmval 19622 |
. . . . . . 7
β’ ((π΄ β πΌ β§ β
β 2o) β
(π΄(π₯ β πΌ, π¦ β 2o β¦ β¨π₯, (1o β π¦)β©)β
) = β¨π΄, (1o β
β
)β©) |
34 | 5, 9, 33 | sylancl 585 |
. . . . . 6
β’ ((πΌ β π β§ π΄ β πΌ) β (π΄(π₯ β πΌ, π¦ β 2o β¦ β¨π₯, (1o β π¦)β©)β
) = β¨π΄, (1o β
β
)β©) |
35 | | df-ov 7415 |
. . . . . 6
β’ (π΄(π₯ β πΌ, π¦ β 2o β¦ β¨π₯, (1o β π¦)β©)β
) = ((π₯ β πΌ, π¦ β 2o β¦ β¨π₯, (1o β π¦)β©)ββ¨π΄,
β
β©) |
36 | | dif0 4372 |
. . . . . . 7
β’
(1o β β
) = 1o |
37 | 36 | opeq2i 4877 |
. . . . . 6
β’
β¨π΄,
(1o β β
)β© = β¨π΄, 1oβ© |
38 | 34, 35, 37 | 3eqtr3g 2794 |
. . . . 5
β’ ((πΌ β π β§ π΄ β πΌ) β ((π₯ β πΌ, π¦ β 2o β¦ β¨π₯, (1o β π¦)β©)ββ¨π΄, β
β©) = β¨π΄,
1oβ©) |
39 | 38 | s1eqd 14556 |
. . . 4
β’ ((πΌ β π β§ π΄ β πΌ) β β¨β((π₯ β πΌ, π¦ β 2o β¦ β¨π₯, (1o β π¦)β©)ββ¨π΄, β
β©)ββ© =
β¨ββ¨π΄,
1oβ©ββ©) |
40 | 29, 32, 39 | 3eqtrd 2775 |
. . 3
β’ ((πΌ β π β§ π΄ β πΌ) β ((π₯ β πΌ, π¦ β 2o β¦ β¨π₯, (1o β π¦)β©) β
(reverseββ¨ββ¨π΄, β
β©ββ©)) =
β¨ββ¨π΄,
1oβ©ββ©) |
41 | 40 | eceq1d 8745 |
. 2
β’ ((πΌ β π β§ π΄ β πΌ) β [((π₯ β πΌ, π¦ β 2o β¦ β¨π₯, (1o β π¦)β©) β
(reverseββ¨ββ¨π΄, β
β©ββ©))] βΌ =
[β¨ββ¨π΄,
1oβ©ββ©] βΌ ) |
42 | 4, 26, 41 | 3eqtrd 2775 |
1
β’ ((πΌ β π β§ π΄ β πΌ) β (πβ(πβπ΄)) = [β¨ββ¨π΄, 1oβ©ββ©] βΌ
) |