| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vrgpinv | Structured version Visualization version GIF version | ||
| Description: The inverse of a generating element is represented by 〈𝐴, 1〉 instead of 〈𝐴, 0〉. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| vrgpfval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| vrgpfval.u | ⊢ 𝑈 = (varFGrp‘𝐼) |
| vrgpf.m | ⊢ 𝐺 = (freeGrp‘𝐼) |
| vrgpinv.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| vrgpinv | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑁‘(𝑈‘𝐴)) = [〈“〈𝐴, 1o〉”〉] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vrgpfval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 2 | vrgpfval.u | . . . 4 ⊢ 𝑈 = (varFGrp‘𝐼) | |
| 3 | 1, 2 | vrgpval 19697 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) |
| 4 | 3 | fveq2d 6862 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑁‘(𝑈‘𝐴)) = (𝑁‘[〈“〈𝐴, ∅〉”〉] ∼ )) |
| 5 | simpr 484 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 𝐴 ∈ 𝐼) | |
| 6 | 0ex 5262 | . . . . . . . 8 ⊢ ∅ ∈ V | |
| 7 | 6 | prid1 4726 | . . . . . . 7 ⊢ ∅ ∈ {∅, 1o} |
| 8 | df2o3 8442 | . . . . . . 7 ⊢ 2o = {∅, 1o} | |
| 9 | 7, 8 | eleqtrri 2827 | . . . . . 6 ⊢ ∅ ∈ 2o |
| 10 | opelxpi 5675 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐼 ∧ ∅ ∈ 2o) → 〈𝐴, ∅〉 ∈ (𝐼 × 2o)) | |
| 11 | 5, 9, 10 | sylancl 586 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 〈𝐴, ∅〉 ∈ (𝐼 × 2o)) |
| 12 | 11 | s1cld 14568 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 〈“〈𝐴, ∅〉”〉 ∈ Word (𝐼 × 2o)) |
| 13 | simpl 482 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 𝐼 ∈ 𝑉) | |
| 14 | 2on 8447 | . . . . . 6 ⊢ 2o ∈ On | |
| 15 | xpexg 7726 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V) | |
| 16 | 13, 14, 15 | sylancl 586 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝐼 × 2o) ∈ V) |
| 17 | wrdexg 14489 | . . . . 5 ⊢ ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V) | |
| 18 | fvi 6937 | . . . . 5 ⊢ (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) | |
| 19 | 16, 17, 18 | 3syl 18 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) |
| 20 | 12, 19 | eleqtrrd 2831 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 〈“〈𝐴, ∅〉”〉 ∈ ( I ‘Word (𝐼 × 2o))) |
| 21 | eqid 2729 | . . . 4 ⊢ ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o)) | |
| 22 | vrgpf.m | . . . 4 ⊢ 𝐺 = (freeGrp‘𝐼) | |
| 23 | vrgpinv.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
| 24 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) = (𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) | |
| 25 | 21, 22, 1, 23, 24 | frgpinv 19694 | . . 3 ⊢ (〈“〈𝐴, ∅〉”〉 ∈ ( I ‘Word (𝐼 × 2o)) → (𝑁‘[〈“〈𝐴, ∅〉”〉] ∼ ) = [((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ (reverse‘〈“〈𝐴, ∅〉”〉))] ∼ ) |
| 26 | 20, 25 | syl 17 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑁‘[〈“〈𝐴, ∅〉”〉] ∼ ) = [((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ (reverse‘〈“〈𝐴, ∅〉”〉))] ∼ ) |
| 27 | revs1 14730 | . . . . . 6 ⊢ (reverse‘〈“〈𝐴, ∅〉”〉) = 〈“〈𝐴, ∅〉”〉 | |
| 28 | 27 | a1i 11 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (reverse‘〈“〈𝐴, ∅〉”〉) = 〈“〈𝐴, ∅〉”〉) |
| 29 | 28 | coeq2d 5826 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ (reverse‘〈“〈𝐴, ∅〉”〉)) = ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ 〈“〈𝐴, ∅〉”〉)) |
| 30 | 24 | efgmf 19643 | . . . . 5 ⊢ (𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉):(𝐼 × 2o)⟶(𝐼 × 2o) |
| 31 | s1co 14799 | . . . . 5 ⊢ ((〈𝐴, ∅〉 ∈ (𝐼 × 2o) ∧ (𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉):(𝐼 × 2o)⟶(𝐼 × 2o)) → ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ 〈“〈𝐴, ∅〉”〉) = 〈“((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)‘〈𝐴, ∅〉)”〉) | |
| 32 | 11, 30, 31 | sylancl 586 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ 〈“〈𝐴, ∅〉”〉) = 〈“((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)‘〈𝐴, ∅〉)”〉) |
| 33 | 24 | efgmval 19642 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐼 ∧ ∅ ∈ 2o) → (𝐴(𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)∅) = 〈𝐴, (1o ∖ ∅)〉) |
| 34 | 5, 9, 33 | sylancl 586 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝐴(𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)∅) = 〈𝐴, (1o ∖ ∅)〉) |
| 35 | df-ov 7390 | . . . . . 6 ⊢ (𝐴(𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)∅) = ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)‘〈𝐴, ∅〉) | |
| 36 | dif0 4341 | . . . . . . 7 ⊢ (1o ∖ ∅) = 1o | |
| 37 | 36 | opeq2i 4841 | . . . . . 6 ⊢ 〈𝐴, (1o ∖ ∅)〉 = 〈𝐴, 1o〉 |
| 38 | 34, 35, 37 | 3eqtr3g 2787 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)‘〈𝐴, ∅〉) = 〈𝐴, 1o〉) |
| 39 | 38 | s1eqd 14566 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 〈“((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉)‘〈𝐴, ∅〉)”〉 = 〈“〈𝐴, 1o〉”〉) |
| 40 | 29, 32, 39 | 3eqtrd 2768 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → ((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ (reverse‘〈“〈𝐴, ∅〉”〉)) = 〈“〈𝐴, 1o〉”〉) |
| 41 | 40 | eceq1d 8711 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → [((𝑥 ∈ 𝐼, 𝑦 ∈ 2o ↦ 〈𝑥, (1o ∖ 𝑦)〉) ∘ (reverse‘〈“〈𝐴, ∅〉”〉))] ∼ = [〈“〈𝐴, 1o〉”〉] ∼ ) |
| 42 | 4, 26, 41 | 3eqtrd 2768 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑁‘(𝑈‘𝐴)) = [〈“〈𝐴, 1o〉”〉] ∼ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∖ cdif 3911 ∅c0 4296 {cpr 4591 〈cop 4595 I cid 5532 × cxp 5636 ∘ ccom 5642 Oncon0 6332 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 1oc1o 8427 2oc2o 8428 [cec 8669 Word cword 14478 〈“cs1 14560 reversecreverse 14723 invgcminusg 18866 ~FG cefg 19636 freeGrpcfrgp 19637 varFGrpcvrgp 19638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-ec 8673 df-qs 8677 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-xnn0 12516 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-lsw 14528 df-concat 14536 df-s1 14561 df-substr 14606 df-pfx 14636 df-splice 14715 df-reverse 14724 df-s2 14814 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-0g 17404 df-imas 17471 df-qus 17472 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-frmd 18776 df-grp 18868 df-minusg 18869 df-efg 19639 df-frgp 19640 df-vrgp 19641 |
| This theorem is referenced by: frgpup3lem 19707 |
| Copyright terms: Public domain | W3C validator |