MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ehlval Structured version   Visualization version   GIF version

Theorem ehlval 24483
Description: Value of the Euclidean space of dimension 𝑁. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypothesis
Ref Expression
ehlval.e 𝐸 = (𝔼hil𝑁)
Assertion
Ref Expression
ehlval (𝑁 ∈ ℕ0𝐸 = (ℝ^‘(1...𝑁)))

Proof of Theorem ehlval
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ehlval.e . 2 𝐸 = (𝔼hil𝑁)
2 oveq2 7263 . . . 4 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
32fveq2d 6760 . . 3 (𝑛 = 𝑁 → (ℝ^‘(1...𝑛)) = (ℝ^‘(1...𝑁)))
4 df-ehl 24455 . . 3 𝔼hil = (𝑛 ∈ ℕ0 ↦ (ℝ^‘(1...𝑛)))
5 fvex 6769 . . 3 (ℝ^‘(1...𝑁)) ∈ V
63, 4, 5fvmpt 6857 . 2 (𝑁 ∈ ℕ0 → (𝔼hil𝑁) = (ℝ^‘(1...𝑁)))
71, 6syl5eq 2791 1 (𝑁 ∈ ℕ0𝐸 = (ℝ^‘(1...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  1c1 10803  0cn0 12163  ...cfz 13168  ℝ^crrx 24452  𝔼hilcehl 24453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-ehl 24455
This theorem is referenced by:  ehlbase  24484  ehl0  24486  ehleudis  24487  ehleudisval  24488  eenglngeehlnm  45973  2sphere  45983  itscnhlinecirc02plem3  46018  inlinecirc02p  46021
  Copyright terms: Public domain W3C validator