![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ehlval | Structured version Visualization version GIF version |
Description: Value of the Euclidean space of dimension 𝑁. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
Ref | Expression |
---|---|
ehlval.e | ⊢ 𝐸 = (𝔼hil‘𝑁) |
Ref | Expression |
---|---|
ehlval | ⊢ (𝑁 ∈ ℕ0 → 𝐸 = (ℝ^‘(1...𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ehlval.e | . 2 ⊢ 𝐸 = (𝔼hil‘𝑁) | |
2 | oveq2 7349 | . . . 4 ⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) | |
3 | 2 | fveq2d 6833 | . . 3 ⊢ (𝑛 = 𝑁 → (ℝ^‘(1...𝑛)) = (ℝ^‘(1...𝑁))) |
4 | df-ehl 24655 | . . 3 ⊢ 𝔼hil = (𝑛 ∈ ℕ0 ↦ (ℝ^‘(1...𝑛))) | |
5 | fvex 6842 | . . 3 ⊢ (ℝ^‘(1...𝑁)) ∈ V | |
6 | 3, 4, 5 | fvmpt 6935 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝔼hil‘𝑁) = (ℝ^‘(1...𝑁))) |
7 | 1, 6 | eqtrid 2789 | 1 ⊢ (𝑁 ∈ ℕ0 → 𝐸 = (ℝ^‘(1...𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ‘cfv 6483 (class class class)co 7341 1c1 10977 ℕ0cn0 12338 ...cfz 13344 ℝ^crrx 24652 𝔼hilcehl 24653 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pr 5376 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-iota 6435 df-fun 6485 df-fv 6491 df-ov 7344 df-ehl 24655 |
This theorem is referenced by: ehlbase 24684 ehl0 24686 ehleudis 24687 ehleudisval 24688 eenglngeehlnm 46503 2sphere 46513 itscnhlinecirc02plem3 46548 inlinecirc02p 46551 |
Copyright terms: Public domain | W3C validator |