MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ehlval Structured version   Visualization version   GIF version

Theorem ehlval 25341
Description: Value of the Euclidean space of dimension 𝑁. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypothesis
Ref Expression
ehlval.e 𝐸 = (𝔼hil𝑁)
Assertion
Ref Expression
ehlval (𝑁 ∈ ℕ0𝐸 = (ℝ^‘(1...𝑁)))

Proof of Theorem ehlval
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ehlval.e . 2 𝐸 = (𝔼hil𝑁)
2 oveq2 7354 . . . 4 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
32fveq2d 6826 . . 3 (𝑛 = 𝑁 → (ℝ^‘(1...𝑛)) = (ℝ^‘(1...𝑁)))
4 df-ehl 25313 . . 3 𝔼hil = (𝑛 ∈ ℕ0 ↦ (ℝ^‘(1...𝑛)))
5 fvex 6835 . . 3 (ℝ^‘(1...𝑁)) ∈ V
63, 4, 5fvmpt 6929 . 2 (𝑁 ∈ ℕ0 → (𝔼hil𝑁) = (ℝ^‘(1...𝑁)))
71, 6eqtrid 2778 1 (𝑁 ∈ ℕ0𝐸 = (ℝ^‘(1...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  1c1 11007  0cn0 12381  ...cfz 13407  ℝ^crrx 25310  𝔼hilcehl 25311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-ehl 25313
This theorem is referenced by:  ehlbase  25342  ehl0  25344  ehleudis  25345  ehleudisval  25346  eenglngeehlnm  48850  2sphere  48860  itscnhlinecirc02plem3  48895  inlinecirc02p  48898
  Copyright terms: Public domain W3C validator