MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ehlval Structured version   Visualization version   GIF version

Theorem ehlval 24578
Description: Value of the Euclidean space of dimension 𝑁. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypothesis
Ref Expression
ehlval.e 𝐸 = (𝔼hil𝑁)
Assertion
Ref Expression
ehlval (𝑁 ∈ ℕ0𝐸 = (ℝ^‘(1...𝑁)))

Proof of Theorem ehlval
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ehlval.e . 2 𝐸 = (𝔼hil𝑁)
2 oveq2 7283 . . . 4 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
32fveq2d 6778 . . 3 (𝑛 = 𝑁 → (ℝ^‘(1...𝑛)) = (ℝ^‘(1...𝑁)))
4 df-ehl 24550 . . 3 𝔼hil = (𝑛 ∈ ℕ0 ↦ (ℝ^‘(1...𝑛)))
5 fvex 6787 . . 3 (ℝ^‘(1...𝑁)) ∈ V
63, 4, 5fvmpt 6875 . 2 (𝑁 ∈ ℕ0 → (𝔼hil𝑁) = (ℝ^‘(1...𝑁)))
71, 6eqtrid 2790 1 (𝑁 ∈ ℕ0𝐸 = (ℝ^‘(1...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  1c1 10872  0cn0 12233  ...cfz 13239  ℝ^crrx 24547  𝔼hilcehl 24548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-ehl 24550
This theorem is referenced by:  ehlbase  24579  ehl0  24581  ehleudis  24582  ehleudisval  24583  eenglngeehlnm  46085  2sphere  46095  itscnhlinecirc02plem3  46130  inlinecirc02p  46133
  Copyright terms: Public domain W3C validator