![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ehlval | Structured version Visualization version GIF version |
Description: Value of the Euclidean space of dimension 𝑁. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
Ref | Expression |
---|---|
ehlval.e | ⊢ 𝐸 = (𝔼hil‘𝑁) |
Ref | Expression |
---|---|
ehlval | ⊢ (𝑁 ∈ ℕ0 → 𝐸 = (ℝ^‘(1...𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ehlval.e | . 2 ⊢ 𝐸 = (𝔼hil‘𝑁) | |
2 | oveq2 6930 | . . . 4 ⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) | |
3 | 2 | fveq2d 6450 | . . 3 ⊢ (𝑛 = 𝑁 → (ℝ^‘(1...𝑛)) = (ℝ^‘(1...𝑁))) |
4 | df-ehl 23592 | . . 3 ⊢ 𝔼hil = (𝑛 ∈ ℕ0 ↦ (ℝ^‘(1...𝑛))) | |
5 | fvex 6459 | . . 3 ⊢ (ℝ^‘(1...𝑁)) ∈ V | |
6 | 3, 4, 5 | fvmpt 6542 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝔼hil‘𝑁) = (ℝ^‘(1...𝑁))) |
7 | 1, 6 | syl5eq 2826 | 1 ⊢ (𝑁 ∈ ℕ0 → 𝐸 = (ℝ^‘(1...𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 ‘cfv 6135 (class class class)co 6922 1c1 10273 ℕ0cn0 11642 ...cfz 12643 ℝ^crrx 23589 𝔼hilcehl 23590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-iota 6099 df-fun 6137 df-fv 6143 df-ov 6925 df-ehl 23592 |
This theorem is referenced by: ehlbase 23621 ehl0 23623 ehleudis 23624 ehleudisval 23625 eenglngeehlnm 43475 2sphere 43485 itscnhlinecirc02plem3 43520 inlinecirc02p 43523 |
Copyright terms: Public domain | W3C validator |