| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ehlval | Structured version Visualization version GIF version | ||
| Description: Value of the Euclidean space of dimension 𝑁. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
| Ref | Expression |
|---|---|
| ehlval.e | ⊢ 𝐸 = (𝔼hil‘𝑁) |
| Ref | Expression |
|---|---|
| ehlval | ⊢ (𝑁 ∈ ℕ0 → 𝐸 = (ℝ^‘(1...𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ehlval.e | . 2 ⊢ 𝐸 = (𝔼hil‘𝑁) | |
| 2 | oveq2 7413 | . . . 4 ⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) | |
| 3 | 2 | fveq2d 6880 | . . 3 ⊢ (𝑛 = 𝑁 → (ℝ^‘(1...𝑛)) = (ℝ^‘(1...𝑁))) |
| 4 | df-ehl 25338 | . . 3 ⊢ 𝔼hil = (𝑛 ∈ ℕ0 ↦ (ℝ^‘(1...𝑛))) | |
| 5 | fvex 6889 | . . 3 ⊢ (ℝ^‘(1...𝑁)) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6986 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝔼hil‘𝑁) = (ℝ^‘(1...𝑁))) |
| 7 | 1, 6 | eqtrid 2782 | 1 ⊢ (𝑁 ∈ ℕ0 → 𝐸 = (ℝ^‘(1...𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 1c1 11130 ℕ0cn0 12501 ...cfz 13524 ℝ^crrx 25335 𝔼hilcehl 25336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-ehl 25338 |
| This theorem is referenced by: ehlbase 25367 ehl0 25369 ehleudis 25370 ehleudisval 25371 eenglngeehlnm 48719 2sphere 48729 itscnhlinecirc02plem3 48764 inlinecirc02p 48767 |
| Copyright terms: Public domain | W3C validator |