MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ehlval Structured version   Visualization version   GIF version

Theorem ehlval 25467
Description: Value of the Euclidean space of dimension 𝑁. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypothesis
Ref Expression
ehlval.e 𝐸 = (𝔼hil𝑁)
Assertion
Ref Expression
ehlval (𝑁 ∈ ℕ0𝐸 = (ℝ^‘(1...𝑁)))

Proof of Theorem ehlval
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ehlval.e . 2 𝐸 = (𝔼hil𝑁)
2 oveq2 7456 . . . 4 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
32fveq2d 6924 . . 3 (𝑛 = 𝑁 → (ℝ^‘(1...𝑛)) = (ℝ^‘(1...𝑁)))
4 df-ehl 25439 . . 3 𝔼hil = (𝑛 ∈ ℕ0 ↦ (ℝ^‘(1...𝑛)))
5 fvex 6933 . . 3 (ℝ^‘(1...𝑁)) ∈ V
63, 4, 5fvmpt 7029 . 2 (𝑁 ∈ ℕ0 → (𝔼hil𝑁) = (ℝ^‘(1...𝑁)))
71, 6eqtrid 2792 1 (𝑁 ∈ ℕ0𝐸 = (ℝ^‘(1...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  1c1 11185  0cn0 12553  ...cfz 13567  ℝ^crrx 25436  𝔼hilcehl 25437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-ehl 25439
This theorem is referenced by:  ehlbase  25468  ehl0  25470  ehleudis  25471  ehleudisval  25472  eenglngeehlnm  48473  2sphere  48483  itscnhlinecirc02plem3  48518  inlinecirc02p  48521
  Copyright terms: Public domain W3C validator