| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ehlval | Structured version Visualization version GIF version | ||
| Description: Value of the Euclidean space of dimension 𝑁. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
| Ref | Expression |
|---|---|
| ehlval.e | ⊢ 𝐸 = (𝔼hil‘𝑁) |
| Ref | Expression |
|---|---|
| ehlval | ⊢ (𝑁 ∈ ℕ0 → 𝐸 = (ℝ^‘(1...𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ehlval.e | . 2 ⊢ 𝐸 = (𝔼hil‘𝑁) | |
| 2 | oveq2 7395 | . . . 4 ⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) | |
| 3 | 2 | fveq2d 6862 | . . 3 ⊢ (𝑛 = 𝑁 → (ℝ^‘(1...𝑛)) = (ℝ^‘(1...𝑁))) |
| 4 | df-ehl 25286 | . . 3 ⊢ 𝔼hil = (𝑛 ∈ ℕ0 ↦ (ℝ^‘(1...𝑛))) | |
| 5 | fvex 6871 | . . 3 ⊢ (ℝ^‘(1...𝑁)) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6968 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝔼hil‘𝑁) = (ℝ^‘(1...𝑁))) |
| 7 | 1, 6 | eqtrid 2776 | 1 ⊢ (𝑁 ∈ ℕ0 → 𝐸 = (ℝ^‘(1...𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 1c1 11069 ℕ0cn0 12442 ...cfz 13468 ℝ^crrx 25283 𝔼hilcehl 25284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-ehl 25286 |
| This theorem is referenced by: ehlbase 25315 ehl0 25317 ehleudis 25318 ehleudisval 25319 eenglngeehlnm 48728 2sphere 48738 itscnhlinecirc02plem3 48773 inlinecirc02p 48776 |
| Copyright terms: Public domain | W3C validator |