Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxdsfival Structured version   Visualization version   GIF version

Theorem rrxdsfival 23630
 Description: The value of the Euclidean distance function in a generalized real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023.)
Hypotheses
Ref Expression
rrxdsfival.1 𝑋 = (ℝ ↑𝑚 𝐼)
rrxdsfival.d 𝐷 = (dist‘(ℝ^‘𝐼))
Assertion
Ref Expression
rrxdsfival ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
Distinct variable groups:   𝑘,𝐼   𝑘,𝐹   𝑘,𝐺   𝑘,𝑋
Allowed substitution hint:   𝐷(𝑘)

Proof of Theorem rrxdsfival
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrxdsfival.d . . . . 5 𝐷 = (dist‘(ℝ^‘𝐼))
2 eqid 2778 . . . . . 6 (ℝ^‘𝐼) = (ℝ^‘𝐼)
3 rrxdsfival.1 . . . . . 6 𝑋 = (ℝ ↑𝑚 𝐼)
42, 3rrxdsfi 23628 . . . . 5 (𝐼 ∈ Fin → (dist‘(ℝ^‘𝐼)) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))))
51, 4syl5eq 2826 . . . 4 (𝐼 ∈ Fin → 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))))
65oveqd 6941 . . 3 (𝐼 ∈ Fin → (𝐹𝐷𝐺) = (𝐹(𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))𝐺))
763ad2ant1 1124 . 2 ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (𝐹(𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))𝐺))
8 eqidd 2779 . . 3 ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))))
9 fveq1 6447 . . . . . . . 8 (𝑥 = 𝐹 → (𝑥𝑘) = (𝐹𝑘))
10 fveq1 6447 . . . . . . . 8 (𝑦 = 𝐺 → (𝑦𝑘) = (𝐺𝑘))
119, 10oveqan12d 6943 . . . . . . 7 ((𝑥 = 𝐹𝑦 = 𝐺) → ((𝑥𝑘) − (𝑦𝑘)) = ((𝐹𝑘) − (𝐺𝑘)))
1211oveq1d 6939 . . . . . 6 ((𝑥 = 𝐹𝑦 = 𝐺) → (((𝑥𝑘) − (𝑦𝑘))↑2) = (((𝐹𝑘) − (𝐺𝑘))↑2))
1312sumeq2sdv 14851 . . . . 5 ((𝑥 = 𝐹𝑦 = 𝐺) → Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))
1413fveq2d 6452 . . . 4 ((𝑥 = 𝐹𝑦 = 𝐺) → (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
1514adantl 475 . . 3 (((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑥 = 𝐹𝑦 = 𝐺)) → (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
16 simp2 1128 . . 3 ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → 𝐹𝑋)
17 simp3 1129 . . 3 ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → 𝐺𝑋)
18 fvexd 6463 . . 3 ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)) ∈ V)
198, 15, 16, 17, 18ovmpt2d 7067 . 2 ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → (𝐹(𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
207, 19eqtrd 2814 1 ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   ∧ w3a 1071   = wceq 1601   ∈ wcel 2107  Vcvv 3398  ‘cfv 6137  (class class class)co 6924   ↦ cmpt2 6926   ↑𝑚 cmap 8142  Fincfn 8243  ℝcr 10273   − cmin 10608  2c2 11435  ↑cexp 13183  √csqrt 14386  Σcsu 14833  distcds 16358  ℝ^crrx 23600 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352  ax-addf 10353  ax-mulf 10354 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-tpos 7636  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-ixp 8197  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fsupp 8566  df-sup 8638  df-oi 8706  df-card 9100  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11036  df-nn 11380  df-2 11443  df-3 11444  df-4 11445  df-5 11446  df-6 11447  df-7 11448  df-8 11449  df-9 11450  df-n0 11648  df-z 11734  df-dec 11851  df-uz 11998  df-rp 12143  df-fz 12649  df-fzo 12790  df-seq 13125  df-exp 13184  df-hash 13442  df-cj 14252  df-re 14253  df-im 14254  df-sqrt 14388  df-abs 14389  df-clim 14636  df-sum 14834  df-struct 16268  df-ndx 16269  df-slot 16270  df-base 16272  df-sets 16273  df-ress 16274  df-plusg 16362  df-mulr 16363  df-starv 16364  df-sca 16365  df-vsca 16366  df-ip 16367  df-tset 16368  df-ple 16369  df-ds 16371  df-unif 16372  df-hom 16373  df-cco 16374  df-0g 16499  df-gsum 16500  df-prds 16505  df-pws 16507  df-mgm 17639  df-sgrp 17681  df-mnd 17692  df-mhm 17732  df-grp 17823  df-minusg 17824  df-sbg 17825  df-subg 17986  df-ghm 18053  df-cntz 18144  df-cmn 18592  df-abl 18593  df-mgp 18888  df-ur 18900  df-ring 18947  df-cring 18948  df-oppr 19021  df-dvdsr 19039  df-unit 19040  df-invr 19070  df-dvr 19081  df-rnghom 19115  df-drng 19152  df-field 19153  df-subrg 19181  df-staf 19248  df-srng 19249  df-lmod 19268  df-lss 19336  df-sra 19580  df-rgmod 19581  df-cnfld 20154  df-refld 20359  df-dsmm 20486  df-frlm 20501  df-nm 22806  df-tng 22808  df-tcph 23387  df-rrx 23602 This theorem is referenced by:  ehleudisval  23636
 Copyright terms: Public domain W3C validator