MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxdsfival Structured version   Visualization version   GIF version

Theorem rrxdsfival 25162
Description: The value of the Euclidean distance function in a generalized real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023.)
Hypotheses
Ref Expression
rrxdsfival.1 𝑋 = (ℝ ↑m 𝐼)
rrxdsfival.d 𝐷 = (distβ€˜(ℝ^β€˜πΌ))
Assertion
Ref Expression
rrxdsfival ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) β†’ (𝐹𝐷𝐺) = (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((πΉβ€˜π‘˜) βˆ’ (πΊβ€˜π‘˜))↑2)))
Distinct variable groups:   π‘˜,𝐼   π‘˜,𝐹   π‘˜,𝐺   π‘˜,𝑋
Allowed substitution hint:   𝐷(π‘˜)

Proof of Theorem rrxdsfival
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrxdsfival.d . . . . 5 𝐷 = (distβ€˜(ℝ^β€˜πΌ))
2 eqid 2731 . . . . . 6 (ℝ^β€˜πΌ) = (ℝ^β€˜πΌ)
3 rrxdsfival.1 . . . . . 6 𝑋 = (ℝ ↑m 𝐼)
42, 3rrxdsfi 25160 . . . . 5 (𝐼 ∈ Fin β†’ (distβ€˜(ℝ^β€˜πΌ)) = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2))))
51, 4eqtrid 2783 . . . 4 (𝐼 ∈ Fin β†’ 𝐷 = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2))))
65oveqd 7429 . . 3 (𝐼 ∈ Fin β†’ (𝐹𝐷𝐺) = (𝐹(π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2)))𝐺))
763ad2ant1 1132 . 2 ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) β†’ (𝐹𝐷𝐺) = (𝐹(π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2)))𝐺))
8 eqidd 2732 . . 3 ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2))) = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2))))
9 fveq1 6891 . . . . . . . 8 (π‘₯ = 𝐹 β†’ (π‘₯β€˜π‘˜) = (πΉβ€˜π‘˜))
10 fveq1 6891 . . . . . . . 8 (𝑦 = 𝐺 β†’ (π‘¦β€˜π‘˜) = (πΊβ€˜π‘˜))
119, 10oveqan12d 7431 . . . . . . 7 ((π‘₯ = 𝐹 ∧ 𝑦 = 𝐺) β†’ ((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜)) = ((πΉβ€˜π‘˜) βˆ’ (πΊβ€˜π‘˜)))
1211oveq1d 7427 . . . . . 6 ((π‘₯ = 𝐹 ∧ 𝑦 = 𝐺) β†’ (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2) = (((πΉβ€˜π‘˜) βˆ’ (πΊβ€˜π‘˜))↑2))
1312sumeq2sdv 15655 . . . . 5 ((π‘₯ = 𝐹 ∧ 𝑦 = 𝐺) β†’ Ξ£π‘˜ ∈ 𝐼 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2) = Ξ£π‘˜ ∈ 𝐼 (((πΉβ€˜π‘˜) βˆ’ (πΊβ€˜π‘˜))↑2))
1413fveq2d 6896 . . . 4 ((π‘₯ = 𝐹 ∧ 𝑦 = 𝐺) β†’ (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2)) = (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((πΉβ€˜π‘˜) βˆ’ (πΊβ€˜π‘˜))↑2)))
1514adantl 481 . . 3 (((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (π‘₯ = 𝐹 ∧ 𝑦 = 𝐺)) β†’ (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2)) = (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((πΉβ€˜π‘˜) βˆ’ (πΊβ€˜π‘˜))↑2)))
16 simp2 1136 . . 3 ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) β†’ 𝐹 ∈ 𝑋)
17 simp3 1137 . . 3 ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) β†’ 𝐺 ∈ 𝑋)
18 fvexd 6907 . . 3 ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) β†’ (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((πΉβ€˜π‘˜) βˆ’ (πΊβ€˜π‘˜))↑2)) ∈ V)
198, 15, 16, 17, 18ovmpod 7563 . 2 ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) β†’ (𝐹(π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2)))𝐺) = (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((πΉβ€˜π‘˜) βˆ’ (πΊβ€˜π‘˜))↑2)))
207, 19eqtrd 2771 1 ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) β†’ (𝐹𝐷𝐺) = (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((πΉβ€˜π‘˜) βˆ’ (πΊβ€˜π‘˜))↑2)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105  Vcvv 3473  β€˜cfv 6544  (class class class)co 7412   ∈ cmpo 7414   ↑m cmap 8823  Fincfn 8942  β„cr 11112   βˆ’ cmin 11449  2c2 12272  β†‘cexp 14032  βˆšcsqrt 15185  Ξ£csu 15637  distcds 17211  β„^crrx 25132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-inf2 9639  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191  ax-addf 11192  ax-mulf 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7673  df-om 7859  df-1st 7978  df-2nd 7979  df-supp 8150  df-tpos 8214  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-er 8706  df-map 8825  df-ixp 8895  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-fsupp 9365  df-sup 9440  df-oi 9508  df-card 9937  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-z 12564  df-dec 12683  df-uz 12828  df-rp 12980  df-fz 13490  df-fzo 13633  df-seq 13972  df-exp 14033  df-hash 14296  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-clim 15437  df-sum 15638  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-starv 17217  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-unif 17225  df-hom 17226  df-cco 17227  df-0g 17392  df-gsum 17393  df-prds 17398  df-pws 17400  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-mhm 18706  df-grp 18859  df-minusg 18860  df-sbg 18861  df-subg 19040  df-ghm 19129  df-cntz 19223  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-ring 20130  df-cring 20131  df-oppr 20226  df-dvdsr 20249  df-unit 20250  df-invr 20280  df-dvr 20293  df-rhm 20364  df-subrng 20435  df-subrg 20460  df-drng 20503  df-field 20504  df-staf 20597  df-srng 20598  df-lmod 20617  df-lss 20688  df-sra 20931  df-rgmod 20932  df-cnfld 21146  df-refld 21378  df-dsmm 21507  df-frlm 21522  df-nm 24312  df-tng 24314  df-tcph 24918  df-rrx 25134
This theorem is referenced by:  ehleudisval  25168
  Copyright terms: Public domain W3C validator