MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxdsfival Structured version   Visualization version   GIF version

Theorem rrxdsfival 25383
Description: The value of the Euclidean distance function in a generalized real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023.)
Hypotheses
Ref Expression
rrxdsfival.1 𝑋 = (ℝ ↑m 𝐼)
rrxdsfival.d 𝐷 = (dist‘(ℝ^‘𝐼))
Assertion
Ref Expression
rrxdsfival ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
Distinct variable groups:   𝑘,𝐼   𝑘,𝐹   𝑘,𝐺   𝑘,𝑋
Allowed substitution hint:   𝐷(𝑘)

Proof of Theorem rrxdsfival
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrxdsfival.d . . . . 5 𝐷 = (dist‘(ℝ^‘𝐼))
2 eqid 2734 . . . . . 6 (ℝ^‘𝐼) = (ℝ^‘𝐼)
3 rrxdsfival.1 . . . . . 6 𝑋 = (ℝ ↑m 𝐼)
42, 3rrxdsfi 25381 . . . . 5 (𝐼 ∈ Fin → (dist‘(ℝ^‘𝐼)) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))))
51, 4eqtrid 2781 . . . 4 (𝐼 ∈ Fin → 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))))
65oveqd 7430 . . 3 (𝐼 ∈ Fin → (𝐹𝐷𝐺) = (𝐹(𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))𝐺))
763ad2ant1 1133 . 2 ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (𝐹(𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))𝐺))
8 eqidd 2735 . . 3 ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))))
9 fveq1 6885 . . . . . . . 8 (𝑥 = 𝐹 → (𝑥𝑘) = (𝐹𝑘))
10 fveq1 6885 . . . . . . . 8 (𝑦 = 𝐺 → (𝑦𝑘) = (𝐺𝑘))
119, 10oveqan12d 7432 . . . . . . 7 ((𝑥 = 𝐹𝑦 = 𝐺) → ((𝑥𝑘) − (𝑦𝑘)) = ((𝐹𝑘) − (𝐺𝑘)))
1211oveq1d 7428 . . . . . 6 ((𝑥 = 𝐹𝑦 = 𝐺) → (((𝑥𝑘) − (𝑦𝑘))↑2) = (((𝐹𝑘) − (𝐺𝑘))↑2))
1312sumeq2sdv 15721 . . . . 5 ((𝑥 = 𝐹𝑦 = 𝐺) → Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))
1413fveq2d 6890 . . . 4 ((𝑥 = 𝐹𝑦 = 𝐺) → (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
1514adantl 481 . . 3 (((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑥 = 𝐹𝑦 = 𝐺)) → (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
16 simp2 1137 . . 3 ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → 𝐹𝑋)
17 simp3 1138 . . 3 ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → 𝐺𝑋)
18 fvexd 6901 . . 3 ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)) ∈ V)
198, 15, 16, 17, 18ovmpod 7567 . 2 ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → (𝐹(𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
207, 19eqtrd 2769 1 ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  Vcvv 3463  cfv 6541  (class class class)co 7413  cmpo 7415  m cmap 8848  Fincfn 8967  cr 11136  cmin 11474  2c2 12303  cexp 14084  csqrt 15254  Σcsu 15704  distcds 17282  ℝ^crrx 25353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216  ax-mulf 11217
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-sup 9464  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-rp 13017  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14352  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-clim 15506  df-sum 15705  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-starv 17288  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-unif 17296  df-hom 17297  df-cco 17298  df-0g 17457  df-gsum 17458  df-prds 17463  df-pws 17465  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-mhm 18765  df-grp 18923  df-minusg 18924  df-sbg 18925  df-subg 19110  df-ghm 19200  df-cntz 19304  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20325  df-unit 20326  df-invr 20356  df-dvr 20369  df-rhm 20440  df-subrng 20514  df-subrg 20538  df-drng 20699  df-field 20700  df-staf 20808  df-srng 20809  df-lmod 20828  df-lss 20898  df-sra 21140  df-rgmod 21141  df-cnfld 21327  df-refld 21577  df-dsmm 21706  df-frlm 21721  df-nm 24539  df-tng 24541  df-tcph 25139  df-rrx 25355
This theorem is referenced by:  ehleudisval  25389
  Copyright terms: Public domain W3C validator