![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrxdsfival | Structured version Visualization version GIF version |
Description: The value of the Euclidean distance function in a generalized real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023.) |
Ref | Expression |
---|---|
rrxdsfival.1 | ⊢ 𝑋 = (ℝ ↑m 𝐼) |
rrxdsfival.d | ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) |
Ref | Expression |
---|---|
rrxdsfival | ⊢ ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxdsfival.d | . . . . 5 ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) | |
2 | eqid 2726 | . . . . . 6 ⊢ (ℝ^‘𝐼) = (ℝ^‘𝐼) | |
3 | rrxdsfival.1 | . . . . . 6 ⊢ 𝑋 = (ℝ ↑m 𝐼) | |
4 | 2, 3 | rrxdsfi 25294 | . . . . 5 ⊢ (𝐼 ∈ Fin → (dist‘(ℝ^‘𝐼)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) |
5 | 1, 4 | eqtrid 2778 | . . . 4 ⊢ (𝐼 ∈ Fin → 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) |
6 | 5 | oveqd 7422 | . . 3 ⊢ (𝐼 ∈ Fin → (𝐹𝐷𝐺) = (𝐹(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))𝐺)) |
7 | 6 | 3ad2ant1 1130 | . 2 ⊢ ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (𝐹(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))𝐺)) |
8 | eqidd 2727 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) | |
9 | fveq1 6884 | . . . . . . . 8 ⊢ (𝑥 = 𝐹 → (𝑥‘𝑘) = (𝐹‘𝑘)) | |
10 | fveq1 6884 | . . . . . . . 8 ⊢ (𝑦 = 𝐺 → (𝑦‘𝑘) = (𝐺‘𝑘)) | |
11 | 9, 10 | oveqan12d 7424 | . . . . . . 7 ⊢ ((𝑥 = 𝐹 ∧ 𝑦 = 𝐺) → ((𝑥‘𝑘) − (𝑦‘𝑘)) = ((𝐹‘𝑘) − (𝐺‘𝑘))) |
12 | 11 | oveq1d 7420 | . . . . . 6 ⊢ ((𝑥 = 𝐹 ∧ 𝑦 = 𝐺) → (((𝑥‘𝑘) − (𝑦‘𝑘))↑2) = (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
13 | 12 | sumeq2sdv 15656 | . . . . 5 ⊢ ((𝑥 = 𝐹 ∧ 𝑦 = 𝐺) → Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2) = Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
14 | 13 | fveq2d 6889 | . . . 4 ⊢ ((𝑥 = 𝐹 ∧ 𝑦 = 𝐺) → (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
15 | 14 | adantl 481 | . . 3 ⊢ (((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑥 = 𝐹 ∧ 𝑦 = 𝐺)) → (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
16 | simp2 1134 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 𝐹 ∈ 𝑋) | |
17 | simp3 1135 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 𝐺 ∈ 𝑋) | |
18 | fvexd 6900 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) ∈ V) | |
19 | 8, 15, 16, 17, 18 | ovmpod 7556 | . 2 ⊢ ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))𝐺) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
20 | 7, 19 | eqtrd 2766 | 1 ⊢ ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ‘cfv 6537 (class class class)co 7405 ∈ cmpo 7407 ↑m cmap 8822 Fincfn 8941 ℝcr 11111 − cmin 11448 2c2 12271 ↑cexp 14032 √csqrt 15186 Σcsu 15638 distcds 17215 ℝ^crrx 25266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7667 df-om 7853 df-1st 7974 df-2nd 7975 df-supp 8147 df-tpos 8212 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-map 8824 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-sup 9439 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-rp 12981 df-fz 13491 df-fzo 13634 df-seq 13973 df-exp 14033 df-hash 14296 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-clim 15438 df-sum 15639 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-starv 17221 df-sca 17222 df-vsca 17223 df-ip 17224 df-tset 17225 df-ple 17226 df-ds 17228 df-unif 17229 df-hom 17230 df-cco 17231 df-0g 17396 df-gsum 17397 df-prds 17402 df-pws 17404 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18713 df-grp 18866 df-minusg 18867 df-sbg 18868 df-subg 19050 df-ghm 19139 df-cntz 19233 df-cmn 19702 df-abl 19703 df-mgp 20040 df-rng 20058 df-ur 20087 df-ring 20140 df-cring 20141 df-oppr 20236 df-dvdsr 20259 df-unit 20260 df-invr 20290 df-dvr 20303 df-rhm 20374 df-subrng 20446 df-subrg 20471 df-drng 20589 df-field 20590 df-staf 20688 df-srng 20689 df-lmod 20708 df-lss 20779 df-sra 21021 df-rgmod 21022 df-cnfld 21241 df-refld 21498 df-dsmm 21627 df-frlm 21642 df-nm 24446 df-tng 24448 df-tcph 25052 df-rrx 25268 |
This theorem is referenced by: ehleudisval 25302 |
Copyright terms: Public domain | W3C validator |