MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxdsfival Structured version   Visualization version   GIF version

Theorem rrxdsfival 25311
Description: The value of the Euclidean distance function in a generalized real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023.)
Hypotheses
Ref Expression
rrxdsfival.1 𝑋 = (ℝ ↑m 𝐼)
rrxdsfival.d 𝐷 = (dist‘(ℝ^‘𝐼))
Assertion
Ref Expression
rrxdsfival ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
Distinct variable groups:   𝑘,𝐼   𝑘,𝐹   𝑘,𝐺   𝑘,𝑋
Allowed substitution hint:   𝐷(𝑘)

Proof of Theorem rrxdsfival
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrxdsfival.d . . . . 5 𝐷 = (dist‘(ℝ^‘𝐼))
2 eqid 2729 . . . . . 6 (ℝ^‘𝐼) = (ℝ^‘𝐼)
3 rrxdsfival.1 . . . . . 6 𝑋 = (ℝ ↑m 𝐼)
42, 3rrxdsfi 25309 . . . . 5 (𝐼 ∈ Fin → (dist‘(ℝ^‘𝐼)) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))))
51, 4eqtrid 2776 . . . 4 (𝐼 ∈ Fin → 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))))
65oveqd 7366 . . 3 (𝐼 ∈ Fin → (𝐹𝐷𝐺) = (𝐹(𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))𝐺))
763ad2ant1 1133 . 2 ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (𝐹(𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))𝐺))
8 eqidd 2730 . . 3 ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))))
9 fveq1 6821 . . . . . . . 8 (𝑥 = 𝐹 → (𝑥𝑘) = (𝐹𝑘))
10 fveq1 6821 . . . . . . . 8 (𝑦 = 𝐺 → (𝑦𝑘) = (𝐺𝑘))
119, 10oveqan12d 7368 . . . . . . 7 ((𝑥 = 𝐹𝑦 = 𝐺) → ((𝑥𝑘) − (𝑦𝑘)) = ((𝐹𝑘) − (𝐺𝑘)))
1211oveq1d 7364 . . . . . 6 ((𝑥 = 𝐹𝑦 = 𝐺) → (((𝑥𝑘) − (𝑦𝑘))↑2) = (((𝐹𝑘) − (𝐺𝑘))↑2))
1312sumeq2sdv 15610 . . . . 5 ((𝑥 = 𝐹𝑦 = 𝐺) → Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))
1413fveq2d 6826 . . . 4 ((𝑥 = 𝐹𝑦 = 𝐺) → (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
1514adantl 481 . . 3 (((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑥 = 𝐹𝑦 = 𝐺)) → (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
16 simp2 1137 . . 3 ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → 𝐹𝑋)
17 simp3 1138 . . 3 ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → 𝐺𝑋)
18 fvexd 6837 . . 3 ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)) ∈ V)
198, 15, 16, 17, 18ovmpod 7501 . 2 ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → (𝐹(𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
207, 19eqtrd 2764 1 ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3436  cfv 6482  (class class class)co 7349  cmpo 7351  m cmap 8753  Fincfn 8872  cr 11008  cmin 11347  2c2 12183  cexp 13968  csqrt 15140  Σcsu 15593  distcds 17170  ℝ^crrx 25281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-drng 20616  df-field 20617  df-staf 20724  df-srng 20725  df-lmod 20765  df-lss 20835  df-sra 21077  df-rgmod 21078  df-cnfld 21262  df-refld 21512  df-dsmm 21639  df-frlm 21654  df-nm 24468  df-tng 24470  df-tcph 25067  df-rrx 25283
This theorem is referenced by:  ehleudisval  25317
  Copyright terms: Public domain W3C validator