![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrxdsfival | Structured version Visualization version GIF version |
Description: The value of the Euclidean distance function in a generalized real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023.) |
Ref | Expression |
---|---|
rrxdsfival.1 | ⊢ 𝑋 = (ℝ ↑𝑚 𝐼) |
rrxdsfival.d | ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) |
Ref | Expression |
---|---|
rrxdsfival | ⊢ ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxdsfival.d | . . . . 5 ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) | |
2 | eqid 2778 | . . . . . 6 ⊢ (ℝ^‘𝐼) = (ℝ^‘𝐼) | |
3 | rrxdsfival.1 | . . . . . 6 ⊢ 𝑋 = (ℝ ↑𝑚 𝐼) | |
4 | 2, 3 | rrxdsfi 23628 | . . . . 5 ⊢ (𝐼 ∈ Fin → (dist‘(ℝ^‘𝐼)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) |
5 | 1, 4 | syl5eq 2826 | . . . 4 ⊢ (𝐼 ∈ Fin → 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) |
6 | 5 | oveqd 6941 | . . 3 ⊢ (𝐼 ∈ Fin → (𝐹𝐷𝐺) = (𝐹(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))𝐺)) |
7 | 6 | 3ad2ant1 1124 | . 2 ⊢ ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (𝐹(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))𝐺)) |
8 | eqidd 2779 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) | |
9 | fveq1 6447 | . . . . . . . 8 ⊢ (𝑥 = 𝐹 → (𝑥‘𝑘) = (𝐹‘𝑘)) | |
10 | fveq1 6447 | . . . . . . . 8 ⊢ (𝑦 = 𝐺 → (𝑦‘𝑘) = (𝐺‘𝑘)) | |
11 | 9, 10 | oveqan12d 6943 | . . . . . . 7 ⊢ ((𝑥 = 𝐹 ∧ 𝑦 = 𝐺) → ((𝑥‘𝑘) − (𝑦‘𝑘)) = ((𝐹‘𝑘) − (𝐺‘𝑘))) |
12 | 11 | oveq1d 6939 | . . . . . 6 ⊢ ((𝑥 = 𝐹 ∧ 𝑦 = 𝐺) → (((𝑥‘𝑘) − (𝑦‘𝑘))↑2) = (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
13 | 12 | sumeq2sdv 14851 | . . . . 5 ⊢ ((𝑥 = 𝐹 ∧ 𝑦 = 𝐺) → Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2) = Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
14 | 13 | fveq2d 6452 | . . . 4 ⊢ ((𝑥 = 𝐹 ∧ 𝑦 = 𝐺) → (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
15 | 14 | adantl 475 | . . 3 ⊢ (((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑥 = 𝐹 ∧ 𝑦 = 𝐺)) → (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
16 | simp2 1128 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 𝐹 ∈ 𝑋) | |
17 | simp3 1129 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 𝐺 ∈ 𝑋) | |
18 | fvexd 6463 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) ∈ V) | |
19 | 8, 15, 16, 17, 18 | ovmpt2d 7067 | . 2 ⊢ ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))𝐺) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
20 | 7, 19 | eqtrd 2814 | 1 ⊢ ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 Vcvv 3398 ‘cfv 6137 (class class class)co 6924 ↦ cmpt2 6926 ↑𝑚 cmap 8142 Fincfn 8243 ℝcr 10273 − cmin 10608 2c2 11435 ↑cexp 13183 √csqrt 14386 Σcsu 14833 distcds 16358 ℝ^crrx 23600 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-inf2 8837 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 ax-addf 10353 ax-mulf 10354 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-se 5317 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-isom 6146 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-of 7176 df-om 7346 df-1st 7447 df-2nd 7448 df-supp 7579 df-tpos 7636 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-map 8144 df-ixp 8197 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-fsupp 8566 df-sup 8638 df-oi 8706 df-card 9100 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11036 df-nn 11380 df-2 11443 df-3 11444 df-4 11445 df-5 11446 df-6 11447 df-7 11448 df-8 11449 df-9 11450 df-n0 11648 df-z 11734 df-dec 11851 df-uz 11998 df-rp 12143 df-fz 12649 df-fzo 12790 df-seq 13125 df-exp 13184 df-hash 13442 df-cj 14252 df-re 14253 df-im 14254 df-sqrt 14388 df-abs 14389 df-clim 14636 df-sum 14834 df-struct 16268 df-ndx 16269 df-slot 16270 df-base 16272 df-sets 16273 df-ress 16274 df-plusg 16362 df-mulr 16363 df-starv 16364 df-sca 16365 df-vsca 16366 df-ip 16367 df-tset 16368 df-ple 16369 df-ds 16371 df-unif 16372 df-hom 16373 df-cco 16374 df-0g 16499 df-gsum 16500 df-prds 16505 df-pws 16507 df-mgm 17639 df-sgrp 17681 df-mnd 17692 df-mhm 17732 df-grp 17823 df-minusg 17824 df-sbg 17825 df-subg 17986 df-ghm 18053 df-cntz 18144 df-cmn 18592 df-abl 18593 df-mgp 18888 df-ur 18900 df-ring 18947 df-cring 18948 df-oppr 19021 df-dvdsr 19039 df-unit 19040 df-invr 19070 df-dvr 19081 df-rnghom 19115 df-drng 19152 df-field 19153 df-subrg 19181 df-staf 19248 df-srng 19249 df-lmod 19268 df-lss 19336 df-sra 19580 df-rgmod 19581 df-cnfld 20154 df-refld 20359 df-dsmm 20486 df-frlm 20501 df-nm 22806 df-tng 22808 df-tcph 23387 df-rrx 23602 |
This theorem is referenced by: ehleudisval 23636 |
Copyright terms: Public domain | W3C validator |