MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ehleudisval Structured version   Visualization version   GIF version

Theorem ehleudisval 24905
Description: The value of the Euclidean distance function in a real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023.)
Hypotheses
Ref Expression
ehleudis.i 𝐼 = (1...𝑁)
ehleudis.e 𝐸 = (𝔼hil𝑁)
ehleudis.x 𝑋 = (ℝ ↑m 𝐼)
ehleudis.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
ehleudisval ((𝑁 ∈ ℕ0𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
Distinct variable groups:   𝑘,𝐼   𝑘,𝑋   𝑘,𝐹   𝑘,𝐺
Allowed substitution hints:   𝐷(𝑘)   𝐸(𝑘)   𝑁(𝑘)

Proof of Theorem ehleudisval
StepHypRef Expression
1 ehleudis.d . . . . 5 𝐷 = (dist‘𝐸)
2 ehleudis.e . . . . . . 7 𝐸 = (𝔼hil𝑁)
32ehlval 24900 . . . . . 6 (𝑁 ∈ ℕ0𝐸 = (ℝ^‘(1...𝑁)))
43fveq2d 6885 . . . . 5 (𝑁 ∈ ℕ0 → (dist‘𝐸) = (dist‘(ℝ^‘(1...𝑁))))
51, 4eqtrid 2785 . . . 4 (𝑁 ∈ ℕ0𝐷 = (dist‘(ℝ^‘(1...𝑁))))
65oveqd 7413 . . 3 (𝑁 ∈ ℕ0 → (𝐹𝐷𝐺) = (𝐹(dist‘(ℝ^‘(1...𝑁)))𝐺))
763ad2ant1 1134 . 2 ((𝑁 ∈ ℕ0𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (𝐹(dist‘(ℝ^‘(1...𝑁)))𝐺))
8 ehleudis.i . . . 4 𝐼 = (1...𝑁)
9 fzfi 13924 . . . 4 (1...𝑁) ∈ Fin
108, 9eqeltri 2830 . . 3 𝐼 ∈ Fin
11 ehleudis.x . . . . . 6 𝑋 = (ℝ ↑m 𝐼)
1211eleq2i 2826 . . . . 5 (𝐹𝑋𝐹 ∈ (ℝ ↑m 𝐼))
1312biimpi 215 . . . 4 (𝐹𝑋𝐹 ∈ (ℝ ↑m 𝐼))
14133ad2ant2 1135 . . 3 ((𝑁 ∈ ℕ0𝐹𝑋𝐺𝑋) → 𝐹 ∈ (ℝ ↑m 𝐼))
1511eleq2i 2826 . . . . 5 (𝐺𝑋𝐺 ∈ (ℝ ↑m 𝐼))
1615biimpi 215 . . . 4 (𝐺𝑋𝐺 ∈ (ℝ ↑m 𝐼))
17163ad2ant3 1136 . . 3 ((𝑁 ∈ ℕ0𝐹𝑋𝐺𝑋) → 𝐺 ∈ (ℝ ↑m 𝐼))
18 eqid 2733 . . . 4 (ℝ ↑m 𝐼) = (ℝ ↑m 𝐼)
198eqcomi 2742 . . . . . 6 (1...𝑁) = 𝐼
2019fveq2i 6884 . . . . 5 (ℝ^‘(1...𝑁)) = (ℝ^‘𝐼)
2120fveq2i 6884 . . . 4 (dist‘(ℝ^‘(1...𝑁))) = (dist‘(ℝ^‘𝐼))
2218, 21rrxdsfival 24899 . . 3 ((𝐼 ∈ Fin ∧ 𝐹 ∈ (ℝ ↑m 𝐼) ∧ 𝐺 ∈ (ℝ ↑m 𝐼)) → (𝐹(dist‘(ℝ^‘(1...𝑁)))𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
2310, 14, 17, 22mp3an2i 1467 . 2 ((𝑁 ∈ ℕ0𝐹𝑋𝐺𝑋) → (𝐹(dist‘(ℝ^‘(1...𝑁)))𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
247, 23eqtrd 2773 1 ((𝑁 ∈ ℕ0𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2107  cfv 6535  (class class class)co 7396  m cmap 8808  Fincfn 8927  cr 11096  1c1 11098  cmin 11431  2c2 12254  0cn0 12459  ...cfz 13471  cexp 14014  csqrt 15167  Σcsu 15619  distcds 17193  ℝ^crrx 24869  𝔼hilcehl 24870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-inf2 9623  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174  ax-pre-sup 11175  ax-addf 11176  ax-mulf 11177
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4905  df-int 4947  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-isom 6544  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-of 7657  df-om 7843  df-1st 7962  df-2nd 7963  df-supp 8134  df-tpos 8198  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-1o 8453  df-er 8691  df-map 8810  df-ixp 8880  df-en 8928  df-dom 8929  df-sdom 8930  df-fin 8931  df-fsupp 9350  df-sup 9424  df-oi 9492  df-card 9921  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-div 11859  df-nn 12200  df-2 12262  df-3 12263  df-4 12264  df-5 12265  df-6 12266  df-7 12267  df-8 12268  df-9 12269  df-n0 12460  df-z 12546  df-dec 12665  df-uz 12810  df-rp 12962  df-fz 13472  df-fzo 13615  df-seq 13954  df-exp 14015  df-hash 14278  df-cj 15033  df-re 15034  df-im 15035  df-sqrt 15169  df-abs 15170  df-clim 15419  df-sum 15620  df-struct 17067  df-sets 17084  df-slot 17102  df-ndx 17114  df-base 17132  df-ress 17161  df-plusg 17197  df-mulr 17198  df-starv 17199  df-sca 17200  df-vsca 17201  df-ip 17202  df-tset 17203  df-ple 17204  df-ds 17206  df-unif 17207  df-hom 17208  df-cco 17209  df-0g 17374  df-gsum 17375  df-prds 17380  df-pws 17382  df-mgm 18548  df-sgrp 18597  df-mnd 18613  df-mhm 18658  df-grp 18809  df-minusg 18810  df-sbg 18811  df-subg 18988  df-ghm 19075  df-cntz 19166  df-cmn 19634  df-abl 19635  df-mgp 19971  df-ur 19988  df-ring 20040  df-cring 20041  df-oppr 20128  df-dvdsr 20149  df-unit 20150  df-invr 20180  df-dvr 20193  df-rnghom 20229  df-drng 20295  df-field 20296  df-subrg 20338  df-staf 20430  df-srng 20431  df-lmod 20450  df-lss 20520  df-sra 20762  df-rgmod 20763  df-cnfld 20919  df-refld 21131  df-dsmm 21260  df-frlm 21275  df-nm 24060  df-tng 24062  df-tcph 24655  df-rrx 24871  df-ehl 24872
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator