Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ehleudisval | Structured version Visualization version GIF version |
Description: The value of the Euclidean distance function in a real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023.) |
Ref | Expression |
---|---|
ehleudis.i | ⊢ 𝐼 = (1...𝑁) |
ehleudis.e | ⊢ 𝐸 = (𝔼hil‘𝑁) |
ehleudis.x | ⊢ 𝑋 = (ℝ ↑m 𝐼) |
ehleudis.d | ⊢ 𝐷 = (dist‘𝐸) |
Ref | Expression |
---|---|
ehleudisval | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ehleudis.d | . . . . 5 ⊢ 𝐷 = (dist‘𝐸) | |
2 | ehleudis.e | . . . . . . 7 ⊢ 𝐸 = (𝔼hil‘𝑁) | |
3 | 2 | ehlval 24114 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝐸 = (ℝ^‘(1...𝑁))) |
4 | 3 | fveq2d 6662 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (dist‘𝐸) = (dist‘(ℝ^‘(1...𝑁)))) |
5 | 1, 4 | syl5eq 2805 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝐷 = (dist‘(ℝ^‘(1...𝑁)))) |
6 | 5 | oveqd 7167 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝐹𝐷𝐺) = (𝐹(dist‘(ℝ^‘(1...𝑁)))𝐺)) |
7 | 6 | 3ad2ant1 1130 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (𝐹(dist‘(ℝ^‘(1...𝑁)))𝐺)) |
8 | ehleudis.i | . . . 4 ⊢ 𝐼 = (1...𝑁) | |
9 | fzfi 13389 | . . . 4 ⊢ (1...𝑁) ∈ Fin | |
10 | 8, 9 | eqeltri 2848 | . . 3 ⊢ 𝐼 ∈ Fin |
11 | ehleudis.x | . . . . . 6 ⊢ 𝑋 = (ℝ ↑m 𝐼) | |
12 | 11 | eleq2i 2843 | . . . . 5 ⊢ (𝐹 ∈ 𝑋 ↔ 𝐹 ∈ (ℝ ↑m 𝐼)) |
13 | 12 | biimpi 219 | . . . 4 ⊢ (𝐹 ∈ 𝑋 → 𝐹 ∈ (ℝ ↑m 𝐼)) |
14 | 13 | 3ad2ant2 1131 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 𝐹 ∈ (ℝ ↑m 𝐼)) |
15 | 11 | eleq2i 2843 | . . . . 5 ⊢ (𝐺 ∈ 𝑋 ↔ 𝐺 ∈ (ℝ ↑m 𝐼)) |
16 | 15 | biimpi 219 | . . . 4 ⊢ (𝐺 ∈ 𝑋 → 𝐺 ∈ (ℝ ↑m 𝐼)) |
17 | 16 | 3ad2ant3 1132 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 𝐺 ∈ (ℝ ↑m 𝐼)) |
18 | eqid 2758 | . . . 4 ⊢ (ℝ ↑m 𝐼) = (ℝ ↑m 𝐼) | |
19 | 8 | eqcomi 2767 | . . . . . 6 ⊢ (1...𝑁) = 𝐼 |
20 | 19 | fveq2i 6661 | . . . . 5 ⊢ (ℝ^‘(1...𝑁)) = (ℝ^‘𝐼) |
21 | 20 | fveq2i 6661 | . . . 4 ⊢ (dist‘(ℝ^‘(1...𝑁))) = (dist‘(ℝ^‘𝐼)) |
22 | 18, 21 | rrxdsfival 24113 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝐹 ∈ (ℝ ↑m 𝐼) ∧ 𝐺 ∈ (ℝ ↑m 𝐼)) → (𝐹(dist‘(ℝ^‘(1...𝑁)))𝐺) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
23 | 10, 14, 17, 22 | mp3an2i 1463 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹(dist‘(ℝ^‘(1...𝑁)))𝐺) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
24 | 7, 23 | eqtrd 2793 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ‘cfv 6335 (class class class)co 7150 ↑m cmap 8416 Fincfn 8527 ℝcr 10574 1c1 10576 − cmin 10908 2c2 11729 ℕ0cn0 11934 ...cfz 12939 ↑cexp 13479 √csqrt 14640 Σcsu 15090 distcds 16632 ℝ^crrx 24083 𝔼hilcehl 24084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-inf2 9137 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 ax-addf 10654 ax-mulf 10655 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-of 7405 df-om 7580 df-1st 7693 df-2nd 7694 df-supp 7836 df-tpos 7902 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-map 8418 df-ixp 8480 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-fsupp 8867 df-sup 8939 df-oi 9007 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-rp 12431 df-fz 12940 df-fzo 13083 df-seq 13419 df-exp 13480 df-hash 13741 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-clim 14893 df-sum 15091 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-starv 16638 df-sca 16639 df-vsca 16640 df-ip 16641 df-tset 16642 df-ple 16643 df-ds 16645 df-unif 16646 df-hom 16647 df-cco 16648 df-0g 16773 df-gsum 16774 df-prds 16779 df-pws 16781 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-mhm 18022 df-grp 18172 df-minusg 18173 df-sbg 18174 df-subg 18343 df-ghm 18423 df-cntz 18514 df-cmn 18975 df-abl 18976 df-mgp 19308 df-ur 19320 df-ring 19367 df-cring 19368 df-oppr 19444 df-dvdsr 19462 df-unit 19463 df-invr 19493 df-dvr 19504 df-rnghom 19538 df-drng 19572 df-field 19573 df-subrg 19601 df-staf 19684 df-srng 19685 df-lmod 19704 df-lss 19772 df-sra 20012 df-rgmod 20013 df-cnfld 20167 df-refld 20370 df-dsmm 20497 df-frlm 20512 df-nm 23284 df-tng 23286 df-tcph 23870 df-rrx 24085 df-ehl 24086 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |