Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ehleudisval | Structured version Visualization version GIF version |
Description: The value of the Euclidean distance function in a real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023.) |
Ref | Expression |
---|---|
ehleudis.i | ⊢ 𝐼 = (1...𝑁) |
ehleudis.e | ⊢ 𝐸 = (𝔼hil‘𝑁) |
ehleudis.x | ⊢ 𝑋 = (ℝ ↑m 𝐼) |
ehleudis.d | ⊢ 𝐷 = (dist‘𝐸) |
Ref | Expression |
---|---|
ehleudisval | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ehleudis.d | . . . . 5 ⊢ 𝐷 = (dist‘𝐸) | |
2 | ehleudis.e | . . . . . . 7 ⊢ 𝐸 = (𝔼hil‘𝑁) | |
3 | 2 | ehlval 24623 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝐸 = (ℝ^‘(1...𝑁))) |
4 | 3 | fveq2d 6808 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (dist‘𝐸) = (dist‘(ℝ^‘(1...𝑁)))) |
5 | 1, 4 | eqtrid 2788 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝐷 = (dist‘(ℝ^‘(1...𝑁)))) |
6 | 5 | oveqd 7324 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝐹𝐷𝐺) = (𝐹(dist‘(ℝ^‘(1...𝑁)))𝐺)) |
7 | 6 | 3ad2ant1 1133 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (𝐹(dist‘(ℝ^‘(1...𝑁)))𝐺)) |
8 | ehleudis.i | . . . 4 ⊢ 𝐼 = (1...𝑁) | |
9 | fzfi 13738 | . . . 4 ⊢ (1...𝑁) ∈ Fin | |
10 | 8, 9 | eqeltri 2833 | . . 3 ⊢ 𝐼 ∈ Fin |
11 | ehleudis.x | . . . . . 6 ⊢ 𝑋 = (ℝ ↑m 𝐼) | |
12 | 11 | eleq2i 2828 | . . . . 5 ⊢ (𝐹 ∈ 𝑋 ↔ 𝐹 ∈ (ℝ ↑m 𝐼)) |
13 | 12 | biimpi 215 | . . . 4 ⊢ (𝐹 ∈ 𝑋 → 𝐹 ∈ (ℝ ↑m 𝐼)) |
14 | 13 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 𝐹 ∈ (ℝ ↑m 𝐼)) |
15 | 11 | eleq2i 2828 | . . . . 5 ⊢ (𝐺 ∈ 𝑋 ↔ 𝐺 ∈ (ℝ ↑m 𝐼)) |
16 | 15 | biimpi 215 | . . . 4 ⊢ (𝐺 ∈ 𝑋 → 𝐺 ∈ (ℝ ↑m 𝐼)) |
17 | 16 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 𝐺 ∈ (ℝ ↑m 𝐼)) |
18 | eqid 2736 | . . . 4 ⊢ (ℝ ↑m 𝐼) = (ℝ ↑m 𝐼) | |
19 | 8 | eqcomi 2745 | . . . . . 6 ⊢ (1...𝑁) = 𝐼 |
20 | 19 | fveq2i 6807 | . . . . 5 ⊢ (ℝ^‘(1...𝑁)) = (ℝ^‘𝐼) |
21 | 20 | fveq2i 6807 | . . . 4 ⊢ (dist‘(ℝ^‘(1...𝑁))) = (dist‘(ℝ^‘𝐼)) |
22 | 18, 21 | rrxdsfival 24622 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝐹 ∈ (ℝ ↑m 𝐼) ∧ 𝐺 ∈ (ℝ ↑m 𝐼)) → (𝐹(dist‘(ℝ^‘(1...𝑁)))𝐺) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
23 | 10, 14, 17, 22 | mp3an2i 1466 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹(dist‘(ℝ^‘(1...𝑁)))𝐺) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
24 | 7, 23 | eqtrd 2776 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 ↑m cmap 8646 Fincfn 8764 ℝcr 10916 1c1 10918 − cmin 11251 2c2 12074 ℕ0cn0 12279 ...cfz 13285 ↑cexp 13828 √csqrt 14989 Σcsu 15442 distcds 17016 ℝ^crrx 24592 𝔼hilcehl 24593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9443 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 ax-addf 10996 ax-mulf 10997 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-tpos 8073 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9173 df-sup 9245 df-oi 9313 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-dec 12484 df-uz 12629 df-rp 12777 df-fz 13286 df-fzo 13429 df-seq 13768 df-exp 13829 df-hash 14091 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-clim 15242 df-sum 15443 df-struct 16893 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-mulr 17021 df-starv 17022 df-sca 17023 df-vsca 17024 df-ip 17025 df-tset 17026 df-ple 17027 df-ds 17029 df-unif 17030 df-hom 17031 df-cco 17032 df-0g 17197 df-gsum 17198 df-prds 17203 df-pws 17205 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-mhm 18475 df-grp 18625 df-minusg 18626 df-sbg 18627 df-subg 18797 df-ghm 18877 df-cntz 18968 df-cmn 19433 df-abl 19434 df-mgp 19766 df-ur 19783 df-ring 19830 df-cring 19831 df-oppr 19907 df-dvdsr 19928 df-unit 19929 df-invr 19959 df-dvr 19970 df-rnghom 20004 df-drng 20038 df-field 20039 df-subrg 20067 df-staf 20150 df-srng 20151 df-lmod 20170 df-lss 20239 df-sra 20479 df-rgmod 20480 df-cnfld 20643 df-refld 20855 df-dsmm 20984 df-frlm 20999 df-nm 23783 df-tng 23785 df-tcph 24378 df-rrx 24594 df-ehl 24595 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |