Proof of Theorem 2sphere
Step | Hyp | Ref
| Expression |
1 | | 2sphere.i |
. . . 4
⊢ 𝐼 = {1, 2} |
2 | | prfi 9019 |
. . . 4
⊢ {1, 2}
∈ Fin |
3 | 1, 2 | eqeltri 2835 |
. . 3
⊢ 𝐼 ∈ Fin |
4 | | simpl 482 |
. . 3
⊢ ((𝑀 ∈ 𝑃 ∧ 𝑅 ∈ (0[,)+∞)) → 𝑀 ∈ 𝑃) |
5 | | elrege0 13115 |
. . . . 5
⊢ (𝑅 ∈ (0[,)+∞) ↔
(𝑅 ∈ ℝ ∧ 0
≤ 𝑅)) |
6 | 5 | simplbi 497 |
. . . 4
⊢ (𝑅 ∈ (0[,)+∞) →
𝑅 ∈
ℝ) |
7 | 6 | adantl 481 |
. . 3
⊢ ((𝑀 ∈ 𝑃 ∧ 𝑅 ∈ (0[,)+∞)) → 𝑅 ∈
ℝ) |
8 | | 2sphere.e |
. . . 4
⊢ 𝐸 = (ℝ^‘𝐼) |
9 | | 2sphere.p |
. . . 4
⊢ 𝑃 = (ℝ ↑m
𝐼) |
10 | | eqid 2738 |
. . . 4
⊢
(dist‘𝐸) =
(dist‘𝐸) |
11 | | 2sphere.s |
. . . 4
⊢ 𝑆 = (Sphere‘𝐸) |
12 | 8, 9, 10, 11 | rrxsphere 45982 |
. . 3
⊢ ((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝 ∈ 𝑃 ∣ (𝑝(dist‘𝐸)𝑀) = 𝑅}) |
13 | 3, 4, 7, 12 | mp3an2i 1464 |
. 2
⊢ ((𝑀 ∈ 𝑃 ∧ 𝑅 ∈ (0[,)+∞)) → (𝑀𝑆𝑅) = {𝑝 ∈ 𝑃 ∣ (𝑝(dist‘𝐸)𝑀) = 𝑅}) |
14 | | 2sphere.c |
. . 3
⊢ 𝐶 = {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)} |
15 | 5 | biimpi 215 |
. . . . . . . 8
⊢ (𝑅 ∈ (0[,)+∞) →
(𝑅 ∈ ℝ ∧ 0
≤ 𝑅)) |
16 | 15 | ad2antlr 723 |
. . . . . . 7
⊢ (((𝑀 ∈ 𝑃 ∧ 𝑅 ∈ (0[,)+∞)) ∧ 𝑝 ∈ 𝑃) → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅)) |
17 | | sqrtsq 14909 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) →
(√‘(𝑅↑2))
= 𝑅) |
18 | 16, 17 | syl 17 |
. . . . . 6
⊢ (((𝑀 ∈ 𝑃 ∧ 𝑅 ∈ (0[,)+∞)) ∧ 𝑝 ∈ 𝑃) → (√‘(𝑅↑2)) = 𝑅) |
19 | 18 | eqeq2d 2749 |
. . . . 5
⊢ (((𝑀 ∈ 𝑃 ∧ 𝑅 ∈ (0[,)+∞)) ∧ 𝑝 ∈ 𝑃) → ((√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) =
(√‘(𝑅↑2))
↔ (√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = 𝑅)) |
20 | 1, 9 | rrx2pxel 45945 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈ 𝑃 → (𝑝‘1) ∈ ℝ) |
21 | 20 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ 𝑃 ∧ 𝑝 ∈ 𝑃) → (𝑝‘1) ∈ ℝ) |
22 | 1, 9 | rrx2pxel 45945 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ 𝑃 → (𝑀‘1) ∈ ℝ) |
23 | 22 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ 𝑃 ∧ 𝑝 ∈ 𝑃) → (𝑀‘1) ∈ ℝ) |
24 | 21, 23 | resubcld 11333 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ 𝑃 ∧ 𝑝 ∈ 𝑃) → ((𝑝‘1) − (𝑀‘1)) ∈ ℝ) |
25 | 24 | resqcld 13893 |
. . . . . . . . 9
⊢ ((𝑀 ∈ 𝑃 ∧ 𝑝 ∈ 𝑃) → (((𝑝‘1) − (𝑀‘1))↑2) ∈
ℝ) |
26 | 1, 9 | rrx2pyel 45946 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈ 𝑃 → (𝑝‘2) ∈ ℝ) |
27 | 26 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ 𝑃 ∧ 𝑝 ∈ 𝑃) → (𝑝‘2) ∈ ℝ) |
28 | 1, 9 | rrx2pyel 45946 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ 𝑃 → (𝑀‘2) ∈ ℝ) |
29 | 28 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ 𝑃 ∧ 𝑝 ∈ 𝑃) → (𝑀‘2) ∈ ℝ) |
30 | 27, 29 | resubcld 11333 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ 𝑃 ∧ 𝑝 ∈ 𝑃) → ((𝑝‘2) − (𝑀‘2)) ∈ ℝ) |
31 | 30 | resqcld 13893 |
. . . . . . . . 9
⊢ ((𝑀 ∈ 𝑃 ∧ 𝑝 ∈ 𝑃) → (((𝑝‘2) − (𝑀‘2))↑2) ∈
ℝ) |
32 | 25, 31 | readdcld 10935 |
. . . . . . . 8
⊢ ((𝑀 ∈ 𝑃 ∧ 𝑝 ∈ 𝑃) → ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) ∈
ℝ) |
33 | 24 | sqge0d 13894 |
. . . . . . . . 9
⊢ ((𝑀 ∈ 𝑃 ∧ 𝑝 ∈ 𝑃) → 0 ≤ (((𝑝‘1) − (𝑀‘1))↑2)) |
34 | 30 | sqge0d 13894 |
. . . . . . . . 9
⊢ ((𝑀 ∈ 𝑃 ∧ 𝑝 ∈ 𝑃) → 0 ≤ (((𝑝‘2) − (𝑀‘2))↑2)) |
35 | 25, 31, 33, 34 | addge0d 11481 |
. . . . . . . 8
⊢ ((𝑀 ∈ 𝑃 ∧ 𝑝 ∈ 𝑃) → 0 ≤ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) |
36 | 32, 35 | jca 511 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝑃 ∧ 𝑝 ∈ 𝑃) → (((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) ∈ ℝ ∧ 0
≤ ((((𝑝‘1) −
(𝑀‘1))↑2) +
(((𝑝‘2) −
(𝑀‘2))↑2)))) |
37 | 36 | adantlr 711 |
. . . . . 6
⊢ (((𝑀 ∈ 𝑃 ∧ 𝑅 ∈ (0[,)+∞)) ∧ 𝑝 ∈ 𝑃) → (((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) ∈ ℝ ∧ 0
≤ ((((𝑝‘1) −
(𝑀‘1))↑2) +
(((𝑝‘2) −
(𝑀‘2))↑2)))) |
38 | | resqcl 13772 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ → (𝑅↑2) ∈
ℝ) |
39 | | sqge0 13783 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ → 0 ≤
(𝑅↑2)) |
40 | 38, 39 | jca 511 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ → ((𝑅↑2) ∈ ℝ ∧ 0
≤ (𝑅↑2))) |
41 | 6, 40 | syl 17 |
. . . . . . 7
⊢ (𝑅 ∈ (0[,)+∞) →
((𝑅↑2) ∈ ℝ
∧ 0 ≤ (𝑅↑2))) |
42 | 41 | ad2antlr 723 |
. . . . . 6
⊢ (((𝑀 ∈ 𝑃 ∧ 𝑅 ∈ (0[,)+∞)) ∧ 𝑝 ∈ 𝑃) → ((𝑅↑2) ∈ ℝ ∧ 0 ≤ (𝑅↑2))) |
43 | | sqrt11 14902 |
. . . . . 6
⊢
(((((((𝑝‘1)
− (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) ∈ ℝ ∧ 0
≤ ((((𝑝‘1) −
(𝑀‘1))↑2) +
(((𝑝‘2) −
(𝑀‘2))↑2)))
∧ ((𝑅↑2) ∈
ℝ ∧ 0 ≤ (𝑅↑2))) → ((√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) =
(√‘(𝑅↑2))
↔ ((((𝑝‘1)
− (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2))) |
44 | 37, 42, 43 | syl2anc 583 |
. . . . 5
⊢ (((𝑀 ∈ 𝑃 ∧ 𝑅 ∈ (0[,)+∞)) ∧ 𝑝 ∈ 𝑃) → ((√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) =
(√‘(𝑅↑2))
↔ ((((𝑝‘1)
− (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2))) |
45 | 4 | anim1ci 615 |
. . . . . . . 8
⊢ (((𝑀 ∈ 𝑃 ∧ 𝑅 ∈ (0[,)+∞)) ∧ 𝑝 ∈ 𝑃) → (𝑝 ∈ 𝑃 ∧ 𝑀 ∈ 𝑃)) |
46 | | 2nn0 12180 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℕ0 |
47 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(𝔼hil‘2) =
(𝔼hil‘2) |
48 | 47 | ehlval 24483 |
. . . . . . . . . . . 12
⊢ (2 ∈
ℕ0 → (𝔼hil‘2) =
(ℝ^‘(1...2))) |
49 | 46, 48 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(𝔼hil‘2) =
(ℝ^‘(1...2)) |
50 | | fz12pr 13242 |
. . . . . . . . . . . . 13
⊢ (1...2) =
{1, 2} |
51 | 50, 1 | eqtr4i 2769 |
. . . . . . . . . . . 12
⊢ (1...2) =
𝐼 |
52 | 51 | fveq2i 6759 |
. . . . . . . . . . 11
⊢
(ℝ^‘(1...2)) = (ℝ^‘𝐼) |
53 | 49, 52 | eqtri 2766 |
. . . . . . . . . 10
⊢
(𝔼hil‘2) = (ℝ^‘𝐼) |
54 | 8, 53 | eqtr4i 2769 |
. . . . . . . . 9
⊢ 𝐸 =
(𝔼hil‘2) |
55 | 1 | oveq2i 7266 |
. . . . . . . . . 10
⊢ (ℝ
↑m 𝐼) =
(ℝ ↑m {1, 2}) |
56 | 9, 55 | eqtri 2766 |
. . . . . . . . 9
⊢ 𝑃 = (ℝ ↑m
{1, 2}) |
57 | 54, 56, 10 | ehl2eudisval 24492 |
. . . . . . . 8
⊢ ((𝑝 ∈ 𝑃 ∧ 𝑀 ∈ 𝑃) → (𝑝(dist‘𝐸)𝑀) = (√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)))) |
58 | 45, 57 | syl 17 |
. . . . . . 7
⊢ (((𝑀 ∈ 𝑃 ∧ 𝑅 ∈ (0[,)+∞)) ∧ 𝑝 ∈ 𝑃) → (𝑝(dist‘𝐸)𝑀) = (√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)))) |
59 | 58 | eqcomd 2744 |
. . . . . 6
⊢ (((𝑀 ∈ 𝑃 ∧ 𝑅 ∈ (0[,)+∞)) ∧ 𝑝 ∈ 𝑃) → (√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = (𝑝(dist‘𝐸)𝑀)) |
60 | 59 | eqeq1d 2740 |
. . . . 5
⊢ (((𝑀 ∈ 𝑃 ∧ 𝑅 ∈ (0[,)+∞)) ∧ 𝑝 ∈ 𝑃) → ((√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = 𝑅 ↔ (𝑝(dist‘𝐸)𝑀) = 𝑅)) |
61 | 19, 44, 60 | 3bitr3d 308 |
. . . 4
⊢ (((𝑀 ∈ 𝑃 ∧ 𝑅 ∈ (0[,)+∞)) ∧ 𝑝 ∈ 𝑃) → (((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2) ↔ (𝑝(dist‘𝐸)𝑀) = 𝑅)) |
62 | 61 | rabbidva 3402 |
. . 3
⊢ ((𝑀 ∈ 𝑃 ∧ 𝑅 ∈ (0[,)+∞)) → {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)} = {𝑝 ∈ 𝑃 ∣ (𝑝(dist‘𝐸)𝑀) = 𝑅}) |
63 | 14, 62 | eqtr2id 2792 |
. 2
⊢ ((𝑀 ∈ 𝑃 ∧ 𝑅 ∈ (0[,)+∞)) → {𝑝 ∈ 𝑃 ∣ (𝑝(dist‘𝐸)𝑀) = 𝑅} = 𝐶) |
64 | 13, 63 | eqtrd 2778 |
1
⊢ ((𝑀 ∈ 𝑃 ∧ 𝑅 ∈ (0[,)+∞)) → (𝑀𝑆𝑅) = 𝐶) |