Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sphere Structured version   Visualization version   GIF version

Theorem 2sphere 48483
Description: The sphere with center 𝑀 and radius 𝑅 in a two dimensional Euclidean space is a circle. (Contributed by AV, 5-Feb-2023.)
Hypotheses
Ref Expression
2sphere.i 𝐼 = {1, 2}
2sphere.e 𝐸 = (ℝ^‘𝐼)
2sphere.p 𝑃 = (ℝ ↑m 𝐼)
2sphere.s 𝑆 = (Sphere‘𝐸)
2sphere.c 𝐶 = {𝑝𝑃 ∣ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)}
Assertion
Ref Expression
2sphere ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → (𝑀𝑆𝑅) = 𝐶)
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑀,𝑝   𝑃,𝑝   𝑅,𝑝
Allowed substitution hints:   𝐶(𝑝)   𝑆(𝑝)

Proof of Theorem 2sphere
StepHypRef Expression
1 2sphere.i . . . 4 𝐼 = {1, 2}
2 prfi 9391 . . . 4 {1, 2} ∈ Fin
31, 2eqeltri 2840 . . 3 𝐼 ∈ Fin
4 simpl 482 . . 3 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → 𝑀𝑃)
5 elrege0 13514 . . . . 5 (𝑅 ∈ (0[,)+∞) ↔ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
65simplbi 497 . . . 4 (𝑅 ∈ (0[,)+∞) → 𝑅 ∈ ℝ)
76adantl 481 . . 3 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → 𝑅 ∈ ℝ)
8 2sphere.e . . . 4 𝐸 = (ℝ^‘𝐼)
9 2sphere.p . . . 4 𝑃 = (ℝ ↑m 𝐼)
10 eqid 2740 . . . 4 (dist‘𝐸) = (dist‘𝐸)
11 2sphere.s . . . 4 𝑆 = (Sphere‘𝐸)
128, 9, 10, 11rrxsphere 48482 . . 3 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝(dist‘𝐸)𝑀) = 𝑅})
133, 4, 7, 12mp3an2i 1466 . 2 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝(dist‘𝐸)𝑀) = 𝑅})
14 2sphere.c . . 3 𝐶 = {𝑝𝑃 ∣ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)}
155biimpi 216 . . . . . . . 8 (𝑅 ∈ (0[,)+∞) → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
1615ad2antlr 726 . . . . . . 7 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
17 sqrtsq 15318 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (√‘(𝑅↑2)) = 𝑅)
1816, 17syl 17 . . . . . 6 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (√‘(𝑅↑2)) = 𝑅)
1918eqeq2d 2751 . . . . 5 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → ((√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = (√‘(𝑅↑2)) ↔ (√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = 𝑅))
201, 9rrx2pxel 48445 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
2120adantl 481 . . . . . . . . . . 11 ((𝑀𝑃𝑝𝑃) → (𝑝‘1) ∈ ℝ)
221, 9rrx2pxel 48445 . . . . . . . . . . . 12 (𝑀𝑃 → (𝑀‘1) ∈ ℝ)
2322adantr 480 . . . . . . . . . . 11 ((𝑀𝑃𝑝𝑃) → (𝑀‘1) ∈ ℝ)
2421, 23resubcld 11718 . . . . . . . . . 10 ((𝑀𝑃𝑝𝑃) → ((𝑝‘1) − (𝑀‘1)) ∈ ℝ)
2524resqcld 14175 . . . . . . . . 9 ((𝑀𝑃𝑝𝑃) → (((𝑝‘1) − (𝑀‘1))↑2) ∈ ℝ)
261, 9rrx2pyel 48446 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
2726adantl 481 . . . . . . . . . . 11 ((𝑀𝑃𝑝𝑃) → (𝑝‘2) ∈ ℝ)
281, 9rrx2pyel 48446 . . . . . . . . . . . 12 (𝑀𝑃 → (𝑀‘2) ∈ ℝ)
2928adantr 480 . . . . . . . . . . 11 ((𝑀𝑃𝑝𝑃) → (𝑀‘2) ∈ ℝ)
3027, 29resubcld 11718 . . . . . . . . . 10 ((𝑀𝑃𝑝𝑃) → ((𝑝‘2) − (𝑀‘2)) ∈ ℝ)
3130resqcld 14175 . . . . . . . . 9 ((𝑀𝑃𝑝𝑃) → (((𝑝‘2) − (𝑀‘2))↑2) ∈ ℝ)
3225, 31readdcld 11319 . . . . . . . 8 ((𝑀𝑃𝑝𝑃) → ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) ∈ ℝ)
3324sqge0d 14187 . . . . . . . . 9 ((𝑀𝑃𝑝𝑃) → 0 ≤ (((𝑝‘1) − (𝑀‘1))↑2))
3430sqge0d 14187 . . . . . . . . 9 ((𝑀𝑃𝑝𝑃) → 0 ≤ (((𝑝‘2) − (𝑀‘2))↑2))
3525, 31, 33, 34addge0d 11866 . . . . . . . 8 ((𝑀𝑃𝑝𝑃) → 0 ≤ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)))
3632, 35jca 511 . . . . . . 7 ((𝑀𝑃𝑝𝑃) → (((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))))
3736adantlr 714 . . . . . 6 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))))
38 resqcl 14174 . . . . . . . . 9 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℝ)
39 sqge0 14186 . . . . . . . . 9 (𝑅 ∈ ℝ → 0 ≤ (𝑅↑2))
4038, 39jca 511 . . . . . . . 8 (𝑅 ∈ ℝ → ((𝑅↑2) ∈ ℝ ∧ 0 ≤ (𝑅↑2)))
416, 40syl 17 . . . . . . 7 (𝑅 ∈ (0[,)+∞) → ((𝑅↑2) ∈ ℝ ∧ 0 ≤ (𝑅↑2)))
4241ad2antlr 726 . . . . . 6 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → ((𝑅↑2) ∈ ℝ ∧ 0 ≤ (𝑅↑2)))
43 sqrt11 15311 . . . . . 6 (((((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) ∧ ((𝑅↑2) ∈ ℝ ∧ 0 ≤ (𝑅↑2))) → ((√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = (√‘(𝑅↑2)) ↔ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)))
4437, 42, 43syl2anc 583 . . . . 5 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → ((√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = (√‘(𝑅↑2)) ↔ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)))
454anim1ci 615 . . . . . . . 8 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (𝑝𝑃𝑀𝑃))
46 2nn0 12570 . . . . . . . . . . . 12 2 ∈ ℕ0
47 eqid 2740 . . . . . . . . . . . . 13 (𝔼hil‘2) = (𝔼hil‘2)
4847ehlval 25467 . . . . . . . . . . . 12 (2 ∈ ℕ0 → (𝔼hil‘2) = (ℝ^‘(1...2)))
4946, 48ax-mp 5 . . . . . . . . . . 11 (𝔼hil‘2) = (ℝ^‘(1...2))
50 fz12pr 13641 . . . . . . . . . . . . 13 (1...2) = {1, 2}
5150, 1eqtr4i 2771 . . . . . . . . . . . 12 (1...2) = 𝐼
5251fveq2i 6923 . . . . . . . . . . 11 (ℝ^‘(1...2)) = (ℝ^‘𝐼)
5349, 52eqtri 2768 . . . . . . . . . 10 (𝔼hil‘2) = (ℝ^‘𝐼)
548, 53eqtr4i 2771 . . . . . . . . 9 𝐸 = (𝔼hil‘2)
551oveq2i 7459 . . . . . . . . . 10 (ℝ ↑m 𝐼) = (ℝ ↑m {1, 2})
569, 55eqtri 2768 . . . . . . . . 9 𝑃 = (ℝ ↑m {1, 2})
5754, 56, 10ehl2eudisval 25476 . . . . . . . 8 ((𝑝𝑃𝑀𝑃) → (𝑝(dist‘𝐸)𝑀) = (√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))))
5845, 57syl 17 . . . . . . 7 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (𝑝(dist‘𝐸)𝑀) = (√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))))
5958eqcomd 2746 . . . . . 6 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = (𝑝(dist‘𝐸)𝑀))
6059eqeq1d 2742 . . . . 5 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → ((√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = 𝑅 ↔ (𝑝(dist‘𝐸)𝑀) = 𝑅))
6119, 44, 603bitr3d 309 . . . 4 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2) ↔ (𝑝(dist‘𝐸)𝑀) = 𝑅))
6261rabbidva 3450 . . 3 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → {𝑝𝑃 ∣ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)} = {𝑝𝑃 ∣ (𝑝(dist‘𝐸)𝑀) = 𝑅})
6314, 62eqtr2id 2793 . 2 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → {𝑝𝑃 ∣ (𝑝(dist‘𝐸)𝑀) = 𝑅} = 𝐶)
6413, 63eqtrd 2780 1 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → (𝑀𝑆𝑅) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {crab 3443  {cpr 4650   class class class wbr 5166  cfv 6573  (class class class)co 7448  m cmap 8884  Fincfn 9003  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  +∞cpnf 11321  cle 11325  cmin 11520  2c2 12348  0cn0 12553  [,)cico 13409  ...cfz 13567  cexp 14112  csqrt 15282  distcds 17320  ℝ^crrx 25436  𝔼hilcehl 25437  Spherecsph 48462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-drng 20753  df-field 20754  df-staf 20862  df-srng 20863  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-xmet 21380  df-met 21381  df-cnfld 21388  df-refld 21646  df-dsmm 21775  df-frlm 21790  df-nm 24616  df-tng 24618  df-tcph 25222  df-rrx 25438  df-ehl 25439  df-sph 48464
This theorem is referenced by:  2sphere0  48484
  Copyright terms: Public domain W3C validator