Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sphere Structured version   Visualization version   GIF version

Theorem 2sphere 45163
Description: The sphere with center 𝑀 and radius 𝑅 in a two dimensional Euclidean space is a circle. (Contributed by AV, 5-Feb-2023.)
Hypotheses
Ref Expression
2sphere.i 𝐼 = {1, 2}
2sphere.e 𝐸 = (ℝ^‘𝐼)
2sphere.p 𝑃 = (ℝ ↑m 𝐼)
2sphere.s 𝑆 = (Sphere‘𝐸)
2sphere.c 𝐶 = {𝑝𝑃 ∣ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)}
Assertion
Ref Expression
2sphere ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → (𝑀𝑆𝑅) = 𝐶)
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑀,𝑝   𝑃,𝑝   𝑅,𝑝
Allowed substitution hints:   𝐶(𝑝)   𝑆(𝑝)

Proof of Theorem 2sphere
StepHypRef Expression
1 2sphere.i . . . 4 𝐼 = {1, 2}
2 prfi 8777 . . . 4 {1, 2} ∈ Fin
31, 2eqeltri 2886 . . 3 𝐼 ∈ Fin
4 simpl 486 . . 3 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → 𝑀𝑃)
5 elrege0 12832 . . . . 5 (𝑅 ∈ (0[,)+∞) ↔ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
65simplbi 501 . . . 4 (𝑅 ∈ (0[,)+∞) → 𝑅 ∈ ℝ)
76adantl 485 . . 3 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → 𝑅 ∈ ℝ)
8 2sphere.e . . . 4 𝐸 = (ℝ^‘𝐼)
9 2sphere.p . . . 4 𝑃 = (ℝ ↑m 𝐼)
10 eqid 2798 . . . 4 (dist‘𝐸) = (dist‘𝐸)
11 2sphere.s . . . 4 𝑆 = (Sphere‘𝐸)
128, 9, 10, 11rrxsphere 45162 . . 3 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝(dist‘𝐸)𝑀) = 𝑅})
133, 4, 7, 12mp3an2i 1463 . 2 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝(dist‘𝐸)𝑀) = 𝑅})
14 2sphere.c . . 3 𝐶 = {𝑝𝑃 ∣ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)}
155biimpi 219 . . . . . . . 8 (𝑅 ∈ (0[,)+∞) → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
1615ad2antlr 726 . . . . . . 7 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
17 sqrtsq 14621 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (√‘(𝑅↑2)) = 𝑅)
1816, 17syl 17 . . . . . 6 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (√‘(𝑅↑2)) = 𝑅)
1918eqeq2d 2809 . . . . 5 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → ((√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = (√‘(𝑅↑2)) ↔ (√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = 𝑅))
201, 9rrx2pxel 45125 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
2120adantl 485 . . . . . . . . . . 11 ((𝑀𝑃𝑝𝑃) → (𝑝‘1) ∈ ℝ)
221, 9rrx2pxel 45125 . . . . . . . . . . . 12 (𝑀𝑃 → (𝑀‘1) ∈ ℝ)
2322adantr 484 . . . . . . . . . . 11 ((𝑀𝑃𝑝𝑃) → (𝑀‘1) ∈ ℝ)
2421, 23resubcld 11057 . . . . . . . . . 10 ((𝑀𝑃𝑝𝑃) → ((𝑝‘1) − (𝑀‘1)) ∈ ℝ)
2524resqcld 13607 . . . . . . . . 9 ((𝑀𝑃𝑝𝑃) → (((𝑝‘1) − (𝑀‘1))↑2) ∈ ℝ)
261, 9rrx2pyel 45126 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
2726adantl 485 . . . . . . . . . . 11 ((𝑀𝑃𝑝𝑃) → (𝑝‘2) ∈ ℝ)
281, 9rrx2pyel 45126 . . . . . . . . . . . 12 (𝑀𝑃 → (𝑀‘2) ∈ ℝ)
2928adantr 484 . . . . . . . . . . 11 ((𝑀𝑃𝑝𝑃) → (𝑀‘2) ∈ ℝ)
3027, 29resubcld 11057 . . . . . . . . . 10 ((𝑀𝑃𝑝𝑃) → ((𝑝‘2) − (𝑀‘2)) ∈ ℝ)
3130resqcld 13607 . . . . . . . . 9 ((𝑀𝑃𝑝𝑃) → (((𝑝‘2) − (𝑀‘2))↑2) ∈ ℝ)
3225, 31readdcld 10659 . . . . . . . 8 ((𝑀𝑃𝑝𝑃) → ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) ∈ ℝ)
3324sqge0d 13608 . . . . . . . . 9 ((𝑀𝑃𝑝𝑃) → 0 ≤ (((𝑝‘1) − (𝑀‘1))↑2))
3430sqge0d 13608 . . . . . . . . 9 ((𝑀𝑃𝑝𝑃) → 0 ≤ (((𝑝‘2) − (𝑀‘2))↑2))
3525, 31, 33, 34addge0d 11205 . . . . . . . 8 ((𝑀𝑃𝑝𝑃) → 0 ≤ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)))
3632, 35jca 515 . . . . . . 7 ((𝑀𝑃𝑝𝑃) → (((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))))
3736adantlr 714 . . . . . 6 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))))
38 resqcl 13486 . . . . . . . . 9 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℝ)
39 sqge0 13497 . . . . . . . . 9 (𝑅 ∈ ℝ → 0 ≤ (𝑅↑2))
4038, 39jca 515 . . . . . . . 8 (𝑅 ∈ ℝ → ((𝑅↑2) ∈ ℝ ∧ 0 ≤ (𝑅↑2)))
416, 40syl 17 . . . . . . 7 (𝑅 ∈ (0[,)+∞) → ((𝑅↑2) ∈ ℝ ∧ 0 ≤ (𝑅↑2)))
4241ad2antlr 726 . . . . . 6 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → ((𝑅↑2) ∈ ℝ ∧ 0 ≤ (𝑅↑2)))
43 sqrt11 14614 . . . . . 6 (((((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) ∧ ((𝑅↑2) ∈ ℝ ∧ 0 ≤ (𝑅↑2))) → ((√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = (√‘(𝑅↑2)) ↔ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)))
4437, 42, 43syl2anc 587 . . . . 5 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → ((√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = (√‘(𝑅↑2)) ↔ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)))
454anim1ci 618 . . . . . . . 8 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (𝑝𝑃𝑀𝑃))
46 2nn0 11902 . . . . . . . . . . . 12 2 ∈ ℕ0
47 eqid 2798 . . . . . . . . . . . . 13 (𝔼hil‘2) = (𝔼hil‘2)
4847ehlval 24018 . . . . . . . . . . . 12 (2 ∈ ℕ0 → (𝔼hil‘2) = (ℝ^‘(1...2)))
4946, 48ax-mp 5 . . . . . . . . . . 11 (𝔼hil‘2) = (ℝ^‘(1...2))
50 fz12pr 12959 . . . . . . . . . . . . 13 (1...2) = {1, 2}
5150, 1eqtr4i 2824 . . . . . . . . . . . 12 (1...2) = 𝐼
5251fveq2i 6648 . . . . . . . . . . 11 (ℝ^‘(1...2)) = (ℝ^‘𝐼)
5349, 52eqtri 2821 . . . . . . . . . 10 (𝔼hil‘2) = (ℝ^‘𝐼)
548, 53eqtr4i 2824 . . . . . . . . 9 𝐸 = (𝔼hil‘2)
551oveq2i 7146 . . . . . . . . . 10 (ℝ ↑m 𝐼) = (ℝ ↑m {1, 2})
569, 55eqtri 2821 . . . . . . . . 9 𝑃 = (ℝ ↑m {1, 2})
5754, 56, 10ehl2eudisval 24027 . . . . . . . 8 ((𝑝𝑃𝑀𝑃) → (𝑝(dist‘𝐸)𝑀) = (√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))))
5845, 57syl 17 . . . . . . 7 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (𝑝(dist‘𝐸)𝑀) = (√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))))
5958eqcomd 2804 . . . . . 6 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = (𝑝(dist‘𝐸)𝑀))
6059eqeq1d 2800 . . . . 5 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → ((√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = 𝑅 ↔ (𝑝(dist‘𝐸)𝑀) = 𝑅))
6119, 44, 603bitr3d 312 . . . 4 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2) ↔ (𝑝(dist‘𝐸)𝑀) = 𝑅))
6261rabbidva 3425 . . 3 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → {𝑝𝑃 ∣ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)} = {𝑝𝑃 ∣ (𝑝(dist‘𝐸)𝑀) = 𝑅})
6314, 62syl5req 2846 . 2 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → {𝑝𝑃 ∣ (𝑝(dist‘𝐸)𝑀) = 𝑅} = 𝐶)
6413, 63eqtrd 2833 1 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → (𝑀𝑆𝑅) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {crab 3110  {cpr 4527   class class class wbr 5030  cfv 6324  (class class class)co 7135  m cmap 8389  Fincfn 8492  cr 10525  0cc0 10526  1c1 10527   + caddc 10529  +∞cpnf 10661  cle 10665  cmin 10859  2c2 11680  0cn0 11885  [,)cico 12728  ...cfz 12885  cexp 13425  csqrt 14584  distcds 16566  ℝ^crrx 23987  𝔼hilcehl 23988  Spherecsph 45142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-rnghom 19463  df-drng 19497  df-field 19498  df-subrg 19526  df-staf 19609  df-srng 19610  df-lmod 19629  df-lss 19697  df-sra 19937  df-rgmod 19938  df-xmet 20084  df-met 20085  df-cnfld 20092  df-refld 20294  df-dsmm 20421  df-frlm 20436  df-nm 23189  df-tng 23191  df-tcph 23774  df-rrx 23989  df-ehl 23990  df-sph 45144
This theorem is referenced by:  2sphere0  45164
  Copyright terms: Public domain W3C validator