Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sphere Structured version   Visualization version   GIF version

Theorem 2sphere 45983
Description: The sphere with center 𝑀 and radius 𝑅 in a two dimensional Euclidean space is a circle. (Contributed by AV, 5-Feb-2023.)
Hypotheses
Ref Expression
2sphere.i 𝐼 = {1, 2}
2sphere.e 𝐸 = (ℝ^‘𝐼)
2sphere.p 𝑃 = (ℝ ↑m 𝐼)
2sphere.s 𝑆 = (Sphere‘𝐸)
2sphere.c 𝐶 = {𝑝𝑃 ∣ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)}
Assertion
Ref Expression
2sphere ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → (𝑀𝑆𝑅) = 𝐶)
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑀,𝑝   𝑃,𝑝   𝑅,𝑝
Allowed substitution hints:   𝐶(𝑝)   𝑆(𝑝)

Proof of Theorem 2sphere
StepHypRef Expression
1 2sphere.i . . . 4 𝐼 = {1, 2}
2 prfi 9019 . . . 4 {1, 2} ∈ Fin
31, 2eqeltri 2835 . . 3 𝐼 ∈ Fin
4 simpl 482 . . 3 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → 𝑀𝑃)
5 elrege0 13115 . . . . 5 (𝑅 ∈ (0[,)+∞) ↔ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
65simplbi 497 . . . 4 (𝑅 ∈ (0[,)+∞) → 𝑅 ∈ ℝ)
76adantl 481 . . 3 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → 𝑅 ∈ ℝ)
8 2sphere.e . . . 4 𝐸 = (ℝ^‘𝐼)
9 2sphere.p . . . 4 𝑃 = (ℝ ↑m 𝐼)
10 eqid 2738 . . . 4 (dist‘𝐸) = (dist‘𝐸)
11 2sphere.s . . . 4 𝑆 = (Sphere‘𝐸)
128, 9, 10, 11rrxsphere 45982 . . 3 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝(dist‘𝐸)𝑀) = 𝑅})
133, 4, 7, 12mp3an2i 1464 . 2 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝(dist‘𝐸)𝑀) = 𝑅})
14 2sphere.c . . 3 𝐶 = {𝑝𝑃 ∣ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)}
155biimpi 215 . . . . . . . 8 (𝑅 ∈ (0[,)+∞) → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
1615ad2antlr 723 . . . . . . 7 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
17 sqrtsq 14909 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (√‘(𝑅↑2)) = 𝑅)
1816, 17syl 17 . . . . . 6 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (√‘(𝑅↑2)) = 𝑅)
1918eqeq2d 2749 . . . . 5 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → ((√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = (√‘(𝑅↑2)) ↔ (√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = 𝑅))
201, 9rrx2pxel 45945 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
2120adantl 481 . . . . . . . . . . 11 ((𝑀𝑃𝑝𝑃) → (𝑝‘1) ∈ ℝ)
221, 9rrx2pxel 45945 . . . . . . . . . . . 12 (𝑀𝑃 → (𝑀‘1) ∈ ℝ)
2322adantr 480 . . . . . . . . . . 11 ((𝑀𝑃𝑝𝑃) → (𝑀‘1) ∈ ℝ)
2421, 23resubcld 11333 . . . . . . . . . 10 ((𝑀𝑃𝑝𝑃) → ((𝑝‘1) − (𝑀‘1)) ∈ ℝ)
2524resqcld 13893 . . . . . . . . 9 ((𝑀𝑃𝑝𝑃) → (((𝑝‘1) − (𝑀‘1))↑2) ∈ ℝ)
261, 9rrx2pyel 45946 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
2726adantl 481 . . . . . . . . . . 11 ((𝑀𝑃𝑝𝑃) → (𝑝‘2) ∈ ℝ)
281, 9rrx2pyel 45946 . . . . . . . . . . . 12 (𝑀𝑃 → (𝑀‘2) ∈ ℝ)
2928adantr 480 . . . . . . . . . . 11 ((𝑀𝑃𝑝𝑃) → (𝑀‘2) ∈ ℝ)
3027, 29resubcld 11333 . . . . . . . . . 10 ((𝑀𝑃𝑝𝑃) → ((𝑝‘2) − (𝑀‘2)) ∈ ℝ)
3130resqcld 13893 . . . . . . . . 9 ((𝑀𝑃𝑝𝑃) → (((𝑝‘2) − (𝑀‘2))↑2) ∈ ℝ)
3225, 31readdcld 10935 . . . . . . . 8 ((𝑀𝑃𝑝𝑃) → ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) ∈ ℝ)
3324sqge0d 13894 . . . . . . . . 9 ((𝑀𝑃𝑝𝑃) → 0 ≤ (((𝑝‘1) − (𝑀‘1))↑2))
3430sqge0d 13894 . . . . . . . . 9 ((𝑀𝑃𝑝𝑃) → 0 ≤ (((𝑝‘2) − (𝑀‘2))↑2))
3525, 31, 33, 34addge0d 11481 . . . . . . . 8 ((𝑀𝑃𝑝𝑃) → 0 ≤ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)))
3632, 35jca 511 . . . . . . 7 ((𝑀𝑃𝑝𝑃) → (((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))))
3736adantlr 711 . . . . . 6 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))))
38 resqcl 13772 . . . . . . . . 9 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℝ)
39 sqge0 13783 . . . . . . . . 9 (𝑅 ∈ ℝ → 0 ≤ (𝑅↑2))
4038, 39jca 511 . . . . . . . 8 (𝑅 ∈ ℝ → ((𝑅↑2) ∈ ℝ ∧ 0 ≤ (𝑅↑2)))
416, 40syl 17 . . . . . . 7 (𝑅 ∈ (0[,)+∞) → ((𝑅↑2) ∈ ℝ ∧ 0 ≤ (𝑅↑2)))
4241ad2antlr 723 . . . . . 6 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → ((𝑅↑2) ∈ ℝ ∧ 0 ≤ (𝑅↑2)))
43 sqrt11 14902 . . . . . 6 (((((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) ∧ ((𝑅↑2) ∈ ℝ ∧ 0 ≤ (𝑅↑2))) → ((√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = (√‘(𝑅↑2)) ↔ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)))
4437, 42, 43syl2anc 583 . . . . 5 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → ((√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = (√‘(𝑅↑2)) ↔ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)))
454anim1ci 615 . . . . . . . 8 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (𝑝𝑃𝑀𝑃))
46 2nn0 12180 . . . . . . . . . . . 12 2 ∈ ℕ0
47 eqid 2738 . . . . . . . . . . . . 13 (𝔼hil‘2) = (𝔼hil‘2)
4847ehlval 24483 . . . . . . . . . . . 12 (2 ∈ ℕ0 → (𝔼hil‘2) = (ℝ^‘(1...2)))
4946, 48ax-mp 5 . . . . . . . . . . 11 (𝔼hil‘2) = (ℝ^‘(1...2))
50 fz12pr 13242 . . . . . . . . . . . . 13 (1...2) = {1, 2}
5150, 1eqtr4i 2769 . . . . . . . . . . . 12 (1...2) = 𝐼
5251fveq2i 6759 . . . . . . . . . . 11 (ℝ^‘(1...2)) = (ℝ^‘𝐼)
5349, 52eqtri 2766 . . . . . . . . . 10 (𝔼hil‘2) = (ℝ^‘𝐼)
548, 53eqtr4i 2769 . . . . . . . . 9 𝐸 = (𝔼hil‘2)
551oveq2i 7266 . . . . . . . . . 10 (ℝ ↑m 𝐼) = (ℝ ↑m {1, 2})
569, 55eqtri 2766 . . . . . . . . 9 𝑃 = (ℝ ↑m {1, 2})
5754, 56, 10ehl2eudisval 24492 . . . . . . . 8 ((𝑝𝑃𝑀𝑃) → (𝑝(dist‘𝐸)𝑀) = (√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))))
5845, 57syl 17 . . . . . . 7 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (𝑝(dist‘𝐸)𝑀) = (√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))))
5958eqcomd 2744 . . . . . 6 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = (𝑝(dist‘𝐸)𝑀))
6059eqeq1d 2740 . . . . 5 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → ((√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = 𝑅 ↔ (𝑝(dist‘𝐸)𝑀) = 𝑅))
6119, 44, 603bitr3d 308 . . . 4 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2) ↔ (𝑝(dist‘𝐸)𝑀) = 𝑅))
6261rabbidva 3402 . . 3 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → {𝑝𝑃 ∣ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)} = {𝑝𝑃 ∣ (𝑝(dist‘𝐸)𝑀) = 𝑅})
6314, 62eqtr2id 2792 . 2 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → {𝑝𝑃 ∣ (𝑝(dist‘𝐸)𝑀) = 𝑅} = 𝐶)
6413, 63eqtrd 2778 1 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → (𝑀𝑆𝑅) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {crab 3067  {cpr 4560   class class class wbr 5070  cfv 6418  (class class class)co 7255  m cmap 8573  Fincfn 8691  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  +∞cpnf 10937  cle 10941  cmin 11135  2c2 11958  0cn0 12163  [,)cico 13010  ...cfz 13168  cexp 13710  csqrt 14872  distcds 16897  ℝ^crrx 24452  𝔼hilcehl 24453  Spherecsph 45962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-field 19909  df-subrg 19937  df-staf 20020  df-srng 20021  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-xmet 20503  df-met 20504  df-cnfld 20511  df-refld 20722  df-dsmm 20849  df-frlm 20864  df-nm 23644  df-tng 23646  df-tcph 24238  df-rrx 24454  df-ehl 24455  df-sph 45964
This theorem is referenced by:  2sphere0  45984
  Copyright terms: Public domain W3C validator