Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sphere Structured version   Visualization version   GIF version

Theorem 2sphere 43311
Description: The sphere with center 𝑀 and radius 𝑅 in a two dimensional Euclidean space is a circle. (Contributed by AV, 5-Feb-2023.)
Hypotheses
Ref Expression
2sphere.i 𝐼 = {1, 2}
2sphere.e 𝐸 = (ℝ^‘𝐼)
2sphere.p 𝑃 = (ℝ ↑𝑚 𝐼)
2sphere.s 𝑆 = (Sphere‘𝐸)
2sphere.c 𝐶 = {𝑝𝑃 ∣ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)}
Assertion
Ref Expression
2sphere ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → (𝑀𝑆𝑅) = 𝐶)
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑀,𝑝   𝑃,𝑝   𝑅,𝑝
Allowed substitution hints:   𝐶(𝑝)   𝑆(𝑝)

Proof of Theorem 2sphere
StepHypRef Expression
1 2sphere.i . . . 4 𝐼 = {1, 2}
2 prfi 8510 . . . 4 {1, 2} ∈ Fin
31, 2eqeltri 2902 . . 3 𝐼 ∈ Fin
4 simpl 476 . . 3 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → 𝑀𝑃)
5 elrege0 12575 . . . . 5 (𝑅 ∈ (0[,)+∞) ↔ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
65simplbi 493 . . . 4 (𝑅 ∈ (0[,)+∞) → 𝑅 ∈ ℝ)
76adantl 475 . . 3 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → 𝑅 ∈ ℝ)
8 2sphere.e . . . 4 𝐸 = (ℝ^‘𝐼)
9 2sphere.p . . . 4 𝑃 = (ℝ ↑𝑚 𝐼)
10 eqid 2825 . . . 4 (dist‘𝐸) = (dist‘𝐸)
11 2sphere.s . . . 4 𝑆 = (Sphere‘𝐸)
128, 9, 10, 11rrxsphere 43310 . . 3 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝(dist‘𝐸)𝑀) = 𝑅})
133, 4, 7, 12mp3an2i 1594 . 2 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝(dist‘𝐸)𝑀) = 𝑅})
14 2sphere.c . . 3 𝐶 = {𝑝𝑃 ∣ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)}
155biimpi 208 . . . . . . . 8 (𝑅 ∈ (0[,)+∞) → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
1615ad2antlr 718 . . . . . . 7 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
17 sqrtsq 14394 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (√‘(𝑅↑2)) = 𝑅)
1816, 17syl 17 . . . . . 6 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (√‘(𝑅↑2)) = 𝑅)
1918eqeq2d 2835 . . . . 5 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → ((√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = (√‘(𝑅↑2)) ↔ (√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = 𝑅))
201, 9rrx2pxel 42271 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
2120adantl 475 . . . . . . . . . . 11 ((𝑀𝑃𝑝𝑃) → (𝑝‘1) ∈ ℝ)
221, 9rrx2pxel 42271 . . . . . . . . . . . 12 (𝑀𝑃 → (𝑀‘1) ∈ ℝ)
2322adantr 474 . . . . . . . . . . 11 ((𝑀𝑃𝑝𝑃) → (𝑀‘1) ∈ ℝ)
2421, 23resubcld 10789 . . . . . . . . . 10 ((𝑀𝑃𝑝𝑃) → ((𝑝‘1) − (𝑀‘1)) ∈ ℝ)
2524resqcld 13338 . . . . . . . . 9 ((𝑀𝑃𝑝𝑃) → (((𝑝‘1) − (𝑀‘1))↑2) ∈ ℝ)
261, 9rrx2pyel 42272 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
2726adantl 475 . . . . . . . . . . 11 ((𝑀𝑃𝑝𝑃) → (𝑝‘2) ∈ ℝ)
281, 9rrx2pyel 42272 . . . . . . . . . . . 12 (𝑀𝑃 → (𝑀‘2) ∈ ℝ)
2928adantr 474 . . . . . . . . . . 11 ((𝑀𝑃𝑝𝑃) → (𝑀‘2) ∈ ℝ)
3027, 29resubcld 10789 . . . . . . . . . 10 ((𝑀𝑃𝑝𝑃) → ((𝑝‘2) − (𝑀‘2)) ∈ ℝ)
3130resqcld 13338 . . . . . . . . 9 ((𝑀𝑃𝑝𝑃) → (((𝑝‘2) − (𝑀‘2))↑2) ∈ ℝ)
3225, 31readdcld 10393 . . . . . . . 8 ((𝑀𝑃𝑝𝑃) → ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) ∈ ℝ)
3324sqge0d 13339 . . . . . . . . 9 ((𝑀𝑃𝑝𝑃) → 0 ≤ (((𝑝‘1) − (𝑀‘1))↑2))
3430sqge0d 13339 . . . . . . . . 9 ((𝑀𝑃𝑝𝑃) → 0 ≤ (((𝑝‘2) − (𝑀‘2))↑2))
3525, 31, 33, 34addge0d 10935 . . . . . . . 8 ((𝑀𝑃𝑝𝑃) → 0 ≤ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)))
3632, 35jca 507 . . . . . . 7 ((𝑀𝑃𝑝𝑃) → (((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))))
3736adantlr 706 . . . . . 6 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))))
38 resqcl 13232 . . . . . . . . 9 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℝ)
39 sqge0 13241 . . . . . . . . 9 (𝑅 ∈ ℝ → 0 ≤ (𝑅↑2))
4038, 39jca 507 . . . . . . . 8 (𝑅 ∈ ℝ → ((𝑅↑2) ∈ ℝ ∧ 0 ≤ (𝑅↑2)))
416, 40syl 17 . . . . . . 7 (𝑅 ∈ (0[,)+∞) → ((𝑅↑2) ∈ ℝ ∧ 0 ≤ (𝑅↑2)))
4241ad2antlr 718 . . . . . 6 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → ((𝑅↑2) ∈ ℝ ∧ 0 ≤ (𝑅↑2)))
43 sqrt11 14387 . . . . . 6 (((((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) ∧ ((𝑅↑2) ∈ ℝ ∧ 0 ≤ (𝑅↑2))) → ((√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = (√‘(𝑅↑2)) ↔ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)))
4437, 42, 43syl2anc 579 . . . . 5 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → ((√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = (√‘(𝑅↑2)) ↔ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)))
454anim1ci 609 . . . . . . . 8 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (𝑝𝑃𝑀𝑃))
46 2nn0 11644 . . . . . . . . . . . 12 2 ∈ ℕ0
47 eqid 2825 . . . . . . . . . . . . 13 (𝔼hil‘2) = (𝔼hil‘2)
4847ehlval 23589 . . . . . . . . . . . 12 (2 ∈ ℕ0 → (𝔼hil‘2) = (ℝ^‘(1...2)))
4946, 48ax-mp 5 . . . . . . . . . . 11 (𝔼hil‘2) = (ℝ^‘(1...2))
50 fz12pr 12698 . . . . . . . . . . . . 13 (1...2) = {1, 2}
5150, 1eqtr4i 2852 . . . . . . . . . . . 12 (1...2) = 𝐼
5251fveq2i 6440 . . . . . . . . . . 11 (ℝ^‘(1...2)) = (ℝ^‘𝐼)
5349, 52eqtri 2849 . . . . . . . . . 10 (𝔼hil‘2) = (ℝ^‘𝐼)
548, 53eqtr4i 2852 . . . . . . . . 9 𝐸 = (𝔼hil‘2)
551oveq2i 6921 . . . . . . . . . 10 (ℝ ↑𝑚 𝐼) = (ℝ ↑𝑚 {1, 2})
569, 55eqtri 2849 . . . . . . . . 9 𝑃 = (ℝ ↑𝑚 {1, 2})
5754, 56, 10ehl2eudisval 23598 . . . . . . . 8 ((𝑝𝑃𝑀𝑃) → (𝑝(dist‘𝐸)𝑀) = (√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))))
5845, 57syl 17 . . . . . . 7 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (𝑝(dist‘𝐸)𝑀) = (√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))))
5958eqcomd 2831 . . . . . 6 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = (𝑝(dist‘𝐸)𝑀))
6059eqeq1d 2827 . . . . 5 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → ((√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = 𝑅 ↔ (𝑝(dist‘𝐸)𝑀) = 𝑅))
6119, 44, 603bitr3d 301 . . . 4 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2) ↔ (𝑝(dist‘𝐸)𝑀) = 𝑅))
6261rabbidva 3401 . . 3 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → {𝑝𝑃 ∣ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)} = {𝑝𝑃 ∣ (𝑝(dist‘𝐸)𝑀) = 𝑅})
6314, 62syl5req 2874 . 2 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → {𝑝𝑃 ∣ (𝑝(dist‘𝐸)𝑀) = 𝑅} = 𝐶)
6413, 63eqtrd 2861 1 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → (𝑀𝑆𝑅) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  {crab 3121  {cpr 4401   class class class wbr 4875  cfv 6127  (class class class)co 6910  𝑚 cmap 8127  Fincfn 8228  cr 10258  0cc0 10259  1c1 10260   + caddc 10262  +∞cpnf 10395  cle 10399  cmin 10592  2c2 11413  0cn0 11625  [,)cico 12472  ...cfz 12626  cexp 13161  csqrt 14357  distcds 16321  ℝ^crrx 23558  𝔼hilcehl 23559  Spherecsph 43292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337  ax-addf 10338  ax-mulf 10339
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-of 7162  df-om 7332  df-1st 7433  df-2nd 7434  df-supp 7565  df-tpos 7622  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-map 8129  df-ixp 8182  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-fsupp 8551  df-sup 8623  df-oi 8691  df-card 9085  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-rp 12120  df-xneg 12239  df-xadd 12240  df-xmul 12241  df-ico 12476  df-icc 12477  df-fz 12627  df-fzo 12768  df-seq 13103  df-exp 13162  df-hash 13418  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-clim 14603  df-sum 14801  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-starv 16327  df-sca 16328  df-vsca 16329  df-ip 16330  df-tset 16331  df-ple 16332  df-ds 16334  df-unif 16335  df-hom 16336  df-cco 16337  df-0g 16462  df-gsum 16463  df-prds 16468  df-pws 16470  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-mhm 17695  df-grp 17786  df-minusg 17787  df-sbg 17788  df-subg 17949  df-ghm 18016  df-cntz 18107  df-cmn 18555  df-abl 18556  df-mgp 18851  df-ur 18863  df-ring 18910  df-cring 18911  df-oppr 18984  df-dvdsr 19002  df-unit 19003  df-invr 19033  df-dvr 19044  df-rnghom 19078  df-drng 19112  df-field 19113  df-subrg 19141  df-staf 19208  df-srng 19209  df-lmod 19228  df-lss 19296  df-sra 19540  df-rgmod 19541  df-xmet 20106  df-met 20107  df-cnfld 20114  df-refld 20319  df-dsmm 20446  df-frlm 20461  df-nm 22764  df-tng 22766  df-tcph 23345  df-rrx 23560  df-ehl 23561  df-sph 43294
This theorem is referenced by:  2sphere0  43312
  Copyright terms: Public domain W3C validator