Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sphere Structured version   Visualization version   GIF version

Theorem 2sphere 48599
Description: The sphere with center 𝑀 and radius 𝑅 in a two dimensional Euclidean space is a circle. (Contributed by AV, 5-Feb-2023.)
Hypotheses
Ref Expression
2sphere.i 𝐼 = {1, 2}
2sphere.e 𝐸 = (ℝ^‘𝐼)
2sphere.p 𝑃 = (ℝ ↑m 𝐼)
2sphere.s 𝑆 = (Sphere‘𝐸)
2sphere.c 𝐶 = {𝑝𝑃 ∣ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)}
Assertion
Ref Expression
2sphere ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → (𝑀𝑆𝑅) = 𝐶)
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑀,𝑝   𝑃,𝑝   𝑅,𝑝
Allowed substitution hints:   𝐶(𝑝)   𝑆(𝑝)

Proof of Theorem 2sphere
StepHypRef Expression
1 2sphere.i . . . 4 𝐼 = {1, 2}
2 prfi 9361 . . . 4 {1, 2} ∈ Fin
31, 2eqeltri 2835 . . 3 𝐼 ∈ Fin
4 simpl 482 . . 3 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → 𝑀𝑃)
5 elrege0 13491 . . . . 5 (𝑅 ∈ (0[,)+∞) ↔ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
65simplbi 497 . . . 4 (𝑅 ∈ (0[,)+∞) → 𝑅 ∈ ℝ)
76adantl 481 . . 3 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → 𝑅 ∈ ℝ)
8 2sphere.e . . . 4 𝐸 = (ℝ^‘𝐼)
9 2sphere.p . . . 4 𝑃 = (ℝ ↑m 𝐼)
10 eqid 2735 . . . 4 (dist‘𝐸) = (dist‘𝐸)
11 2sphere.s . . . 4 𝑆 = (Sphere‘𝐸)
128, 9, 10, 11rrxsphere 48598 . . 3 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝(dist‘𝐸)𝑀) = 𝑅})
133, 4, 7, 12mp3an2i 1465 . 2 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝(dist‘𝐸)𝑀) = 𝑅})
14 2sphere.c . . 3 𝐶 = {𝑝𝑃 ∣ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)}
155biimpi 216 . . . . . . . 8 (𝑅 ∈ (0[,)+∞) → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
1615ad2antlr 727 . . . . . . 7 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
17 sqrtsq 15305 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (√‘(𝑅↑2)) = 𝑅)
1816, 17syl 17 . . . . . 6 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (√‘(𝑅↑2)) = 𝑅)
1918eqeq2d 2746 . . . . 5 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → ((√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = (√‘(𝑅↑2)) ↔ (√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = 𝑅))
201, 9rrx2pxel 48561 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
2120adantl 481 . . . . . . . . . . 11 ((𝑀𝑃𝑝𝑃) → (𝑝‘1) ∈ ℝ)
221, 9rrx2pxel 48561 . . . . . . . . . . . 12 (𝑀𝑃 → (𝑀‘1) ∈ ℝ)
2322adantr 480 . . . . . . . . . . 11 ((𝑀𝑃𝑝𝑃) → (𝑀‘1) ∈ ℝ)
2421, 23resubcld 11689 . . . . . . . . . 10 ((𝑀𝑃𝑝𝑃) → ((𝑝‘1) − (𝑀‘1)) ∈ ℝ)
2524resqcld 14162 . . . . . . . . 9 ((𝑀𝑃𝑝𝑃) → (((𝑝‘1) − (𝑀‘1))↑2) ∈ ℝ)
261, 9rrx2pyel 48562 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
2726adantl 481 . . . . . . . . . . 11 ((𝑀𝑃𝑝𝑃) → (𝑝‘2) ∈ ℝ)
281, 9rrx2pyel 48562 . . . . . . . . . . . 12 (𝑀𝑃 → (𝑀‘2) ∈ ℝ)
2928adantr 480 . . . . . . . . . . 11 ((𝑀𝑃𝑝𝑃) → (𝑀‘2) ∈ ℝ)
3027, 29resubcld 11689 . . . . . . . . . 10 ((𝑀𝑃𝑝𝑃) → ((𝑝‘2) − (𝑀‘2)) ∈ ℝ)
3130resqcld 14162 . . . . . . . . 9 ((𝑀𝑃𝑝𝑃) → (((𝑝‘2) − (𝑀‘2))↑2) ∈ ℝ)
3225, 31readdcld 11288 . . . . . . . 8 ((𝑀𝑃𝑝𝑃) → ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) ∈ ℝ)
3324sqge0d 14174 . . . . . . . . 9 ((𝑀𝑃𝑝𝑃) → 0 ≤ (((𝑝‘1) − (𝑀‘1))↑2))
3430sqge0d 14174 . . . . . . . . 9 ((𝑀𝑃𝑝𝑃) → 0 ≤ (((𝑝‘2) − (𝑀‘2))↑2))
3525, 31, 33, 34addge0d 11837 . . . . . . . 8 ((𝑀𝑃𝑝𝑃) → 0 ≤ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)))
3632, 35jca 511 . . . . . . 7 ((𝑀𝑃𝑝𝑃) → (((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))))
3736adantlr 715 . . . . . 6 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))))
38 resqcl 14161 . . . . . . . . 9 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℝ)
39 sqge0 14173 . . . . . . . . 9 (𝑅 ∈ ℝ → 0 ≤ (𝑅↑2))
4038, 39jca 511 . . . . . . . 8 (𝑅 ∈ ℝ → ((𝑅↑2) ∈ ℝ ∧ 0 ≤ (𝑅↑2)))
416, 40syl 17 . . . . . . 7 (𝑅 ∈ (0[,)+∞) → ((𝑅↑2) ∈ ℝ ∧ 0 ≤ (𝑅↑2)))
4241ad2antlr 727 . . . . . 6 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → ((𝑅↑2) ∈ ℝ ∧ 0 ≤ (𝑅↑2)))
43 sqrt11 15298 . . . . . 6 (((((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) ∧ ((𝑅↑2) ∈ ℝ ∧ 0 ≤ (𝑅↑2))) → ((√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = (√‘(𝑅↑2)) ↔ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)))
4437, 42, 43syl2anc 584 . . . . 5 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → ((√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = (√‘(𝑅↑2)) ↔ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)))
454anim1ci 616 . . . . . . . 8 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (𝑝𝑃𝑀𝑃))
46 2nn0 12541 . . . . . . . . . . . 12 2 ∈ ℕ0
47 eqid 2735 . . . . . . . . . . . . 13 (𝔼hil‘2) = (𝔼hil‘2)
4847ehlval 25462 . . . . . . . . . . . 12 (2 ∈ ℕ0 → (𝔼hil‘2) = (ℝ^‘(1...2)))
4946, 48ax-mp 5 . . . . . . . . . . 11 (𝔼hil‘2) = (ℝ^‘(1...2))
50 fz12pr 13618 . . . . . . . . . . . . 13 (1...2) = {1, 2}
5150, 1eqtr4i 2766 . . . . . . . . . . . 12 (1...2) = 𝐼
5251fveq2i 6910 . . . . . . . . . . 11 (ℝ^‘(1...2)) = (ℝ^‘𝐼)
5349, 52eqtri 2763 . . . . . . . . . 10 (𝔼hil‘2) = (ℝ^‘𝐼)
548, 53eqtr4i 2766 . . . . . . . . 9 𝐸 = (𝔼hil‘2)
551oveq2i 7442 . . . . . . . . . 10 (ℝ ↑m 𝐼) = (ℝ ↑m {1, 2})
569, 55eqtri 2763 . . . . . . . . 9 𝑃 = (ℝ ↑m {1, 2})
5754, 56, 10ehl2eudisval 25471 . . . . . . . 8 ((𝑝𝑃𝑀𝑃) → (𝑝(dist‘𝐸)𝑀) = (√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))))
5845, 57syl 17 . . . . . . 7 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (𝑝(dist‘𝐸)𝑀) = (√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))))
5958eqcomd 2741 . . . . . 6 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = (𝑝(dist‘𝐸)𝑀))
6059eqeq1d 2737 . . . . 5 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → ((√‘((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2))) = 𝑅 ↔ (𝑝(dist‘𝐸)𝑀) = 𝑅))
6119, 44, 603bitr3d 309 . . . 4 (((𝑀𝑃𝑅 ∈ (0[,)+∞)) ∧ 𝑝𝑃) → (((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2) ↔ (𝑝(dist‘𝐸)𝑀) = 𝑅))
6261rabbidva 3440 . . 3 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → {𝑝𝑃 ∣ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)} = {𝑝𝑃 ∣ (𝑝(dist‘𝐸)𝑀) = 𝑅})
6314, 62eqtr2id 2788 . 2 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → {𝑝𝑃 ∣ (𝑝(dist‘𝐸)𝑀) = 𝑅} = 𝐶)
6413, 63eqtrd 2775 1 ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → (𝑀𝑆𝑅) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  {crab 3433  {cpr 4633   class class class wbr 5148  cfv 6563  (class class class)co 7431  m cmap 8865  Fincfn 8984  cr 11152  0cc0 11153  1c1 11154   + caddc 11156  +∞cpnf 11290  cle 11294  cmin 11490  2c2 12319  0cn0 12524  [,)cico 13386  ...cfz 13544  cexp 14099  csqrt 15269  distcds 17307  ℝ^crrx 25431  𝔼hilcehl 25432  Spherecsph 48578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-drng 20748  df-field 20749  df-staf 20857  df-srng 20858  df-lmod 20877  df-lss 20948  df-sra 21190  df-rgmod 21191  df-xmet 21375  df-met 21376  df-cnfld 21383  df-refld 21641  df-dsmm 21770  df-frlm 21785  df-nm 24611  df-tng 24613  df-tcph 25217  df-rrx 25433  df-ehl 25434  df-sph 48580
This theorem is referenced by:  2sphere0  48600
  Copyright terms: Public domain W3C validator