MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ehleudis Structured version   Visualization version   GIF version

Theorem ehleudis 25340
Description: The Euclidean distance function in a real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023.)
Hypotheses
Ref Expression
ehleudis.i 𝐼 = (1...𝑁)
ehleudis.e 𝐸 = (𝔼hil𝑁)
ehleudis.x 𝑋 = (ℝ ↑m 𝐼)
ehleudis.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
ehleudis (𝑁 ∈ ℕ0𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
Distinct variable groups:   𝑓,𝐼,𝑔,𝑘   𝑘,𝑋
Allowed substitution hints:   𝐷(𝑓,𝑔,𝑘)   𝐸(𝑓,𝑔,𝑘)   𝑁(𝑓,𝑔,𝑘)   𝑋(𝑓,𝑔)

Proof of Theorem ehleudis
StepHypRef Expression
1 ehleudis.d . . 3 𝐷 = (dist‘𝐸)
2 ehleudis.e . . . . 5 𝐸 = (𝔼hil𝑁)
32ehlval 25336 . . . 4 (𝑁 ∈ ℕ0𝐸 = (ℝ^‘(1...𝑁)))
43fveq2d 6896 . . 3 (𝑁 ∈ ℕ0 → (dist‘𝐸) = (dist‘(ℝ^‘(1...𝑁))))
51, 4eqtrid 2780 . 2 (𝑁 ∈ ℕ0𝐷 = (dist‘(ℝ^‘(1...𝑁))))
6 ehleudis.i . . . 4 𝐼 = (1...𝑁)
7 fzfi 13964 . . . 4 (1...𝑁) ∈ Fin
86, 7eqeltri 2825 . . 3 𝐼 ∈ Fin
96eqcomi 2737 . . . . . 6 (1...𝑁) = 𝐼
109fveq2i 6895 . . . . 5 (ℝ^‘(1...𝑁)) = (ℝ^‘𝐼)
1110fveq2i 6895 . . . 4 (dist‘(ℝ^‘(1...𝑁))) = (dist‘(ℝ^‘𝐼))
12 eqid 2728 . . . . 5 (ℝ^‘𝐼) = (ℝ^‘𝐼)
13 ehleudis.x . . . . 5 𝑋 = (ℝ ↑m 𝐼)
1412, 13rrxdsfi 25333 . . . 4 (𝐼 ∈ Fin → (dist‘(ℝ^‘𝐼)) = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
1511, 14eqtrid 2780 . . 3 (𝐼 ∈ Fin → (dist‘(ℝ^‘(1...𝑁))) = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
168, 15mp1i 13 . 2 (𝑁 ∈ ℕ0 → (dist‘(ℝ^‘(1...𝑁))) = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
175, 16eqtrd 2768 1 (𝑁 ∈ ℕ0𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  cfv 6543  (class class class)co 7415  cmpo 7417  m cmap 8839  Fincfn 8958  cr 11132  1c1 11134  cmin 11469  2c2 12292  0cn0 12497  ...cfz 13511  cexp 14053  csqrt 15207  Σcsu 15659  distcds 17236  ℝ^crrx 25305  𝔼hilcehl 25306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-inf2 9659  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211  ax-addf 11212  ax-mulf 11213
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7680  df-om 7866  df-1st 7988  df-2nd 7989  df-supp 8161  df-tpos 8226  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-er 8719  df-map 8841  df-ixp 8911  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-fsupp 9381  df-sup 9460  df-oi 9528  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-z 12584  df-dec 12703  df-uz 12848  df-rp 13002  df-fz 13512  df-fzo 13655  df-seq 13994  df-exp 14054  df-hash 14317  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-clim 15459  df-sum 15660  df-struct 17110  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-ress 17204  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17417  df-gsum 17418  df-prds 17423  df-pws 17425  df-mgm 18594  df-sgrp 18673  df-mnd 18689  df-mhm 18734  df-grp 18887  df-minusg 18888  df-sbg 18889  df-subg 19072  df-ghm 19162  df-cntz 19262  df-cmn 19731  df-abl 19732  df-mgp 20069  df-rng 20087  df-ur 20116  df-ring 20169  df-cring 20170  df-oppr 20267  df-dvdsr 20290  df-unit 20291  df-invr 20321  df-dvr 20334  df-rhm 20405  df-subrng 20477  df-subrg 20502  df-drng 20620  df-field 20621  df-staf 20719  df-srng 20720  df-lmod 20739  df-lss 20810  df-sra 21052  df-rgmod 21053  df-cnfld 21274  df-refld 21531  df-dsmm 21660  df-frlm 21675  df-nm 24485  df-tng 24487  df-tcph 25091  df-rrx 25307  df-ehl 25308
This theorem is referenced by:  ehl1eudis  25342  ehl2eudis  25344
  Copyright terms: Public domain W3C validator