MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ehleudis Structured version   Visualization version   GIF version

Theorem ehleudis 25466
Description: The Euclidean distance function in a real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023.)
Hypotheses
Ref Expression
ehleudis.i 𝐼 = (1...𝑁)
ehleudis.e 𝐸 = (𝔼hil𝑁)
ehleudis.x 𝑋 = (ℝ ↑m 𝐼)
ehleudis.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
ehleudis (𝑁 ∈ ℕ0𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
Distinct variable groups:   𝑓,𝐼,𝑔,𝑘   𝑘,𝑋
Allowed substitution hints:   𝐷(𝑓,𝑔,𝑘)   𝐸(𝑓,𝑔,𝑘)   𝑁(𝑓,𝑔,𝑘)   𝑋(𝑓,𝑔)

Proof of Theorem ehleudis
StepHypRef Expression
1 ehleudis.d . . 3 𝐷 = (dist‘𝐸)
2 ehleudis.e . . . . 5 𝐸 = (𝔼hil𝑁)
32ehlval 25462 . . . 4 (𝑁 ∈ ℕ0𝐸 = (ℝ^‘(1...𝑁)))
43fveq2d 6911 . . 3 (𝑁 ∈ ℕ0 → (dist‘𝐸) = (dist‘(ℝ^‘(1...𝑁))))
51, 4eqtrid 2787 . 2 (𝑁 ∈ ℕ0𝐷 = (dist‘(ℝ^‘(1...𝑁))))
6 ehleudis.i . . . 4 𝐼 = (1...𝑁)
7 fzfi 14010 . . . 4 (1...𝑁) ∈ Fin
86, 7eqeltri 2835 . . 3 𝐼 ∈ Fin
96eqcomi 2744 . . . . . 6 (1...𝑁) = 𝐼
109fveq2i 6910 . . . . 5 (ℝ^‘(1...𝑁)) = (ℝ^‘𝐼)
1110fveq2i 6910 . . . 4 (dist‘(ℝ^‘(1...𝑁))) = (dist‘(ℝ^‘𝐼))
12 eqid 2735 . . . . 5 (ℝ^‘𝐼) = (ℝ^‘𝐼)
13 ehleudis.x . . . . 5 𝑋 = (ℝ ↑m 𝐼)
1412, 13rrxdsfi 25459 . . . 4 (𝐼 ∈ Fin → (dist‘(ℝ^‘𝐼)) = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
1511, 14eqtrid 2787 . . 3 (𝐼 ∈ Fin → (dist‘(ℝ^‘(1...𝑁))) = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
168, 15mp1i 13 . 2 (𝑁 ∈ ℕ0 → (dist‘(ℝ^‘(1...𝑁))) = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
175, 16eqtrd 2775 1 (𝑁 ∈ ℕ0𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  cmpo 7433  m cmap 8865  Fincfn 8984  cr 11152  1c1 11154  cmin 11490  2c2 12319  0cn0 12524  ...cfz 13544  cexp 14099  csqrt 15269  Σcsu 15719  distcds 17307  ℝ^crrx 25431  𝔼hilcehl 25432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-drng 20748  df-field 20749  df-staf 20857  df-srng 20858  df-lmod 20877  df-lss 20948  df-sra 21190  df-rgmod 21191  df-cnfld 21383  df-refld 21641  df-dsmm 21770  df-frlm 21785  df-nm 24611  df-tng 24613  df-tcph 25217  df-rrx 25433  df-ehl 25434
This theorem is referenced by:  ehl1eudis  25468  ehl2eudis  25470
  Copyright terms: Public domain W3C validator