MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldju1st Structured version   Visualization version   GIF version

Theorem eldju1st 9539
Description: The first component of an element of a disjoint union is either or 1o. (Contributed by AV, 26-Jun-2022.)
Assertion
Ref Expression
eldju1st (𝑋 ∈ (𝐴𝐵) → ((1st𝑋) = ∅ ∨ (1st𝑋) = 1o))

Proof of Theorem eldju1st
StepHypRef Expression
1 djuss 9536 . 2 (𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵))
2 ssel2 3895 . . 3 (((𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵)) ∧ 𝑋 ∈ (𝐴𝐵)) → 𝑋 ∈ ({∅, 1o} × (𝐴𝐵)))
3 xp1st 7793 . . 3 (𝑋 ∈ ({∅, 1o} × (𝐴𝐵)) → (1st𝑋) ∈ {∅, 1o})
4 elpri 4563 . . 3 ((1st𝑋) ∈ {∅, 1o} → ((1st𝑋) = ∅ ∨ (1st𝑋) = 1o))
52, 3, 43syl 18 . 2 (((𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵)) ∧ 𝑋 ∈ (𝐴𝐵)) → ((1st𝑋) = ∅ ∨ (1st𝑋) = 1o))
61, 5mpan 690 1 (𝑋 ∈ (𝐴𝐵) → ((1st𝑋) = ∅ ∨ (1st𝑋) = 1o))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 847   = wceq 1543  wcel 2110  cun 3864  wss 3866  c0 4237  {cpr 4543   × cxp 5549  cfv 6380  1st c1st 7759  1oc1o 8195  cdju 9514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-suc 6219  df-iota 6338  df-fun 6382  df-fv 6388  df-1st 7761  df-2nd 7762  df-1o 8202  df-dju 9517  df-inl 9518  df-inr 9519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator