![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eldju1st | Structured version Visualization version GIF version |
Description: The first component of an element of a disjoint union is either ∅ or 1o. (Contributed by AV, 26-Jun-2022.) |
Ref | Expression |
---|---|
eldju1st | ⊢ (𝑋 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑋) = ∅ ∨ (1st ‘𝑋) = 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuss 9914 | . 2 ⊢ (𝐴 ⊔ 𝐵) ⊆ ({∅, 1o} × (𝐴 ∪ 𝐵)) | |
2 | ssel2 3972 | . . 3 ⊢ (((𝐴 ⊔ 𝐵) ⊆ ({∅, 1o} × (𝐴 ∪ 𝐵)) ∧ 𝑋 ∈ (𝐴 ⊔ 𝐵)) → 𝑋 ∈ ({∅, 1o} × (𝐴 ∪ 𝐵))) | |
3 | xp1st 8003 | . . 3 ⊢ (𝑋 ∈ ({∅, 1o} × (𝐴 ∪ 𝐵)) → (1st ‘𝑋) ∈ {∅, 1o}) | |
4 | elpri 4645 | . . 3 ⊢ ((1st ‘𝑋) ∈ {∅, 1o} → ((1st ‘𝑋) = ∅ ∨ (1st ‘𝑋) = 1o)) | |
5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ (((𝐴 ⊔ 𝐵) ⊆ ({∅, 1o} × (𝐴 ∪ 𝐵)) ∧ 𝑋 ∈ (𝐴 ⊔ 𝐵)) → ((1st ‘𝑋) = ∅ ∨ (1st ‘𝑋) = 1o)) |
6 | 1, 5 | mpan 687 | 1 ⊢ (𝑋 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑋) = ∅ ∨ (1st ‘𝑋) = 1o)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 = wceq 1533 ∈ wcel 2098 ∪ cun 3941 ⊆ wss 3943 ∅c0 4317 {cpr 4625 × cxp 5667 ‘cfv 6536 1st c1st 7969 1oc1o 8457 ⊔ cdju 9892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-suc 6363 df-iota 6488 df-fun 6538 df-fv 6544 df-1st 7971 df-2nd 7972 df-1o 8464 df-dju 9895 df-inl 9896 df-inr 9897 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |