| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldju1st | Structured version Visualization version GIF version | ||
| Description: The first component of an element of a disjoint union is either ∅ or 1o. (Contributed by AV, 26-Jun-2022.) |
| Ref | Expression |
|---|---|
| eldju1st | ⊢ (𝑋 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑋) = ∅ ∨ (1st ‘𝑋) = 1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djuss 9849 | . 2 ⊢ (𝐴 ⊔ 𝐵) ⊆ ({∅, 1o} × (𝐴 ∪ 𝐵)) | |
| 2 | ssel2 3938 | . . 3 ⊢ (((𝐴 ⊔ 𝐵) ⊆ ({∅, 1o} × (𝐴 ∪ 𝐵)) ∧ 𝑋 ∈ (𝐴 ⊔ 𝐵)) → 𝑋 ∈ ({∅, 1o} × (𝐴 ∪ 𝐵))) | |
| 3 | xp1st 7979 | . . 3 ⊢ (𝑋 ∈ ({∅, 1o} × (𝐴 ∪ 𝐵)) → (1st ‘𝑋) ∈ {∅, 1o}) | |
| 4 | elpri 4609 | . . 3 ⊢ ((1st ‘𝑋) ∈ {∅, 1o} → ((1st ‘𝑋) = ∅ ∨ (1st ‘𝑋) = 1o)) | |
| 5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ (((𝐴 ⊔ 𝐵) ⊆ ({∅, 1o} × (𝐴 ∪ 𝐵)) ∧ 𝑋 ∈ (𝐴 ⊔ 𝐵)) → ((1st ‘𝑋) = ∅ ∨ (1st ‘𝑋) = 1o)) |
| 6 | 1, 5 | mpan 690 | 1 ⊢ (𝑋 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑋) = ∅ ∨ (1st ‘𝑋) = 1o)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∪ cun 3909 ⊆ wss 3911 ∅c0 4292 {cpr 4587 × cxp 5629 ‘cfv 6499 1st c1st 7945 1oc1o 8404 ⊔ cdju 9827 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-suc 6326 df-iota 6452 df-fun 6501 df-fv 6507 df-1st 7947 df-2nd 7948 df-1o 8411 df-dju 9830 df-inl 9831 df-inr 9832 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |