MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldju1st Structured version   Visualization version   GIF version

Theorem eldju1st 9852
Description: The first component of an element of a disjoint union is either or 1o. (Contributed by AV, 26-Jun-2022.)
Assertion
Ref Expression
eldju1st (𝑋 ∈ (𝐴𝐵) → ((1st𝑋) = ∅ ∨ (1st𝑋) = 1o))

Proof of Theorem eldju1st
StepHypRef Expression
1 djuss 9849 . 2 (𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵))
2 ssel2 3938 . . 3 (((𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵)) ∧ 𝑋 ∈ (𝐴𝐵)) → 𝑋 ∈ ({∅, 1o} × (𝐴𝐵)))
3 xp1st 7979 . . 3 (𝑋 ∈ ({∅, 1o} × (𝐴𝐵)) → (1st𝑋) ∈ {∅, 1o})
4 elpri 4609 . . 3 ((1st𝑋) ∈ {∅, 1o} → ((1st𝑋) = ∅ ∨ (1st𝑋) = 1o))
52, 3, 43syl 18 . 2 (((𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵)) ∧ 𝑋 ∈ (𝐴𝐵)) → ((1st𝑋) = ∅ ∨ (1st𝑋) = 1o))
61, 5mpan 690 1 (𝑋 ∈ (𝐴𝐵) → ((1st𝑋) = ∅ ∨ (1st𝑋) = 1o))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  cun 3909  wss 3911  c0 4292  {cpr 4587   × cxp 5629  cfv 6499  1st c1st 7945  1oc1o 8404  cdju 9827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-suc 6326  df-iota 6452  df-fun 6501  df-fv 6507  df-1st 7947  df-2nd 7948  df-1o 8411  df-dju 9830  df-inl 9831  df-inr 9832
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator