MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserulm Structured version   Visualization version   GIF version

Theorem pserulm 25486
Description: If 𝑆 is a region contained in a circle of radius 𝑀 < 𝑅, then the sequence of partial sums of the infinite series converges uniformly on 𝑆. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
pserulm.h 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
pserulm.m (𝜑𝑀 ∈ ℝ)
pserulm.l (𝜑𝑀 < 𝑅)
pserulm.y (𝜑𝑆 ⊆ (abs “ (0[,]𝑀)))
Assertion
Ref Expression
pserulm (𝜑𝐻(⇝𝑢𝑆)𝐹)
Distinct variable groups:   𝑗,𝑛,𝑟,𝑥,𝑦,𝐴   𝑖,𝑗,𝑦,𝐻   𝑖,𝑀,𝑗,𝑦   𝑥,𝑖,𝑟   𝑖,𝐺,𝑗,𝑟,𝑦   𝑆,𝑖,𝑗,𝑦   𝜑,𝑖,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑖)   𝑅(𝑥,𝑦,𝑖,𝑗,𝑛,𝑟)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑖,𝑗,𝑛,𝑟)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑛,𝑟)   𝑀(𝑥,𝑛,𝑟)

Proof of Theorem pserulm
Dummy variables 𝑘 𝑚 𝑤 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pserulm.y . . . . . 6 (𝜑𝑆 ⊆ (abs “ (0[,]𝑀)))
21adantr 480 . . . . 5 ((𝜑𝑀 < 0) → 𝑆 ⊆ (abs “ (0[,]𝑀)))
3 0xr 10953 . . . . . . . . 9 0 ∈ ℝ*
4 pserulm.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
54rexrd 10956 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ*)
6 icc0 13056 . . . . . . . . 9 ((0 ∈ ℝ*𝑀 ∈ ℝ*) → ((0[,]𝑀) = ∅ ↔ 𝑀 < 0))
73, 5, 6sylancr 586 . . . . . . . 8 (𝜑 → ((0[,]𝑀) = ∅ ↔ 𝑀 < 0))
87biimpar 477 . . . . . . 7 ((𝜑𝑀 < 0) → (0[,]𝑀) = ∅)
98imaeq2d 5958 . . . . . 6 ((𝜑𝑀 < 0) → (abs “ (0[,]𝑀)) = (abs “ ∅))
10 ima0 5974 . . . . . 6 (abs “ ∅) = ∅
119, 10eqtrdi 2795 . . . . 5 ((𝜑𝑀 < 0) → (abs “ (0[,]𝑀)) = ∅)
122, 11sseqtrd 3957 . . . 4 ((𝜑𝑀 < 0) → 𝑆 ⊆ ∅)
13 ss0 4329 . . . 4 (𝑆 ⊆ ∅ → 𝑆 = ∅)
1412, 13syl 17 . . 3 ((𝜑𝑀 < 0) → 𝑆 = ∅)
15 nn0uz 12549 . . . 4 0 = (ℤ‘0)
16 0zd 12261 . . . 4 (𝜑 → 0 ∈ ℤ)
17 0zd 12261 . . . . . . . . . 10 ((𝜑𝑦𝑆) → 0 ∈ ℤ)
18 pserf.g . . . . . . . . . . . 12 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
19 pserf.a . . . . . . . . . . . . 13 (𝜑𝐴:ℕ0⟶ℂ)
2019adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → 𝐴:ℕ0⟶ℂ)
21 cnvimass 5978 . . . . . . . . . . . . . . 15 (abs “ (0[,]𝑀)) ⊆ dom abs
22 absf 14977 . . . . . . . . . . . . . . . 16 abs:ℂ⟶ℝ
2322fdmi 6596 . . . . . . . . . . . . . . 15 dom abs = ℂ
2421, 23sseqtri 3953 . . . . . . . . . . . . . 14 (abs “ (0[,]𝑀)) ⊆ ℂ
251, 24sstrdi 3929 . . . . . . . . . . . . 13 (𝜑𝑆 ⊆ ℂ)
2625sselda 3917 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → 𝑦 ∈ ℂ)
2718, 20, 26psergf 25476 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → (𝐺𝑦):ℕ0⟶ℂ)
2827ffvelrnda 6943 . . . . . . . . . 10 (((𝜑𝑦𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑦)‘𝑗) ∈ ℂ)
2915, 17, 28serf 13679 . . . . . . . . 9 ((𝜑𝑦𝑆) → seq0( + , (𝐺𝑦)):ℕ0⟶ℂ)
3029ffvelrnda 6943 . . . . . . . 8 (((𝜑𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → (seq0( + , (𝐺𝑦))‘𝑖) ∈ ℂ)
3130an32s 648 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑦𝑆) → (seq0( + , (𝐺𝑦))‘𝑖) ∈ ℂ)
3231fmpttd 6971 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)):𝑆⟶ℂ)
33 cnex 10883 . . . . . . 7 ℂ ∈ V
34 ssexg 5242 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
3525, 33, 34sylancl 585 . . . . . . . 8 (𝜑𝑆 ∈ V)
3635adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → 𝑆 ∈ V)
37 elmapg 8586 . . . . . . 7 ((ℂ ∈ V ∧ 𝑆 ∈ V) → ((𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ (ℂ ↑m 𝑆) ↔ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)):𝑆⟶ℂ))
3833, 36, 37sylancr 586 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → ((𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ (ℂ ↑m 𝑆) ↔ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)):𝑆⟶ℂ))
3932, 38mpbird 256 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ (ℂ ↑m 𝑆))
40 pserulm.h . . . . 5 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
4139, 40fmptd 6970 . . . 4 (𝜑𝐻:ℕ0⟶(ℂ ↑m 𝑆))
42 eqidd 2739 . . . . . 6 (((𝜑𝑦𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑦)‘𝑗) = ((𝐺𝑦)‘𝑗))
43 pserf.r . . . . . . 7 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
441sselda 3917 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → 𝑦 ∈ (abs “ (0[,]𝑀)))
45 ffn 6584 . . . . . . . . . . . . . 14 (abs:ℂ⟶ℝ → abs Fn ℂ)
46 elpreima 6917 . . . . . . . . . . . . . 14 (abs Fn ℂ → (𝑦 ∈ (abs “ (0[,]𝑀)) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,]𝑀))))
4722, 45, 46mp2b 10 . . . . . . . . . . . . 13 (𝑦 ∈ (abs “ (0[,]𝑀)) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,]𝑀)))
4844, 47sylib 217 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,]𝑀)))
4948simprd 495 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → (abs‘𝑦) ∈ (0[,]𝑀))
50 0re 10908 . . . . . . . . . . . 12 0 ∈ ℝ
514adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → 𝑀 ∈ ℝ)
52 elicc2 13073 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((abs‘𝑦) ∈ (0[,]𝑀) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) ≤ 𝑀)))
5350, 51, 52sylancr 586 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → ((abs‘𝑦) ∈ (0[,]𝑀) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) ≤ 𝑀)))
5449, 53mpbid 231 . . . . . . . . . 10 ((𝜑𝑦𝑆) → ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) ≤ 𝑀))
5554simp1d 1140 . . . . . . . . 9 ((𝜑𝑦𝑆) → (abs‘𝑦) ∈ ℝ)
5655rexrd 10956 . . . . . . . 8 ((𝜑𝑦𝑆) → (abs‘𝑦) ∈ ℝ*)
575adantr 480 . . . . . . . 8 ((𝜑𝑦𝑆) → 𝑀 ∈ ℝ*)
58 iccssxr 13091 . . . . . . . . . 10 (0[,]+∞) ⊆ ℝ*
5918, 19, 43radcnvcl 25481 . . . . . . . . . 10 (𝜑𝑅 ∈ (0[,]+∞))
6058, 59sselid 3915 . . . . . . . . 9 (𝜑𝑅 ∈ ℝ*)
6160adantr 480 . . . . . . . 8 ((𝜑𝑦𝑆) → 𝑅 ∈ ℝ*)
6254simp3d 1142 . . . . . . . 8 ((𝜑𝑦𝑆) → (abs‘𝑦) ≤ 𝑀)
63 pserulm.l . . . . . . . . 9 (𝜑𝑀 < 𝑅)
6463adantr 480 . . . . . . . 8 ((𝜑𝑦𝑆) → 𝑀 < 𝑅)
6556, 57, 61, 62, 64xrlelttrd 12823 . . . . . . 7 ((𝜑𝑦𝑆) → (abs‘𝑦) < 𝑅)
6618, 20, 43, 26, 65radcnvlt2 25483 . . . . . 6 ((𝜑𝑦𝑆) → seq0( + , (𝐺𝑦)) ∈ dom ⇝ )
6715, 17, 42, 28, 66isumcl 15401 . . . . 5 ((𝜑𝑦𝑆) → Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗) ∈ ℂ)
68 pserf.f . . . . 5 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
6967, 68fmptd 6970 . . . 4 (𝜑𝐹:𝑆⟶ℂ)
7015, 16, 41, 69ulm0 25455 . . 3 ((𝜑𝑆 = ∅) → 𝐻(⇝𝑢𝑆)𝐹)
7114, 70syldan 590 . 2 ((𝜑𝑀 < 0) → 𝐻(⇝𝑢𝑆)𝐹)
72 simpr 484 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
7372, 15eleqtrdi 2849 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ (ℤ‘0))
74 eqid 2738 . . . . . . . . . 10 (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))
75 fveq2 6756 . . . . . . . . . . . . 13 (𝑤 = 𝑦 → (𝐺𝑤) = (𝐺𝑦))
7675fveq1d 6758 . . . . . . . . . . . 12 (𝑤 = 𝑦 → ((𝐺𝑤)‘𝑚) = ((𝐺𝑦)‘𝑚))
7776cbvmptv 5183 . . . . . . . . . . 11 (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑚))
78 fveq2 6756 . . . . . . . . . . . 12 (𝑚 = 𝑘 → ((𝐺𝑦)‘𝑚) = ((𝐺𝑦)‘𝑘))
7978mpteq2dv 5172 . . . . . . . . . . 11 (𝑚 = 𝑘 → (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑚)) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)))
8077, 79syl5eq 2791 . . . . . . . . . 10 (𝑚 = 𝑘 → (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)))
81 elfznn0 13278 . . . . . . . . . . 11 (𝑘 ∈ (0...𝑖) → 𝑘 ∈ ℕ0)
8281adantl 481 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℕ0)
8335ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → 𝑆 ∈ V)
8483mptexd 7082 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)) ∈ V)
8574, 80, 82, 84fvmptd3 6880 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)))
8636, 73, 85seqof 13708 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))))‘𝑖) = (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
8786eqcomd 2744 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) = (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))))‘𝑖))
8887mpteq2dva 5170 . . . . . 6 (𝜑 → (𝑖 ∈ ℕ0 ↦ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖))) = (𝑖 ∈ ℕ0 ↦ (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))))‘𝑖)))
89 0z 12260 . . . . . . . . 9 0 ∈ ℤ
90 seqfn 13661 . . . . . . . . 9 (0 ∈ ℤ → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn (ℤ‘0))
9189, 90ax-mp 5 . . . . . . . 8 seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn (ℤ‘0)
9215fneq2i 6515 . . . . . . . 8 (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn ℕ0 ↔ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn (ℤ‘0))
9391, 92mpbir 230 . . . . . . 7 seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn ℕ0
94 dffn5 6810 . . . . . . 7 (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn ℕ0 ↔ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) = (𝑖 ∈ ℕ0 ↦ (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))))‘𝑖)))
9593, 94mpbi 229 . . . . . 6 seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) = (𝑖 ∈ ℕ0 ↦ (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))))‘𝑖))
9688, 40, 953eqtr4g 2804 . . . . 5 (𝜑𝐻 = seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))))
9796adantr 480 . . . 4 ((𝜑 ∧ 0 ≤ 𝑀) → 𝐻 = seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))))
98 0zd 12261 . . . . 5 ((𝜑 ∧ 0 ≤ 𝑀) → 0 ∈ ℤ)
9935adantr 480 . . . . 5 ((𝜑 ∧ 0 ≤ 𝑀) → 𝑆 ∈ V)
10019adantr 480 . . . . . . . . . . . 12 ((𝜑𝑤𝑆) → 𝐴:ℕ0⟶ℂ)
10125sselda 3917 . . . . . . . . . . . 12 ((𝜑𝑤𝑆) → 𝑤 ∈ ℂ)
10218, 100, 101psergf 25476 . . . . . . . . . . 11 ((𝜑𝑤𝑆) → (𝐺𝑤):ℕ0⟶ℂ)
103102ffvelrnda 6943 . . . . . . . . . 10 (((𝜑𝑤𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝐺𝑤)‘𝑚) ∈ ℂ)
104103an32s 648 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑤𝑆) → ((𝐺𝑤)‘𝑚) ∈ ℂ)
105104fmpttd 6971 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)):𝑆⟶ℂ)
10635adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → 𝑆 ∈ V)
107 elmapg 8586 . . . . . . . . 9 ((ℂ ∈ V ∧ 𝑆 ∈ V) → ((𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)) ∈ (ℂ ↑m 𝑆) ↔ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)):𝑆⟶ℂ))
10833, 106, 107sylancr 586 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → ((𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)) ∈ (ℂ ↑m 𝑆) ↔ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)):𝑆⟶ℂ))
109105, 108mpbird 256 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)) ∈ (ℂ ↑m 𝑆))
110109fmpttd 6971 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))):ℕ0⟶(ℂ ↑m 𝑆))
111110adantr 480 . . . . 5 ((𝜑 ∧ 0 ≤ 𝑀) → (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))):ℕ0⟶(ℂ ↑m 𝑆))
112 fex 7084 . . . . . . . 8 ((abs:ℂ⟶ℝ ∧ ℂ ∈ V) → abs ∈ V)
11322, 33, 112mp2an 688 . . . . . . 7 abs ∈ V
114 fvex 6769 . . . . . . 7 (𝐺𝑀) ∈ V
115113, 114coex 7751 . . . . . 6 (abs ∘ (𝐺𝑀)) ∈ V
116115a1i 11 . . . . 5 ((𝜑 ∧ 0 ≤ 𝑀) → (abs ∘ (𝐺𝑀)) ∈ V)
11719adantr 480 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝑀) → 𝐴:ℕ0⟶ℂ)
1184adantr 480 . . . . . . . . 9 ((𝜑 ∧ 0 ≤ 𝑀) → 𝑀 ∈ ℝ)
119118recnd 10934 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝑀) → 𝑀 ∈ ℂ)
12018, 117, 119psergf 25476 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝑀) → (𝐺𝑀):ℕ0⟶ℂ)
121 fco 6608 . . . . . . 7 ((abs:ℂ⟶ℝ ∧ (𝐺𝑀):ℕ0⟶ℂ) → (abs ∘ (𝐺𝑀)):ℕ0⟶ℝ)
12222, 120, 121sylancr 586 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝑀) → (abs ∘ (𝐺𝑀)):ℕ0⟶ℝ)
123122ffvelrnda 6943 . . . . 5 (((𝜑 ∧ 0 ≤ 𝑀) ∧ 𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑀))‘𝑘) ∈ ℝ)
12425ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑆 ⊆ ℂ)
125 simprr 769 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑧𝑆)
126124, 125sseldd 3918 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑧 ∈ ℂ)
127 simprl 767 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑘 ∈ ℕ0)
128126, 127expcld 13792 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (𝑧𝑘) ∈ ℂ)
129128abscld 15076 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑧𝑘)) ∈ ℝ)
130119adantr 480 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑀 ∈ ℂ)
131130, 127expcld 13792 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (𝑀𝑘) ∈ ℂ)
132131abscld 15076 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑀𝑘)) ∈ ℝ)
13319ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝐴:ℕ0⟶ℂ)
134133, 127ffvelrnd 6944 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (𝐴𝑘) ∈ ℂ)
135134abscld 15076 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝐴𝑘)) ∈ ℝ)
136134absge0d 15084 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 0 ≤ (abs‘(𝐴𝑘)))
137126abscld 15076 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘𝑧) ∈ ℝ)
1384ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑀 ∈ ℝ)
139126absge0d 15084 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 0 ≤ (abs‘𝑧))
140 fveq2 6756 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (abs‘𝑦) = (abs‘𝑧))
141140breq1d 5080 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((abs‘𝑦) ≤ 𝑀 ↔ (abs‘𝑧) ≤ 𝑀))
14262ralrimiva 3107 . . . . . . . . . . . 12 (𝜑 → ∀𝑦𝑆 (abs‘𝑦) ≤ 𝑀)
143142ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ∀𝑦𝑆 (abs‘𝑦) ≤ 𝑀)
144141, 143, 125rspcdva 3554 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘𝑧) ≤ 𝑀)
145 leexp1a 13821 . . . . . . . . . 10 ((((abs‘𝑧) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (0 ≤ (abs‘𝑧) ∧ (abs‘𝑧) ≤ 𝑀)) → ((abs‘𝑧)↑𝑘) ≤ (𝑀𝑘))
146137, 138, 127, 139, 144, 145syl32anc 1376 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((abs‘𝑧)↑𝑘) ≤ (𝑀𝑘))
147126, 127absexpd 15092 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑧𝑘)) = ((abs‘𝑧)↑𝑘))
148130, 127absexpd 15092 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑀𝑘)) = ((abs‘𝑀)↑𝑘))
149 absid 14936 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → (abs‘𝑀) = 𝑀)
1504, 149sylan 579 . . . . . . . . . . . 12 ((𝜑 ∧ 0 ≤ 𝑀) → (abs‘𝑀) = 𝑀)
151150adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘𝑀) = 𝑀)
152151oveq1d 7270 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((abs‘𝑀)↑𝑘) = (𝑀𝑘))
153148, 152eqtrd 2778 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑀𝑘)) = (𝑀𝑘))
154146, 147, 1533brtr4d 5102 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑧𝑘)) ≤ (abs‘(𝑀𝑘)))
155129, 132, 135, 136, 154lemul2ad 11845 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((abs‘(𝐴𝑘)) · (abs‘(𝑧𝑘))) ≤ ((abs‘(𝐴𝑘)) · (abs‘(𝑀𝑘))))
156134, 128absmuld 15094 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘((𝐴𝑘) · (𝑧𝑘))) = ((abs‘(𝐴𝑘)) · (abs‘(𝑧𝑘))))
157134, 131absmuld 15094 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘((𝐴𝑘) · (𝑀𝑘))) = ((abs‘(𝐴𝑘)) · (abs‘(𝑀𝑘))))
158155, 156, 1573brtr4d 5102 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘((𝐴𝑘) · (𝑧𝑘))) ≤ (abs‘((𝐴𝑘) · (𝑀𝑘))))
15935ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑆 ∈ V)
160159mptexd 7082 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)) ∈ V)
16174, 80, 127, 160fvmptd3 6880 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)))
162161fveq1d 6758 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘)‘𝑧) = ((𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘))‘𝑧))
163 fveq2 6756 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝐺𝑦) = (𝐺𝑧))
164163fveq1d 6758 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝐺𝑦)‘𝑘) = ((𝐺𝑧)‘𝑘))
165 eqid 2738 . . . . . . . . . 10 (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘))
166 fvex 6769 . . . . . . . . . 10 ((𝐺𝑧)‘𝑘) ∈ V
167164, 165, 166fvmpt 6857 . . . . . . . . 9 (𝑧𝑆 → ((𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘))‘𝑧) = ((𝐺𝑧)‘𝑘))
168167ad2antll 725 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘))‘𝑧) = ((𝐺𝑧)‘𝑘))
16918pserval2 25475 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑧)‘𝑘) = ((𝐴𝑘) · (𝑧𝑘)))
170126, 127, 169syl2anc 583 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((𝐺𝑧)‘𝑘) = ((𝐴𝑘) · (𝑧𝑘)))
171162, 168, 1703eqtrd 2782 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘)‘𝑧) = ((𝐴𝑘) · (𝑧𝑘)))
172171fveq2d 6760 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘)‘𝑧)) = (abs‘((𝐴𝑘) · (𝑧𝑘))))
173120adantr 480 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (𝐺𝑀):ℕ0⟶ℂ)
174 fvco3 6849 . . . . . . . 8 (((𝐺𝑀):ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑀))‘𝑘) = (abs‘((𝐺𝑀)‘𝑘)))
175173, 127, 174syl2anc 583 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((abs ∘ (𝐺𝑀))‘𝑘) = (abs‘((𝐺𝑀)‘𝑘)))
17618pserval2 25475 . . . . . . . . 9 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑀)‘𝑘) = ((𝐴𝑘) · (𝑀𝑘)))
177130, 127, 176syl2anc 583 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((𝐺𝑀)‘𝑘) = ((𝐴𝑘) · (𝑀𝑘)))
178177fveq2d 6760 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘((𝐺𝑀)‘𝑘)) = (abs‘((𝐴𝑘) · (𝑀𝑘))))
179175, 178eqtrd 2778 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((abs ∘ (𝐺𝑀))‘𝑘) = (abs‘((𝐴𝑘) · (𝑀𝑘))))
180158, 172, 1793brtr4d 5102 . . . . 5 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘)‘𝑧)) ≤ ((abs ∘ (𝐺𝑀))‘𝑘))
18163adantr 480 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝑀) → 𝑀 < 𝑅)
182150, 181eqbrtrd 5092 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝑀) → (abs‘𝑀) < 𝑅)
183 id 22 . . . . . . . . 9 (𝑖 = 𝑚𝑖 = 𝑚)
184 2fveq3 6761 . . . . . . . . 9 (𝑖 = 𝑚 → (abs‘((𝐺𝑀)‘𝑖)) = (abs‘((𝐺𝑀)‘𝑚)))
185183, 184oveq12d 7273 . . . . . . . 8 (𝑖 = 𝑚 → (𝑖 · (abs‘((𝐺𝑀)‘𝑖))) = (𝑚 · (abs‘((𝐺𝑀)‘𝑚))))
186185cbvmptv 5183 . . . . . . 7 (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑀)‘𝑖)))) = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑀)‘𝑚))))
18718, 117, 43, 119, 182, 186radcnvlt1 25482 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝑀) → (seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑀)‘𝑖))))) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺𝑀))) ∈ dom ⇝ ))
188187simprd 495 . . . . 5 ((𝜑 ∧ 0 ≤ 𝑀) → seq0( + , (abs ∘ (𝐺𝑀))) ∈ dom ⇝ )
18915, 98, 99, 111, 116, 123, 180, 188mtest 25468 . . . 4 ((𝜑 ∧ 0 ≤ 𝑀) → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) ∈ dom (⇝𝑢𝑆))
19097, 189eqeltrd 2839 . . 3 ((𝜑 ∧ 0 ≤ 𝑀) → 𝐻 ∈ dom (⇝𝑢𝑆))
191 simpr 484 . . . . . . 7 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝐻(⇝𝑢𝑆)𝑓)
192 ulmcl 25445 . . . . . . . . . 10 (𝐻(⇝𝑢𝑆)𝑓𝑓:𝑆⟶ℂ)
193192adantl 481 . . . . . . . . 9 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝑓:𝑆⟶ℂ)
194193feqmptd 6819 . . . . . . . 8 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝑓 = (𝑦𝑆 ↦ (𝑓𝑦)))
195 0zd 12261 . . . . . . . . . . 11 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → 0 ∈ ℤ)
196 eqidd 2739 . . . . . . . . . . 11 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑦)‘𝑗) = ((𝐺𝑦)‘𝑗))
19727adantlr 711 . . . . . . . . . . . 12 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → (𝐺𝑦):ℕ0⟶ℂ)
198197ffvelrnda 6943 . . . . . . . . . . 11 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑦)‘𝑗) ∈ ℂ)
19941ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → 𝐻:ℕ0⟶(ℂ ↑m 𝑆))
200 simpr 484 . . . . . . . . . . . 12 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → 𝑦𝑆)
201 seqex 13651 . . . . . . . . . . . . 13 seq0( + , (𝐺𝑦)) ∈ V
202201a1i 11 . . . . . . . . . . . 12 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → seq0( + , (𝐺𝑦)) ∈ V)
203 simpr 484 . . . . . . . . . . . . . . 15 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
20435ad3antrrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑆 ∈ V)
205204mptexd 7082 . . . . . . . . . . . . . . 15 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ V)
20640fvmpt2 6868 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ℕ0 ∧ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ V) → (𝐻𝑖) = (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
207203, 205, 206syl2anc 583 . . . . . . . . . . . . . 14 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → (𝐻𝑖) = (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
208207fveq1d 6758 . . . . . . . . . . . . 13 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝐻𝑖)‘𝑦) = ((𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖))‘𝑦))
209 simplr 765 . . . . . . . . . . . . . 14 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑦𝑆)
210 fvex 6769 . . . . . . . . . . . . . 14 (seq0( + , (𝐺𝑦))‘𝑖) ∈ V
211 eqid 2738 . . . . . . . . . . . . . . 15 (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) = (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖))
212211fvmpt2 6868 . . . . . . . . . . . . . 14 ((𝑦𝑆 ∧ (seq0( + , (𝐺𝑦))‘𝑖) ∈ V) → ((𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖))‘𝑦) = (seq0( + , (𝐺𝑦))‘𝑖))
213209, 210, 212sylancl 585 . . . . . . . . . . . . 13 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖))‘𝑦) = (seq0( + , (𝐺𝑦))‘𝑖))
214208, 213eqtrd 2778 . . . . . . . . . . . 12 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝐻𝑖)‘𝑦) = (seq0( + , (𝐺𝑦))‘𝑖))
215 simplr 765 . . . . . . . . . . . 12 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → 𝐻(⇝𝑢𝑆)𝑓)
21615, 195, 199, 200, 202, 214, 215ulmclm 25451 . . . . . . . . . . 11 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → seq0( + , (𝐺𝑦)) ⇝ (𝑓𝑦))
21715, 195, 196, 198, 216isumclim 15397 . . . . . . . . . 10 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗) = (𝑓𝑦))
218217mpteq2dva 5170 . . . . . . . . 9 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)) = (𝑦𝑆 ↦ (𝑓𝑦)))
21968, 218syl5eq 2791 . . . . . . . 8 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝐹 = (𝑦𝑆 ↦ (𝑓𝑦)))
220194, 219eqtr4d 2781 . . . . . . 7 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝑓 = 𝐹)
221191, 220breqtrd 5096 . . . . . 6 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝐻(⇝𝑢𝑆)𝐹)
222221ex 412 . . . . 5 (𝜑 → (𝐻(⇝𝑢𝑆)𝑓𝐻(⇝𝑢𝑆)𝐹))
223222exlimdv 1937 . . . 4 (𝜑 → (∃𝑓 𝐻(⇝𝑢𝑆)𝑓𝐻(⇝𝑢𝑆)𝐹))
224 eldmg 5796 . . . . 5 (𝐻 ∈ dom (⇝𝑢𝑆) → (𝐻 ∈ dom (⇝𝑢𝑆) ↔ ∃𝑓 𝐻(⇝𝑢𝑆)𝑓))
225224ibi 266 . . . 4 (𝐻 ∈ dom (⇝𝑢𝑆) → ∃𝑓 𝐻(⇝𝑢𝑆)𝑓)
226223, 225impel 505 . . 3 ((𝜑𝐻 ∈ dom (⇝𝑢𝑆)) → 𝐻(⇝𝑢𝑆)𝐹)
227190, 226syldan 590 . 2 ((𝜑 ∧ 0 ≤ 𝑀) → 𝐻(⇝𝑢𝑆)𝐹)
228 0red 10909 . 2 (𝜑 → 0 ∈ ℝ)
22971, 227, 4, 228ltlecasei 11013 1 (𝜑𝐻(⇝𝑢𝑆)𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  wss 3883  c0 4253   class class class wbr 5070  cmpt 5153  ccnv 5579  dom cdm 5580  cima 5583  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  m cmap 8573  supcsup 9129  cc 10800  cr 10801  0cc0 10802   + caddc 10805   · cmul 10807  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  0cn0 12163  cz 12249  cuz 12511  [,]cicc 13011  ...cfz 13168  seqcseq 13649  cexp 13710  abscabs 14873  cli 15121  Σcsu 15325  𝑢culm 25440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ulm 25441
This theorem is referenced by:  psercn2  25487  pserdvlem2  25492
  Copyright terms: Public domain W3C validator