Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserulm Structured version   Visualization version   GIF version

Theorem pserulm 24481
 Description: If 𝑆 is a region contained in a circle of radius 𝑀 < 𝑅, then the sequence of partial sums of the infinite series converges uniformly on 𝑆. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
pserulm.h 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
pserulm.m (𝜑𝑀 ∈ ℝ)
pserulm.l (𝜑𝑀 < 𝑅)
pserulm.y (𝜑𝑆 ⊆ (abs “ (0[,]𝑀)))
Assertion
Ref Expression
pserulm (𝜑𝐻(⇝𝑢𝑆)𝐹)
Distinct variable groups:   𝑗,𝑛,𝑟,𝑥,𝑦,𝐴   𝑖,𝑗,𝑦,𝐻   𝑖,𝑀,𝑗,𝑦   𝑥,𝑖,𝑟   𝑖,𝐺,𝑗,𝑟,𝑦   𝑆,𝑖,𝑗,𝑦   𝜑,𝑖,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑖)   𝑅(𝑥,𝑦,𝑖,𝑗,𝑛,𝑟)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑖,𝑗,𝑛,𝑟)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑛,𝑟)   𝑀(𝑥,𝑛,𝑟)

Proof of Theorem pserulm
Dummy variables 𝑘 𝑚 𝑤 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pserulm.y . . . . . 6 (𝜑𝑆 ⊆ (abs “ (0[,]𝑀)))
21adantr 472 . . . . 5 ((𝜑𝑀 < 0) → 𝑆 ⊆ (abs “ (0[,]𝑀)))
3 0xr 10344 . . . . . . . . 9 0 ∈ ℝ*
4 pserulm.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
54rexrd 10347 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ*)
6 icc0 12430 . . . . . . . . 9 ((0 ∈ ℝ*𝑀 ∈ ℝ*) → ((0[,]𝑀) = ∅ ↔ 𝑀 < 0))
73, 5, 6sylancr 581 . . . . . . . 8 (𝜑 → ((0[,]𝑀) = ∅ ↔ 𝑀 < 0))
87biimpar 469 . . . . . . 7 ((𝜑𝑀 < 0) → (0[,]𝑀) = ∅)
98imaeq2d 5650 . . . . . 6 ((𝜑𝑀 < 0) → (abs “ (0[,]𝑀)) = (abs “ ∅))
10 ima0 5665 . . . . . 6 (abs “ ∅) = ∅
119, 10syl6eq 2815 . . . . 5 ((𝜑𝑀 < 0) → (abs “ (0[,]𝑀)) = ∅)
122, 11sseqtrd 3803 . . . 4 ((𝜑𝑀 < 0) → 𝑆 ⊆ ∅)
13 ss0 4138 . . . 4 (𝑆 ⊆ ∅ → 𝑆 = ∅)
1412, 13syl 17 . . 3 ((𝜑𝑀 < 0) → 𝑆 = ∅)
15 nn0uz 11927 . . . 4 0 = (ℤ‘0)
16 0zd 11640 . . . 4 (𝜑 → 0 ∈ ℤ)
17 0zd 11640 . . . . . . . . . 10 ((𝜑𝑦𝑆) → 0 ∈ ℤ)
18 pserf.g . . . . . . . . . . . 12 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
19 pserf.a . . . . . . . . . . . . 13 (𝜑𝐴:ℕ0⟶ℂ)
2019adantr 472 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → 𝐴:ℕ0⟶ℂ)
21 cnvimass 5669 . . . . . . . . . . . . . . 15 (abs “ (0[,]𝑀)) ⊆ dom abs
22 absf 14376 . . . . . . . . . . . . . . . 16 abs:ℂ⟶ℝ
2322fdmi 6235 . . . . . . . . . . . . . . 15 dom abs = ℂ
2421, 23sseqtri 3799 . . . . . . . . . . . . . 14 (abs “ (0[,]𝑀)) ⊆ ℂ
251, 24syl6ss 3775 . . . . . . . . . . . . 13 (𝜑𝑆 ⊆ ℂ)
2625sselda 3763 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → 𝑦 ∈ ℂ)
2718, 20, 26psergf 24471 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → (𝐺𝑦):ℕ0⟶ℂ)
2827ffvelrnda 6553 . . . . . . . . . 10 (((𝜑𝑦𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑦)‘𝑗) ∈ ℂ)
2915, 17, 28serf 13041 . . . . . . . . 9 ((𝜑𝑦𝑆) → seq0( + , (𝐺𝑦)):ℕ0⟶ℂ)
3029ffvelrnda 6553 . . . . . . . 8 (((𝜑𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → (seq0( + , (𝐺𝑦))‘𝑖) ∈ ℂ)
3130an32s 642 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑦𝑆) → (seq0( + , (𝐺𝑦))‘𝑖) ∈ ℂ)
3231fmpttd 6579 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)):𝑆⟶ℂ)
33 cnex 10274 . . . . . . 7 ℂ ∈ V
34 ssexg 4967 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
3525, 33, 34sylancl 580 . . . . . . . 8 (𝜑𝑆 ∈ V)
3635adantr 472 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → 𝑆 ∈ V)
37 elmapg 8077 . . . . . . 7 ((ℂ ∈ V ∧ 𝑆 ∈ V) → ((𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ (ℂ ↑𝑚 𝑆) ↔ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)):𝑆⟶ℂ))
3833, 36, 37sylancr 581 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → ((𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ (ℂ ↑𝑚 𝑆) ↔ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)):𝑆⟶ℂ))
3932, 38mpbird 248 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ (ℂ ↑𝑚 𝑆))
40 pserulm.h . . . . 5 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
4139, 40fmptd 6578 . . . 4 (𝜑𝐻:ℕ0⟶(ℂ ↑𝑚 𝑆))
42 eqidd 2766 . . . . . 6 (((𝜑𝑦𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑦)‘𝑗) = ((𝐺𝑦)‘𝑗))
43 pserf.r . . . . . . 7 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
441sselda 3763 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → 𝑦 ∈ (abs “ (0[,]𝑀)))
45 ffn 6225 . . . . . . . . . . . . . 14 (abs:ℂ⟶ℝ → abs Fn ℂ)
46 elpreima 6531 . . . . . . . . . . . . . 14 (abs Fn ℂ → (𝑦 ∈ (abs “ (0[,]𝑀)) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,]𝑀))))
4722, 45, 46mp2b 10 . . . . . . . . . . . . 13 (𝑦 ∈ (abs “ (0[,]𝑀)) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,]𝑀)))
4844, 47sylib 209 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,]𝑀)))
4948simprd 489 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → (abs‘𝑦) ∈ (0[,]𝑀))
50 0re 10299 . . . . . . . . . . . 12 0 ∈ ℝ
514adantr 472 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → 𝑀 ∈ ℝ)
52 elicc2 12445 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((abs‘𝑦) ∈ (0[,]𝑀) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) ≤ 𝑀)))
5350, 51, 52sylancr 581 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → ((abs‘𝑦) ∈ (0[,]𝑀) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) ≤ 𝑀)))
5449, 53mpbid 223 . . . . . . . . . 10 ((𝜑𝑦𝑆) → ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) ≤ 𝑀))
5554simp1d 1172 . . . . . . . . 9 ((𝜑𝑦𝑆) → (abs‘𝑦) ∈ ℝ)
5655rexrd 10347 . . . . . . . 8 ((𝜑𝑦𝑆) → (abs‘𝑦) ∈ ℝ*)
575adantr 472 . . . . . . . 8 ((𝜑𝑦𝑆) → 𝑀 ∈ ℝ*)
58 iccssxr 12463 . . . . . . . . . 10 (0[,]+∞) ⊆ ℝ*
5918, 19, 43radcnvcl 24476 . . . . . . . . . 10 (𝜑𝑅 ∈ (0[,]+∞))
6058, 59sseldi 3761 . . . . . . . . 9 (𝜑𝑅 ∈ ℝ*)
6160adantr 472 . . . . . . . 8 ((𝜑𝑦𝑆) → 𝑅 ∈ ℝ*)
6254simp3d 1174 . . . . . . . 8 ((𝜑𝑦𝑆) → (abs‘𝑦) ≤ 𝑀)
63 pserulm.l . . . . . . . . 9 (𝜑𝑀 < 𝑅)
6463adantr 472 . . . . . . . 8 ((𝜑𝑦𝑆) → 𝑀 < 𝑅)
6556, 57, 61, 62, 64xrlelttrd 12198 . . . . . . 7 ((𝜑𝑦𝑆) → (abs‘𝑦) < 𝑅)
6618, 20, 43, 26, 65radcnvlt2 24478 . . . . . 6 ((𝜑𝑦𝑆) → seq0( + , (𝐺𝑦)) ∈ dom ⇝ )
6715, 17, 42, 28, 66isumcl 14791 . . . . 5 ((𝜑𝑦𝑆) → Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗) ∈ ℂ)
68 pserf.f . . . . 5 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
6967, 68fmptd 6578 . . . 4 (𝜑𝐹:𝑆⟶ℂ)
7015, 16, 41, 69ulm0 24450 . . 3 ((𝜑𝑆 = ∅) → 𝐻(⇝𝑢𝑆)𝐹)
7114, 70syldan 585 . 2 ((𝜑𝑀 < 0) → 𝐻(⇝𝑢𝑆)𝐹)
72 simpr 477 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
7372, 15syl6eleq 2854 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ (ℤ‘0))
74 elfznn0 12645 . . . . . . . . . . 11 (𝑘 ∈ (0...𝑖) → 𝑘 ∈ ℕ0)
7574adantl 473 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℕ0)
7635ad2antrr 717 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → 𝑆 ∈ V)
77 mptexg 6681 . . . . . . . . . . 11 (𝑆 ∈ V → (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)) ∈ V)
7876, 77syl 17 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)) ∈ V)
79 fveq2 6379 . . . . . . . . . . . . . 14 (𝑤 = 𝑦 → (𝐺𝑤) = (𝐺𝑦))
8079fveq1d 6381 . . . . . . . . . . . . 13 (𝑤 = 𝑦 → ((𝐺𝑤)‘𝑚) = ((𝐺𝑦)‘𝑚))
8180cbvmptv 4911 . . . . . . . . . . . 12 (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑚))
82 fveq2 6379 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → ((𝐺𝑦)‘𝑚) = ((𝐺𝑦)‘𝑘))
8382mpteq2dv 4906 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑚)) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)))
8481, 83syl5eq 2811 . . . . . . . . . . 11 (𝑚 = 𝑘 → (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)))
85 eqid 2765 . . . . . . . . . . 11 (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))
8684, 85fvmptg 6473 . . . . . . . . . 10 ((𝑘 ∈ ℕ0 ∧ (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)) ∈ V) → ((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)))
8775, 78, 86syl2anc 579 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)))
8836, 73, 87seqof 13070 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))))‘𝑖) = (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
8988eqcomd 2771 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) = (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))))‘𝑖))
9089mpteq2dva 4905 . . . . . 6 (𝜑 → (𝑖 ∈ ℕ0 ↦ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖))) = (𝑖 ∈ ℕ0 ↦ (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))))‘𝑖)))
91 0z 11639 . . . . . . . . 9 0 ∈ ℤ
92 seqfn 13025 . . . . . . . . 9 (0 ∈ ℤ → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn (ℤ‘0))
9391, 92ax-mp 5 . . . . . . . 8 seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn (ℤ‘0)
9415fneq2i 6166 . . . . . . . 8 (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn ℕ0 ↔ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn (ℤ‘0))
9593, 94mpbir 222 . . . . . . 7 seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn ℕ0
96 dffn5 6434 . . . . . . 7 (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn ℕ0 ↔ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) = (𝑖 ∈ ℕ0 ↦ (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))))‘𝑖)))
9795, 96mpbi 221 . . . . . 6 seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) = (𝑖 ∈ ℕ0 ↦ (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))))‘𝑖))
9890, 40, 973eqtr4g 2824 . . . . 5 (𝜑𝐻 = seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))))
9998adantr 472 . . . 4 ((𝜑 ∧ 0 ≤ 𝑀) → 𝐻 = seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))))
100 0zd 11640 . . . . 5 ((𝜑 ∧ 0 ≤ 𝑀) → 0 ∈ ℤ)
10135adantr 472 . . . . 5 ((𝜑 ∧ 0 ≤ 𝑀) → 𝑆 ∈ V)
10219adantr 472 . . . . . . . . . . . 12 ((𝜑𝑤𝑆) → 𝐴:ℕ0⟶ℂ)
10325sselda 3763 . . . . . . . . . . . 12 ((𝜑𝑤𝑆) → 𝑤 ∈ ℂ)
10418, 102, 103psergf 24471 . . . . . . . . . . 11 ((𝜑𝑤𝑆) → (𝐺𝑤):ℕ0⟶ℂ)
105104ffvelrnda 6553 . . . . . . . . . 10 (((𝜑𝑤𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝐺𝑤)‘𝑚) ∈ ℂ)
106105an32s 642 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑤𝑆) → ((𝐺𝑤)‘𝑚) ∈ ℂ)
107106fmpttd 6579 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)):𝑆⟶ℂ)
10835adantr 472 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → 𝑆 ∈ V)
109 elmapg 8077 . . . . . . . . 9 ((ℂ ∈ V ∧ 𝑆 ∈ V) → ((𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)) ∈ (ℂ ↑𝑚 𝑆) ↔ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)):𝑆⟶ℂ))
11033, 108, 109sylancr 581 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → ((𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)) ∈ (ℂ ↑𝑚 𝑆) ↔ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)):𝑆⟶ℂ))
111107, 110mpbird 248 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)) ∈ (ℂ ↑𝑚 𝑆))
112111fmpttd 6579 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))):ℕ0⟶(ℂ ↑𝑚 𝑆))
113112adantr 472 . . . . 5 ((𝜑 ∧ 0 ≤ 𝑀) → (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))):ℕ0⟶(ℂ ↑𝑚 𝑆))
114 fex 6686 . . . . . . . 8 ((abs:ℂ⟶ℝ ∧ ℂ ∈ V) → abs ∈ V)
11522, 33, 114mp2an 683 . . . . . . 7 abs ∈ V
116 fvex 6392 . . . . . . 7 (𝐺𝑀) ∈ V
117115, 116coex 7320 . . . . . 6 (abs ∘ (𝐺𝑀)) ∈ V
118117a1i 11 . . . . 5 ((𝜑 ∧ 0 ≤ 𝑀) → (abs ∘ (𝐺𝑀)) ∈ V)
11919adantr 472 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝑀) → 𝐴:ℕ0⟶ℂ)
1204adantr 472 . . . . . . . . 9 ((𝜑 ∧ 0 ≤ 𝑀) → 𝑀 ∈ ℝ)
121120recnd 10326 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝑀) → 𝑀 ∈ ℂ)
12218, 119, 121psergf 24471 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝑀) → (𝐺𝑀):ℕ0⟶ℂ)
123 fco 6242 . . . . . . 7 ((abs:ℂ⟶ℝ ∧ (𝐺𝑀):ℕ0⟶ℂ) → (abs ∘ (𝐺𝑀)):ℕ0⟶ℝ)
12422, 122, 123sylancr 581 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝑀) → (abs ∘ (𝐺𝑀)):ℕ0⟶ℝ)
125124ffvelrnda 6553 . . . . 5 (((𝜑 ∧ 0 ≤ 𝑀) ∧ 𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑀))‘𝑘) ∈ ℝ)
12625ad2antrr 717 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑆 ⊆ ℂ)
127 simprr 789 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑧𝑆)
128126, 127sseldd 3764 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑧 ∈ ℂ)
129 simprl 787 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑘 ∈ ℕ0)
130128, 129expcld 13220 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (𝑧𝑘) ∈ ℂ)
131130abscld 14474 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑧𝑘)) ∈ ℝ)
132121adantr 472 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑀 ∈ ℂ)
133132, 129expcld 13220 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (𝑀𝑘) ∈ ℂ)
134133abscld 14474 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑀𝑘)) ∈ ℝ)
13519ad2antrr 717 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝐴:ℕ0⟶ℂ)
136135, 129ffvelrnd 6554 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (𝐴𝑘) ∈ ℂ)
137136abscld 14474 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝐴𝑘)) ∈ ℝ)
138136absge0d 14482 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 0 ≤ (abs‘(𝐴𝑘)))
139128abscld 14474 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘𝑧) ∈ ℝ)
1404ad2antrr 717 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑀 ∈ ℝ)
141128absge0d 14482 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 0 ≤ (abs‘𝑧))
142 fveq2 6379 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (abs‘𝑦) = (abs‘𝑧))
143142breq1d 4821 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((abs‘𝑦) ≤ 𝑀 ↔ (abs‘𝑧) ≤ 𝑀))
14462ralrimiva 3113 . . . . . . . . . . . 12 (𝜑 → ∀𝑦𝑆 (abs‘𝑦) ≤ 𝑀)
145144ad2antrr 717 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ∀𝑦𝑆 (abs‘𝑦) ≤ 𝑀)
146143, 145, 127rspcdva 3468 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘𝑧) ≤ 𝑀)
147 leexp1a 13131 . . . . . . . . . 10 ((((abs‘𝑧) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (0 ≤ (abs‘𝑧) ∧ (abs‘𝑧) ≤ 𝑀)) → ((abs‘𝑧)↑𝑘) ≤ (𝑀𝑘))
148139, 140, 129, 141, 146, 147syl32anc 1497 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((abs‘𝑧)↑𝑘) ≤ (𝑀𝑘))
149128, 129absexpd 14490 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑧𝑘)) = ((abs‘𝑧)↑𝑘))
150132, 129absexpd 14490 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑀𝑘)) = ((abs‘𝑀)↑𝑘))
151 absid 14335 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → (abs‘𝑀) = 𝑀)
1524, 151sylan 575 . . . . . . . . . . . 12 ((𝜑 ∧ 0 ≤ 𝑀) → (abs‘𝑀) = 𝑀)
153152adantr 472 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘𝑀) = 𝑀)
154153oveq1d 6861 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((abs‘𝑀)↑𝑘) = (𝑀𝑘))
155150, 154eqtrd 2799 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑀𝑘)) = (𝑀𝑘))
156148, 149, 1553brtr4d 4843 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑧𝑘)) ≤ (abs‘(𝑀𝑘)))
157131, 134, 137, 138, 156lemul2ad 11222 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((abs‘(𝐴𝑘)) · (abs‘(𝑧𝑘))) ≤ ((abs‘(𝐴𝑘)) · (abs‘(𝑀𝑘))))
158136, 130absmuld 14492 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘((𝐴𝑘) · (𝑧𝑘))) = ((abs‘(𝐴𝑘)) · (abs‘(𝑧𝑘))))
159136, 133absmuld 14492 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘((𝐴𝑘) · (𝑀𝑘))) = ((abs‘(𝐴𝑘)) · (abs‘(𝑀𝑘))))
160157, 158, 1593brtr4d 4843 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘((𝐴𝑘) · (𝑧𝑘))) ≤ (abs‘((𝐴𝑘) · (𝑀𝑘))))
16135ad2antrr 717 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑆 ∈ V)
162161, 77syl 17 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)) ∈ V)
163129, 162, 86syl2anc 579 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)))
164163fveq1d 6381 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘)‘𝑧) = ((𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘))‘𝑧))
165 fveq2 6379 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝐺𝑦) = (𝐺𝑧))
166165fveq1d 6381 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝐺𝑦)‘𝑘) = ((𝐺𝑧)‘𝑘))
167 eqid 2765 . . . . . . . . . 10 (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘))
168 fvex 6392 . . . . . . . . . 10 ((𝐺𝑧)‘𝑘) ∈ V
169166, 167, 168fvmpt 6475 . . . . . . . . 9 (𝑧𝑆 → ((𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘))‘𝑧) = ((𝐺𝑧)‘𝑘))
170169ad2antll 720 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘))‘𝑧) = ((𝐺𝑧)‘𝑘))
17118pserval2 24470 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑧)‘𝑘) = ((𝐴𝑘) · (𝑧𝑘)))
172128, 129, 171syl2anc 579 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((𝐺𝑧)‘𝑘) = ((𝐴𝑘) · (𝑧𝑘)))
173164, 170, 1723eqtrd 2803 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘)‘𝑧) = ((𝐴𝑘) · (𝑧𝑘)))
174173fveq2d 6383 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘)‘𝑧)) = (abs‘((𝐴𝑘) · (𝑧𝑘))))
175122adantr 472 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (𝐺𝑀):ℕ0⟶ℂ)
176 fvco3 6468 . . . . . . . 8 (((𝐺𝑀):ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑀))‘𝑘) = (abs‘((𝐺𝑀)‘𝑘)))
177175, 129, 176syl2anc 579 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((abs ∘ (𝐺𝑀))‘𝑘) = (abs‘((𝐺𝑀)‘𝑘)))
17818pserval2 24470 . . . . . . . . 9 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑀)‘𝑘) = ((𝐴𝑘) · (𝑀𝑘)))
179132, 129, 178syl2anc 579 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((𝐺𝑀)‘𝑘) = ((𝐴𝑘) · (𝑀𝑘)))
180179fveq2d 6383 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘((𝐺𝑀)‘𝑘)) = (abs‘((𝐴𝑘) · (𝑀𝑘))))
181177, 180eqtrd 2799 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((abs ∘ (𝐺𝑀))‘𝑘) = (abs‘((𝐴𝑘) · (𝑀𝑘))))
182160, 174, 1813brtr4d 4843 . . . . 5 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘)‘𝑧)) ≤ ((abs ∘ (𝐺𝑀))‘𝑘))
18363adantr 472 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝑀) → 𝑀 < 𝑅)
184152, 183eqbrtrd 4833 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝑀) → (abs‘𝑀) < 𝑅)
185 id 22 . . . . . . . . 9 (𝑖 = 𝑚𝑖 = 𝑚)
186 2fveq3 6384 . . . . . . . . 9 (𝑖 = 𝑚 → (abs‘((𝐺𝑀)‘𝑖)) = (abs‘((𝐺𝑀)‘𝑚)))
187185, 186oveq12d 6864 . . . . . . . 8 (𝑖 = 𝑚 → (𝑖 · (abs‘((𝐺𝑀)‘𝑖))) = (𝑚 · (abs‘((𝐺𝑀)‘𝑚))))
188187cbvmptv 4911 . . . . . . 7 (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑀)‘𝑖)))) = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑀)‘𝑚))))
18918, 119, 43, 121, 184, 188radcnvlt1 24477 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝑀) → (seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑀)‘𝑖))))) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺𝑀))) ∈ dom ⇝ ))
190189simprd 489 . . . . 5 ((𝜑 ∧ 0 ≤ 𝑀) → seq0( + , (abs ∘ (𝐺𝑀))) ∈ dom ⇝ )
19115, 100, 101, 113, 118, 125, 182, 190mtest 24463 . . . 4 ((𝜑 ∧ 0 ≤ 𝑀) → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) ∈ dom (⇝𝑢𝑆))
19299, 191eqeltrd 2844 . . 3 ((𝜑 ∧ 0 ≤ 𝑀) → 𝐻 ∈ dom (⇝𝑢𝑆))
193 eldmg 5489 . . . . . 6 (𝐻 ∈ dom (⇝𝑢𝑆) → (𝐻 ∈ dom (⇝𝑢𝑆) ↔ ∃𝑓 𝐻(⇝𝑢𝑆)𝑓))
194193ibi 258 . . . . 5 (𝐻 ∈ dom (⇝𝑢𝑆) → ∃𝑓 𝐻(⇝𝑢𝑆)𝑓)
195 simpr 477 . . . . . . . 8 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝐻(⇝𝑢𝑆)𝑓)
196 ulmcl 24440 . . . . . . . . . . 11 (𝐻(⇝𝑢𝑆)𝑓𝑓:𝑆⟶ℂ)
197196adantl 473 . . . . . . . . . 10 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝑓:𝑆⟶ℂ)
198197feqmptd 6442 . . . . . . . . 9 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝑓 = (𝑦𝑆 ↦ (𝑓𝑦)))
199 0zd 11640 . . . . . . . . . . . 12 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → 0 ∈ ℤ)
200 eqidd 2766 . . . . . . . . . . . 12 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑦)‘𝑗) = ((𝐺𝑦)‘𝑗))
20127adantlr 706 . . . . . . . . . . . . 13 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → (𝐺𝑦):ℕ0⟶ℂ)
202201ffvelrnda 6553 . . . . . . . . . . . 12 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑦)‘𝑗) ∈ ℂ)
20341ad2antrr 717 . . . . . . . . . . . . 13 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → 𝐻:ℕ0⟶(ℂ ↑𝑚 𝑆))
204 simpr 477 . . . . . . . . . . . . 13 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → 𝑦𝑆)
205 seqex 13015 . . . . . . . . . . . . . 14 seq0( + , (𝐺𝑦)) ∈ V
206205a1i 11 . . . . . . . . . . . . 13 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → seq0( + , (𝐺𝑦)) ∈ V)
207 simpr 477 . . . . . . . . . . . . . . . 16 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
20835ad3antrrr 721 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑆 ∈ V)
209 mptexg 6681 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ V → (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ V)
210208, 209syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ V)
21140fvmpt2 6484 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℕ0 ∧ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ V) → (𝐻𝑖) = (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
212207, 210, 211syl2anc 579 . . . . . . . . . . . . . . 15 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → (𝐻𝑖) = (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
213212fveq1d 6381 . . . . . . . . . . . . . 14 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝐻𝑖)‘𝑦) = ((𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖))‘𝑦))
214 simplr 785 . . . . . . . . . . . . . . 15 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑦𝑆)
215 fvex 6392 . . . . . . . . . . . . . . 15 (seq0( + , (𝐺𝑦))‘𝑖) ∈ V
216 eqid 2765 . . . . . . . . . . . . . . . 16 (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) = (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖))
217216fvmpt2 6484 . . . . . . . . . . . . . . 15 ((𝑦𝑆 ∧ (seq0( + , (𝐺𝑦))‘𝑖) ∈ V) → ((𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖))‘𝑦) = (seq0( + , (𝐺𝑦))‘𝑖))
218214, 215, 217sylancl 580 . . . . . . . . . . . . . 14 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖))‘𝑦) = (seq0( + , (𝐺𝑦))‘𝑖))
219213, 218eqtrd 2799 . . . . . . . . . . . . 13 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝐻𝑖)‘𝑦) = (seq0( + , (𝐺𝑦))‘𝑖))
220 simplr 785 . . . . . . . . . . . . 13 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → 𝐻(⇝𝑢𝑆)𝑓)
22115, 199, 203, 204, 206, 219, 220ulmclm 24446 . . . . . . . . . . . 12 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → seq0( + , (𝐺𝑦)) ⇝ (𝑓𝑦))
22215, 199, 200, 202, 221isumclim 14787 . . . . . . . . . . 11 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗) = (𝑓𝑦))
223222mpteq2dva 4905 . . . . . . . . . 10 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)) = (𝑦𝑆 ↦ (𝑓𝑦)))
22468, 223syl5eq 2811 . . . . . . . . 9 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝐹 = (𝑦𝑆 ↦ (𝑓𝑦)))
225198, 224eqtr4d 2802 . . . . . . . 8 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝑓 = 𝐹)
226195, 225breqtrd 4837 . . . . . . 7 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝐻(⇝𝑢𝑆)𝐹)
227226ex 401 . . . . . 6 (𝜑 → (𝐻(⇝𝑢𝑆)𝑓𝐻(⇝𝑢𝑆)𝐹))
228227exlimdv 2028 . . . . 5 (𝜑 → (∃𝑓 𝐻(⇝𝑢𝑆)𝑓𝐻(⇝𝑢𝑆)𝐹))
229194, 228syl5 34 . . . 4 (𝜑 → (𝐻 ∈ dom (⇝𝑢𝑆) → 𝐻(⇝𝑢𝑆)𝐹))
230229imp 395 . . 3 ((𝜑𝐻 ∈ dom (⇝𝑢𝑆)) → 𝐻(⇝𝑢𝑆)𝐹)
231192, 230syldan 585 . 2 ((𝜑 ∧ 0 ≤ 𝑀) → 𝐻(⇝𝑢𝑆)𝐹)
232 0red 10301 . 2 (𝜑 → 0 ∈ ℝ)
23371, 231, 4, 232ltlecasei 10403 1 (𝜑𝐻(⇝𝑢𝑆)𝐹)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 197   ∧ wa 384   ∧ w3a 1107   = wceq 1652  ∃wex 1874   ∈ wcel 2155  ∀wral 3055  {crab 3059  Vcvv 3350   ⊆ wss 3734  ∅c0 4081   class class class wbr 4811   ↦ cmpt 4890  ◡ccnv 5278  dom cdm 5279   “ cima 5282   ∘ ccom 5283   Fn wfn 6065  ⟶wf 6066  ‘cfv 6070  (class class class)co 6846   ∘𝑓 cof 7097   ↑𝑚 cmap 8064  supcsup 8557  ℂcc 10191  ℝcr 10192  0cc0 10193   + caddc 10196   · cmul 10198  +∞cpnf 10329  ℝ*cxr 10331   < clt 10332   ≤ cle 10333  ℕ0cn0 11542  ℤcz 11628  ℤ≥cuz 11891  [,]cicc 12385  ...cfz 12538  seqcseq 13013  ↑cexp 13072  abscabs 14273   ⇝ cli 14514  Σcsu 14715  ⇝𝑢culm 24435 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271  ax-addf 10272  ax-mulf 10273 This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-of 7099  df-om 7268  df-1st 7370  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-oadd 7772  df-er 7951  df-map 8066  df-pm 8067  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-sup 8559  df-inf 8560  df-oi 8626  df-card 9020  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-nn 11279  df-2 11339  df-3 11340  df-n0 11543  df-z 11629  df-uz 11892  df-rp 12034  df-ico 12388  df-icc 12389  df-fz 12539  df-fzo 12679  df-fl 12806  df-seq 13014  df-exp 13073  df-hash 13327  df-cj 14138  df-re 14139  df-im 14140  df-sqrt 14274  df-abs 14275  df-limsup 14501  df-clim 14518  df-rlim 14519  df-sum 14716  df-ulm 24436 This theorem is referenced by:  psercn2  24482  pserdvlem2  24487
 Copyright terms: Public domain W3C validator