MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserulm Structured version   Visualization version   GIF version

Theorem pserulm 25017
Description: If 𝑆 is a region contained in a circle of radius 𝑀 < 𝑅, then the sequence of partial sums of the infinite series converges uniformly on 𝑆. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
pserulm.h 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
pserulm.m (𝜑𝑀 ∈ ℝ)
pserulm.l (𝜑𝑀 < 𝑅)
pserulm.y (𝜑𝑆 ⊆ (abs “ (0[,]𝑀)))
Assertion
Ref Expression
pserulm (𝜑𝐻(⇝𝑢𝑆)𝐹)
Distinct variable groups:   𝑗,𝑛,𝑟,𝑥,𝑦,𝐴   𝑖,𝑗,𝑦,𝐻   𝑖,𝑀,𝑗,𝑦   𝑥,𝑖,𝑟   𝑖,𝐺,𝑗,𝑟,𝑦   𝑆,𝑖,𝑗,𝑦   𝜑,𝑖,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑖)   𝑅(𝑥,𝑦,𝑖,𝑗,𝑛,𝑟)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑖,𝑗,𝑛,𝑟)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑛,𝑟)   𝑀(𝑥,𝑛,𝑟)

Proof of Theorem pserulm
Dummy variables 𝑘 𝑚 𝑤 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pserulm.y . . . . . 6 (𝜑𝑆 ⊆ (abs “ (0[,]𝑀)))
21adantr 484 . . . . 5 ((𝜑𝑀 < 0) → 𝑆 ⊆ (abs “ (0[,]𝑀)))
3 0xr 10677 . . . . . . . . 9 0 ∈ ℝ*
4 pserulm.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
54rexrd 10680 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ*)
6 icc0 12774 . . . . . . . . 9 ((0 ∈ ℝ*𝑀 ∈ ℝ*) → ((0[,]𝑀) = ∅ ↔ 𝑀 < 0))
73, 5, 6sylancr 590 . . . . . . . 8 (𝜑 → ((0[,]𝑀) = ∅ ↔ 𝑀 < 0))
87biimpar 481 . . . . . . 7 ((𝜑𝑀 < 0) → (0[,]𝑀) = ∅)
98imaeq2d 5896 . . . . . 6 ((𝜑𝑀 < 0) → (abs “ (0[,]𝑀)) = (abs “ ∅))
10 ima0 5912 . . . . . 6 (abs “ ∅) = ∅
119, 10eqtrdi 2849 . . . . 5 ((𝜑𝑀 < 0) → (abs “ (0[,]𝑀)) = ∅)
122, 11sseqtrd 3955 . . . 4 ((𝜑𝑀 < 0) → 𝑆 ⊆ ∅)
13 ss0 4306 . . . 4 (𝑆 ⊆ ∅ → 𝑆 = ∅)
1412, 13syl 17 . . 3 ((𝜑𝑀 < 0) → 𝑆 = ∅)
15 nn0uz 12268 . . . 4 0 = (ℤ‘0)
16 0zd 11981 . . . 4 (𝜑 → 0 ∈ ℤ)
17 0zd 11981 . . . . . . . . . 10 ((𝜑𝑦𝑆) → 0 ∈ ℤ)
18 pserf.g . . . . . . . . . . . 12 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
19 pserf.a . . . . . . . . . . . . 13 (𝜑𝐴:ℕ0⟶ℂ)
2019adantr 484 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → 𝐴:ℕ0⟶ℂ)
21 cnvimass 5916 . . . . . . . . . . . . . . 15 (abs “ (0[,]𝑀)) ⊆ dom abs
22 absf 14689 . . . . . . . . . . . . . . . 16 abs:ℂ⟶ℝ
2322fdmi 6498 . . . . . . . . . . . . . . 15 dom abs = ℂ
2421, 23sseqtri 3951 . . . . . . . . . . . . . 14 (abs “ (0[,]𝑀)) ⊆ ℂ
251, 24sstrdi 3927 . . . . . . . . . . . . 13 (𝜑𝑆 ⊆ ℂ)
2625sselda 3915 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → 𝑦 ∈ ℂ)
2718, 20, 26psergf 25007 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → (𝐺𝑦):ℕ0⟶ℂ)
2827ffvelrnda 6828 . . . . . . . . . 10 (((𝜑𝑦𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑦)‘𝑗) ∈ ℂ)
2915, 17, 28serf 13394 . . . . . . . . 9 ((𝜑𝑦𝑆) → seq0( + , (𝐺𝑦)):ℕ0⟶ℂ)
3029ffvelrnda 6828 . . . . . . . 8 (((𝜑𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → (seq0( + , (𝐺𝑦))‘𝑖) ∈ ℂ)
3130an32s 651 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑦𝑆) → (seq0( + , (𝐺𝑦))‘𝑖) ∈ ℂ)
3231fmpttd 6856 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)):𝑆⟶ℂ)
33 cnex 10607 . . . . . . 7 ℂ ∈ V
34 ssexg 5191 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
3525, 33, 34sylancl 589 . . . . . . . 8 (𝜑𝑆 ∈ V)
3635adantr 484 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → 𝑆 ∈ V)
37 elmapg 8402 . . . . . . 7 ((ℂ ∈ V ∧ 𝑆 ∈ V) → ((𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ (ℂ ↑m 𝑆) ↔ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)):𝑆⟶ℂ))
3833, 36, 37sylancr 590 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → ((𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ (ℂ ↑m 𝑆) ↔ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)):𝑆⟶ℂ))
3932, 38mpbird 260 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ (ℂ ↑m 𝑆))
40 pserulm.h . . . . 5 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
4139, 40fmptd 6855 . . . 4 (𝜑𝐻:ℕ0⟶(ℂ ↑m 𝑆))
42 eqidd 2799 . . . . . 6 (((𝜑𝑦𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑦)‘𝑗) = ((𝐺𝑦)‘𝑗))
43 pserf.r . . . . . . 7 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
441sselda 3915 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → 𝑦 ∈ (abs “ (0[,]𝑀)))
45 ffn 6487 . . . . . . . . . . . . . 14 (abs:ℂ⟶ℝ → abs Fn ℂ)
46 elpreima 6805 . . . . . . . . . . . . . 14 (abs Fn ℂ → (𝑦 ∈ (abs “ (0[,]𝑀)) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,]𝑀))))
4722, 45, 46mp2b 10 . . . . . . . . . . . . 13 (𝑦 ∈ (abs “ (0[,]𝑀)) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,]𝑀)))
4844, 47sylib 221 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,]𝑀)))
4948simprd 499 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → (abs‘𝑦) ∈ (0[,]𝑀))
50 0re 10632 . . . . . . . . . . . 12 0 ∈ ℝ
514adantr 484 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → 𝑀 ∈ ℝ)
52 elicc2 12790 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((abs‘𝑦) ∈ (0[,]𝑀) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) ≤ 𝑀)))
5350, 51, 52sylancr 590 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → ((abs‘𝑦) ∈ (0[,]𝑀) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) ≤ 𝑀)))
5449, 53mpbid 235 . . . . . . . . . 10 ((𝜑𝑦𝑆) → ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) ≤ 𝑀))
5554simp1d 1139 . . . . . . . . 9 ((𝜑𝑦𝑆) → (abs‘𝑦) ∈ ℝ)
5655rexrd 10680 . . . . . . . 8 ((𝜑𝑦𝑆) → (abs‘𝑦) ∈ ℝ*)
575adantr 484 . . . . . . . 8 ((𝜑𝑦𝑆) → 𝑀 ∈ ℝ*)
58 iccssxr 12808 . . . . . . . . . 10 (0[,]+∞) ⊆ ℝ*
5918, 19, 43radcnvcl 25012 . . . . . . . . . 10 (𝜑𝑅 ∈ (0[,]+∞))
6058, 59sseldi 3913 . . . . . . . . 9 (𝜑𝑅 ∈ ℝ*)
6160adantr 484 . . . . . . . 8 ((𝜑𝑦𝑆) → 𝑅 ∈ ℝ*)
6254simp3d 1141 . . . . . . . 8 ((𝜑𝑦𝑆) → (abs‘𝑦) ≤ 𝑀)
63 pserulm.l . . . . . . . . 9 (𝜑𝑀 < 𝑅)
6463adantr 484 . . . . . . . 8 ((𝜑𝑦𝑆) → 𝑀 < 𝑅)
6556, 57, 61, 62, 64xrlelttrd 12541 . . . . . . 7 ((𝜑𝑦𝑆) → (abs‘𝑦) < 𝑅)
6618, 20, 43, 26, 65radcnvlt2 25014 . . . . . 6 ((𝜑𝑦𝑆) → seq0( + , (𝐺𝑦)) ∈ dom ⇝ )
6715, 17, 42, 28, 66isumcl 15108 . . . . 5 ((𝜑𝑦𝑆) → Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗) ∈ ℂ)
68 pserf.f . . . . 5 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
6967, 68fmptd 6855 . . . 4 (𝜑𝐹:𝑆⟶ℂ)
7015, 16, 41, 69ulm0 24986 . . 3 ((𝜑𝑆 = ∅) → 𝐻(⇝𝑢𝑆)𝐹)
7114, 70syldan 594 . 2 ((𝜑𝑀 < 0) → 𝐻(⇝𝑢𝑆)𝐹)
72 simpr 488 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
7372, 15eleqtrdi 2900 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ (ℤ‘0))
74 eqid 2798 . . . . . . . . . 10 (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))
75 fveq2 6645 . . . . . . . . . . . . 13 (𝑤 = 𝑦 → (𝐺𝑤) = (𝐺𝑦))
7675fveq1d 6647 . . . . . . . . . . . 12 (𝑤 = 𝑦 → ((𝐺𝑤)‘𝑚) = ((𝐺𝑦)‘𝑚))
7776cbvmptv 5133 . . . . . . . . . . 11 (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑚))
78 fveq2 6645 . . . . . . . . . . . 12 (𝑚 = 𝑘 → ((𝐺𝑦)‘𝑚) = ((𝐺𝑦)‘𝑘))
7978mpteq2dv 5126 . . . . . . . . . . 11 (𝑚 = 𝑘 → (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑚)) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)))
8077, 79syl5eq 2845 . . . . . . . . . 10 (𝑚 = 𝑘 → (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)))
81 elfznn0 12995 . . . . . . . . . . 11 (𝑘 ∈ (0...𝑖) → 𝑘 ∈ ℕ0)
8281adantl 485 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℕ0)
8335ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → 𝑆 ∈ V)
8483mptexd 6964 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)) ∈ V)
8574, 80, 82, 84fvmptd3 6768 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)))
8636, 73, 85seqof 13423 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))))‘𝑖) = (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
8786eqcomd 2804 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) = (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))))‘𝑖))
8887mpteq2dva 5125 . . . . . 6 (𝜑 → (𝑖 ∈ ℕ0 ↦ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖))) = (𝑖 ∈ ℕ0 ↦ (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))))‘𝑖)))
89 0z 11980 . . . . . . . . 9 0 ∈ ℤ
90 seqfn 13376 . . . . . . . . 9 (0 ∈ ℤ → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn (ℤ‘0))
9189, 90ax-mp 5 . . . . . . . 8 seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn (ℤ‘0)
9215fneq2i 6421 . . . . . . . 8 (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn ℕ0 ↔ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn (ℤ‘0))
9391, 92mpbir 234 . . . . . . 7 seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn ℕ0
94 dffn5 6699 . . . . . . 7 (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn ℕ0 ↔ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) = (𝑖 ∈ ℕ0 ↦ (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))))‘𝑖)))
9593, 94mpbi 233 . . . . . 6 seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) = (𝑖 ∈ ℕ0 ↦ (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))))‘𝑖))
9688, 40, 953eqtr4g 2858 . . . . 5 (𝜑𝐻 = seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))))
9796adantr 484 . . . 4 ((𝜑 ∧ 0 ≤ 𝑀) → 𝐻 = seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))))
98 0zd 11981 . . . . 5 ((𝜑 ∧ 0 ≤ 𝑀) → 0 ∈ ℤ)
9935adantr 484 . . . . 5 ((𝜑 ∧ 0 ≤ 𝑀) → 𝑆 ∈ V)
10019adantr 484 . . . . . . . . . . . 12 ((𝜑𝑤𝑆) → 𝐴:ℕ0⟶ℂ)
10125sselda 3915 . . . . . . . . . . . 12 ((𝜑𝑤𝑆) → 𝑤 ∈ ℂ)
10218, 100, 101psergf 25007 . . . . . . . . . . 11 ((𝜑𝑤𝑆) → (𝐺𝑤):ℕ0⟶ℂ)
103102ffvelrnda 6828 . . . . . . . . . 10 (((𝜑𝑤𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝐺𝑤)‘𝑚) ∈ ℂ)
104103an32s 651 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑤𝑆) → ((𝐺𝑤)‘𝑚) ∈ ℂ)
105104fmpttd 6856 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)):𝑆⟶ℂ)
10635adantr 484 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → 𝑆 ∈ V)
107 elmapg 8402 . . . . . . . . 9 ((ℂ ∈ V ∧ 𝑆 ∈ V) → ((𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)) ∈ (ℂ ↑m 𝑆) ↔ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)):𝑆⟶ℂ))
10833, 106, 107sylancr 590 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → ((𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)) ∈ (ℂ ↑m 𝑆) ↔ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)):𝑆⟶ℂ))
109105, 108mpbird 260 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)) ∈ (ℂ ↑m 𝑆))
110109fmpttd 6856 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))):ℕ0⟶(ℂ ↑m 𝑆))
111110adantr 484 . . . . 5 ((𝜑 ∧ 0 ≤ 𝑀) → (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))):ℕ0⟶(ℂ ↑m 𝑆))
112 fex 6966 . . . . . . . 8 ((abs:ℂ⟶ℝ ∧ ℂ ∈ V) → abs ∈ V)
11322, 33, 112mp2an 691 . . . . . . 7 abs ∈ V
114 fvex 6658 . . . . . . 7 (𝐺𝑀) ∈ V
115113, 114coex 7617 . . . . . 6 (abs ∘ (𝐺𝑀)) ∈ V
116115a1i 11 . . . . 5 ((𝜑 ∧ 0 ≤ 𝑀) → (abs ∘ (𝐺𝑀)) ∈ V)
11719adantr 484 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝑀) → 𝐴:ℕ0⟶ℂ)
1184adantr 484 . . . . . . . . 9 ((𝜑 ∧ 0 ≤ 𝑀) → 𝑀 ∈ ℝ)
119118recnd 10658 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝑀) → 𝑀 ∈ ℂ)
12018, 117, 119psergf 25007 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝑀) → (𝐺𝑀):ℕ0⟶ℂ)
121 fco 6505 . . . . . . 7 ((abs:ℂ⟶ℝ ∧ (𝐺𝑀):ℕ0⟶ℂ) → (abs ∘ (𝐺𝑀)):ℕ0⟶ℝ)
12222, 120, 121sylancr 590 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝑀) → (abs ∘ (𝐺𝑀)):ℕ0⟶ℝ)
123122ffvelrnda 6828 . . . . 5 (((𝜑 ∧ 0 ≤ 𝑀) ∧ 𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑀))‘𝑘) ∈ ℝ)
12425ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑆 ⊆ ℂ)
125 simprr 772 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑧𝑆)
126124, 125sseldd 3916 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑧 ∈ ℂ)
127 simprl 770 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑘 ∈ ℕ0)
128126, 127expcld 13506 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (𝑧𝑘) ∈ ℂ)
129128abscld 14788 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑧𝑘)) ∈ ℝ)
130119adantr 484 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑀 ∈ ℂ)
131130, 127expcld 13506 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (𝑀𝑘) ∈ ℂ)
132131abscld 14788 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑀𝑘)) ∈ ℝ)
13319ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝐴:ℕ0⟶ℂ)
134133, 127ffvelrnd 6829 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (𝐴𝑘) ∈ ℂ)
135134abscld 14788 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝐴𝑘)) ∈ ℝ)
136134absge0d 14796 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 0 ≤ (abs‘(𝐴𝑘)))
137126abscld 14788 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘𝑧) ∈ ℝ)
1384ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑀 ∈ ℝ)
139126absge0d 14796 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 0 ≤ (abs‘𝑧))
140 fveq2 6645 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (abs‘𝑦) = (abs‘𝑧))
141140breq1d 5040 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((abs‘𝑦) ≤ 𝑀 ↔ (abs‘𝑧) ≤ 𝑀))
14262ralrimiva 3149 . . . . . . . . . . . 12 (𝜑 → ∀𝑦𝑆 (abs‘𝑦) ≤ 𝑀)
143142ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ∀𝑦𝑆 (abs‘𝑦) ≤ 𝑀)
144141, 143, 125rspcdva 3573 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘𝑧) ≤ 𝑀)
145 leexp1a 13535 . . . . . . . . . 10 ((((abs‘𝑧) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (0 ≤ (abs‘𝑧) ∧ (abs‘𝑧) ≤ 𝑀)) → ((abs‘𝑧)↑𝑘) ≤ (𝑀𝑘))
146137, 138, 127, 139, 144, 145syl32anc 1375 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((abs‘𝑧)↑𝑘) ≤ (𝑀𝑘))
147126, 127absexpd 14804 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑧𝑘)) = ((abs‘𝑧)↑𝑘))
148130, 127absexpd 14804 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑀𝑘)) = ((abs‘𝑀)↑𝑘))
149 absid 14648 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → (abs‘𝑀) = 𝑀)
1504, 149sylan 583 . . . . . . . . . . . 12 ((𝜑 ∧ 0 ≤ 𝑀) → (abs‘𝑀) = 𝑀)
151150adantr 484 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘𝑀) = 𝑀)
152151oveq1d 7150 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((abs‘𝑀)↑𝑘) = (𝑀𝑘))
153148, 152eqtrd 2833 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑀𝑘)) = (𝑀𝑘))
154146, 147, 1533brtr4d 5062 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑧𝑘)) ≤ (abs‘(𝑀𝑘)))
155129, 132, 135, 136, 154lemul2ad 11569 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((abs‘(𝐴𝑘)) · (abs‘(𝑧𝑘))) ≤ ((abs‘(𝐴𝑘)) · (abs‘(𝑀𝑘))))
156134, 128absmuld 14806 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘((𝐴𝑘) · (𝑧𝑘))) = ((abs‘(𝐴𝑘)) · (abs‘(𝑧𝑘))))
157134, 131absmuld 14806 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘((𝐴𝑘) · (𝑀𝑘))) = ((abs‘(𝐴𝑘)) · (abs‘(𝑀𝑘))))
158155, 156, 1573brtr4d 5062 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘((𝐴𝑘) · (𝑧𝑘))) ≤ (abs‘((𝐴𝑘) · (𝑀𝑘))))
15935ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑆 ∈ V)
160159mptexd 6964 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)) ∈ V)
16174, 80, 127, 160fvmptd3 6768 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)))
162161fveq1d 6647 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘)‘𝑧) = ((𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘))‘𝑧))
163 fveq2 6645 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝐺𝑦) = (𝐺𝑧))
164163fveq1d 6647 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝐺𝑦)‘𝑘) = ((𝐺𝑧)‘𝑘))
165 eqid 2798 . . . . . . . . . 10 (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘))
166 fvex 6658 . . . . . . . . . 10 ((𝐺𝑧)‘𝑘) ∈ V
167164, 165, 166fvmpt 6745 . . . . . . . . 9 (𝑧𝑆 → ((𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘))‘𝑧) = ((𝐺𝑧)‘𝑘))
168167ad2antll 728 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘))‘𝑧) = ((𝐺𝑧)‘𝑘))
16918pserval2 25006 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑧)‘𝑘) = ((𝐴𝑘) · (𝑧𝑘)))
170126, 127, 169syl2anc 587 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((𝐺𝑧)‘𝑘) = ((𝐴𝑘) · (𝑧𝑘)))
171162, 168, 1703eqtrd 2837 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘)‘𝑧) = ((𝐴𝑘) · (𝑧𝑘)))
172171fveq2d 6649 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘)‘𝑧)) = (abs‘((𝐴𝑘) · (𝑧𝑘))))
173120adantr 484 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (𝐺𝑀):ℕ0⟶ℂ)
174 fvco3 6737 . . . . . . . 8 (((𝐺𝑀):ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑀))‘𝑘) = (abs‘((𝐺𝑀)‘𝑘)))
175173, 127, 174syl2anc 587 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((abs ∘ (𝐺𝑀))‘𝑘) = (abs‘((𝐺𝑀)‘𝑘)))
17618pserval2 25006 . . . . . . . . 9 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑀)‘𝑘) = ((𝐴𝑘) · (𝑀𝑘)))
177130, 127, 176syl2anc 587 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((𝐺𝑀)‘𝑘) = ((𝐴𝑘) · (𝑀𝑘)))
178177fveq2d 6649 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘((𝐺𝑀)‘𝑘)) = (abs‘((𝐴𝑘) · (𝑀𝑘))))
179175, 178eqtrd 2833 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((abs ∘ (𝐺𝑀))‘𝑘) = (abs‘((𝐴𝑘) · (𝑀𝑘))))
180158, 172, 1793brtr4d 5062 . . . . 5 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘)‘𝑧)) ≤ ((abs ∘ (𝐺𝑀))‘𝑘))
18163adantr 484 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝑀) → 𝑀 < 𝑅)
182150, 181eqbrtrd 5052 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝑀) → (abs‘𝑀) < 𝑅)
183 id 22 . . . . . . . . 9 (𝑖 = 𝑚𝑖 = 𝑚)
184 2fveq3 6650 . . . . . . . . 9 (𝑖 = 𝑚 → (abs‘((𝐺𝑀)‘𝑖)) = (abs‘((𝐺𝑀)‘𝑚)))
185183, 184oveq12d 7153 . . . . . . . 8 (𝑖 = 𝑚 → (𝑖 · (abs‘((𝐺𝑀)‘𝑖))) = (𝑚 · (abs‘((𝐺𝑀)‘𝑚))))
186185cbvmptv 5133 . . . . . . 7 (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑀)‘𝑖)))) = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑀)‘𝑚))))
18718, 117, 43, 119, 182, 186radcnvlt1 25013 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝑀) → (seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑀)‘𝑖))))) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺𝑀))) ∈ dom ⇝ ))
188187simprd 499 . . . . 5 ((𝜑 ∧ 0 ≤ 𝑀) → seq0( + , (abs ∘ (𝐺𝑀))) ∈ dom ⇝ )
18915, 98, 99, 111, 116, 123, 180, 188mtest 24999 . . . 4 ((𝜑 ∧ 0 ≤ 𝑀) → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) ∈ dom (⇝𝑢𝑆))
19097, 189eqeltrd 2890 . . 3 ((𝜑 ∧ 0 ≤ 𝑀) → 𝐻 ∈ dom (⇝𝑢𝑆))
191 simpr 488 . . . . . . 7 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝐻(⇝𝑢𝑆)𝑓)
192 ulmcl 24976 . . . . . . . . . 10 (𝐻(⇝𝑢𝑆)𝑓𝑓:𝑆⟶ℂ)
193192adantl 485 . . . . . . . . 9 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝑓:𝑆⟶ℂ)
194193feqmptd 6708 . . . . . . . 8 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝑓 = (𝑦𝑆 ↦ (𝑓𝑦)))
195 0zd 11981 . . . . . . . . . . 11 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → 0 ∈ ℤ)
196 eqidd 2799 . . . . . . . . . . 11 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑦)‘𝑗) = ((𝐺𝑦)‘𝑗))
19727adantlr 714 . . . . . . . . . . . 12 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → (𝐺𝑦):ℕ0⟶ℂ)
198197ffvelrnda 6828 . . . . . . . . . . 11 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑦)‘𝑗) ∈ ℂ)
19941ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → 𝐻:ℕ0⟶(ℂ ↑m 𝑆))
200 simpr 488 . . . . . . . . . . . 12 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → 𝑦𝑆)
201 seqex 13366 . . . . . . . . . . . . 13 seq0( + , (𝐺𝑦)) ∈ V
202201a1i 11 . . . . . . . . . . . 12 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → seq0( + , (𝐺𝑦)) ∈ V)
203 simpr 488 . . . . . . . . . . . . . . 15 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
20435ad3antrrr 729 . . . . . . . . . . . . . . . 16 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑆 ∈ V)
205204mptexd 6964 . . . . . . . . . . . . . . 15 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ V)
20640fvmpt2 6756 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ℕ0 ∧ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ V) → (𝐻𝑖) = (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
207203, 205, 206syl2anc 587 . . . . . . . . . . . . . 14 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → (𝐻𝑖) = (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
208207fveq1d 6647 . . . . . . . . . . . . 13 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝐻𝑖)‘𝑦) = ((𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖))‘𝑦))
209 simplr 768 . . . . . . . . . . . . . 14 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑦𝑆)
210 fvex 6658 . . . . . . . . . . . . . 14 (seq0( + , (𝐺𝑦))‘𝑖) ∈ V
211 eqid 2798 . . . . . . . . . . . . . . 15 (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) = (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖))
212211fvmpt2 6756 . . . . . . . . . . . . . 14 ((𝑦𝑆 ∧ (seq0( + , (𝐺𝑦))‘𝑖) ∈ V) → ((𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖))‘𝑦) = (seq0( + , (𝐺𝑦))‘𝑖))
213209, 210, 212sylancl 589 . . . . . . . . . . . . 13 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖))‘𝑦) = (seq0( + , (𝐺𝑦))‘𝑖))
214208, 213eqtrd 2833 . . . . . . . . . . . 12 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝐻𝑖)‘𝑦) = (seq0( + , (𝐺𝑦))‘𝑖))
215 simplr 768 . . . . . . . . . . . 12 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → 𝐻(⇝𝑢𝑆)𝑓)
21615, 195, 199, 200, 202, 214, 215ulmclm 24982 . . . . . . . . . . 11 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → seq0( + , (𝐺𝑦)) ⇝ (𝑓𝑦))
21715, 195, 196, 198, 216isumclim 15104 . . . . . . . . . 10 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗) = (𝑓𝑦))
218217mpteq2dva 5125 . . . . . . . . 9 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)) = (𝑦𝑆 ↦ (𝑓𝑦)))
21968, 218syl5eq 2845 . . . . . . . 8 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝐹 = (𝑦𝑆 ↦ (𝑓𝑦)))
220194, 219eqtr4d 2836 . . . . . . 7 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝑓 = 𝐹)
221191, 220breqtrd 5056 . . . . . 6 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝐻(⇝𝑢𝑆)𝐹)
222221ex 416 . . . . 5 (𝜑 → (𝐻(⇝𝑢𝑆)𝑓𝐻(⇝𝑢𝑆)𝐹))
223222exlimdv 1934 . . . 4 (𝜑 → (∃𝑓 𝐻(⇝𝑢𝑆)𝑓𝐻(⇝𝑢𝑆)𝐹))
224 eldmg 5731 . . . . 5 (𝐻 ∈ dom (⇝𝑢𝑆) → (𝐻 ∈ dom (⇝𝑢𝑆) ↔ ∃𝑓 𝐻(⇝𝑢𝑆)𝑓))
225224ibi 270 . . . 4 (𝐻 ∈ dom (⇝𝑢𝑆) → ∃𝑓 𝐻(⇝𝑢𝑆)𝑓)
226223, 225impel 509 . . 3 ((𝜑𝐻 ∈ dom (⇝𝑢𝑆)) → 𝐻(⇝𝑢𝑆)𝐹)
227190, 226syldan 594 . 2 ((𝜑 ∧ 0 ≤ 𝑀) → 𝐻(⇝𝑢𝑆)𝐹)
228 0red 10633 . 2 (𝜑 → 0 ∈ ℝ)
22971, 227, 4, 228ltlecasei 10737 1 (𝜑𝐻(⇝𝑢𝑆)𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wral 3106  {crab 3110  Vcvv 3441  wss 3881  c0 4243   class class class wbr 5030  cmpt 5110  ccnv 5518  dom cdm 5519  cima 5522  ccom 5523   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  f cof 7387  m cmap 8389  supcsup 8888  cc 10524  cr 10525  0cc0 10526   + caddc 10529   · cmul 10531  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665  0cn0 11885  cz 11969  cuz 12231  [,]cicc 12729  ...cfz 12885  seqcseq 13364  cexp 13425  abscabs 14585  cli 14833  Σcsu 15034  𝑢culm 24971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ulm 24972
This theorem is referenced by:  psercn2  25018  pserdvlem2  25023
  Copyright terms: Public domain W3C validator