Step | Hyp | Ref
| Expression |
1 | | pserulm.y |
. . . . . 6
⊢ (𝜑 → 𝑆 ⊆ (◡abs “ (0[,]𝑀))) |
2 | 1 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 < 0) → 𝑆 ⊆ (◡abs “ (0[,]𝑀))) |
3 | | 0xr 11031 |
. . . . . . . . 9
⊢ 0 ∈
ℝ* |
4 | | pserulm.m |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℝ) |
5 | 4 | rexrd 11034 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈
ℝ*) |
6 | | icc0 13136 |
. . . . . . . . 9
⊢ ((0
∈ ℝ* ∧ 𝑀 ∈ ℝ*) →
((0[,]𝑀) = ∅ ↔
𝑀 < 0)) |
7 | 3, 5, 6 | sylancr 587 |
. . . . . . . 8
⊢ (𝜑 → ((0[,]𝑀) = ∅ ↔ 𝑀 < 0)) |
8 | 7 | biimpar 478 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 < 0) → (0[,]𝑀) = ∅) |
9 | 8 | imaeq2d 5972 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 < 0) → (◡abs “ (0[,]𝑀)) = (◡abs “ ∅)) |
10 | | ima0 5988 |
. . . . . 6
⊢ (◡abs “ ∅) =
∅ |
11 | 9, 10 | eqtrdi 2795 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 < 0) → (◡abs “ (0[,]𝑀)) = ∅) |
12 | 2, 11 | sseqtrd 3962 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 < 0) → 𝑆 ⊆ ∅) |
13 | | ss0 4333 |
. . . 4
⊢ (𝑆 ⊆ ∅ → 𝑆 = ∅) |
14 | 12, 13 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑀 < 0) → 𝑆 = ∅) |
15 | | nn0uz 12629 |
. . . 4
⊢
ℕ0 = (ℤ≥‘0) |
16 | | 0zd 12340 |
. . . 4
⊢ (𝜑 → 0 ∈
ℤ) |
17 | | 0zd 12340 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 0 ∈ ℤ) |
18 | | pserf.g |
. . . . . . . . . . . 12
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
19 | | pserf.a |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
20 | 19 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝐴:ℕ0⟶ℂ) |
21 | | cnvimass 5992 |
. . . . . . . . . . . . . . 15
⊢ (◡abs “ (0[,]𝑀)) ⊆ dom abs |
22 | | absf 15058 |
. . . . . . . . . . . . . . . 16
⊢
abs:ℂ⟶ℝ |
23 | 22 | fdmi 6621 |
. . . . . . . . . . . . . . 15
⊢ dom abs =
ℂ |
24 | 21, 23 | sseqtri 3958 |
. . . . . . . . . . . . . 14
⊢ (◡abs “ (0[,]𝑀)) ⊆ ℂ |
25 | 1, 24 | sstrdi 3934 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
26 | 25 | sselda 3922 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ ℂ) |
27 | 18, 20, 26 | psergf 25580 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝐺‘𝑦):ℕ0⟶ℂ) |
28 | 27 | ffvelrnda 6970 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝐺‘𝑦)‘𝑗) ∈ ℂ) |
29 | 15, 17, 28 | serf 13760 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → seq0( + , (𝐺‘𝑦)):ℕ0⟶ℂ) |
30 | 29 | ffvelrnda 6970 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → (seq0( +
, (𝐺‘𝑦))‘𝑖) ∈ ℂ) |
31 | 30 | an32s 649 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ 𝑆) → (seq0( + , (𝐺‘𝑦))‘𝑖) ∈ ℂ) |
32 | 31 | fmpttd 6998 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)):𝑆⟶ℂ) |
33 | | cnex 10961 |
. . . . . . 7
⊢ ℂ
∈ V |
34 | | ssexg 5248 |
. . . . . . . . 9
⊢ ((𝑆 ⊆ ℂ ∧ ℂ
∈ V) → 𝑆 ∈
V) |
35 | 25, 33, 34 | sylancl 586 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ V) |
36 | 35 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑆 ∈ V) |
37 | | elmapg 8637 |
. . . . . . 7
⊢ ((ℂ
∈ V ∧ 𝑆 ∈ V)
→ ((𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ∈ (ℂ ↑m 𝑆) ↔ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)):𝑆⟶ℂ)) |
38 | 33, 36, 37 | sylancr 587 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ∈ (ℂ ↑m 𝑆) ↔ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)):𝑆⟶ℂ)) |
39 | 32, 38 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ∈ (ℂ ↑m 𝑆)) |
40 | | pserulm.h |
. . . . 5
⊢ 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) |
41 | 39, 40 | fmptd 6997 |
. . . 4
⊢ (𝜑 → 𝐻:ℕ0⟶(ℂ
↑m 𝑆)) |
42 | | eqidd 2740 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝐺‘𝑦)‘𝑗) = ((𝐺‘𝑦)‘𝑗)) |
43 | | pserf.r |
. . . . . . 7
⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) |
44 | 1 | sselda 3922 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ (◡abs “ (0[,]𝑀))) |
45 | | ffn 6609 |
. . . . . . . . . . . . . 14
⊢
(abs:ℂ⟶ℝ → abs Fn ℂ) |
46 | | elpreima 6944 |
. . . . . . . . . . . . . 14
⊢ (abs Fn
ℂ → (𝑦 ∈
(◡abs “ (0[,]𝑀)) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,]𝑀)))) |
47 | 22, 45, 46 | mp2b 10 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (◡abs “ (0[,]𝑀)) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,]𝑀))) |
48 | 44, 47 | sylib 217 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,]𝑀))) |
49 | 48 | simprd 496 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (abs‘𝑦) ∈ (0[,]𝑀)) |
50 | | 0re 10986 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℝ |
51 | 4 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑀 ∈ ℝ) |
52 | | elicc2 13153 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ 𝑀
∈ ℝ) → ((abs‘𝑦) ∈ (0[,]𝑀) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤
(abs‘𝑦) ∧
(abs‘𝑦) ≤ 𝑀))) |
53 | 50, 51, 52 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((abs‘𝑦) ∈ (0[,]𝑀) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤
(abs‘𝑦) ∧
(abs‘𝑦) ≤ 𝑀))) |
54 | 49, 53 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((abs‘𝑦) ∈ ℝ ∧ 0 ≤
(abs‘𝑦) ∧
(abs‘𝑦) ≤ 𝑀)) |
55 | 54 | simp1d 1141 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (abs‘𝑦) ∈ ℝ) |
56 | 55 | rexrd 11034 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (abs‘𝑦) ∈
ℝ*) |
57 | 5 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑀 ∈
ℝ*) |
58 | | iccssxr 13171 |
. . . . . . . . . 10
⊢
(0[,]+∞) ⊆ ℝ* |
59 | 18, 19, 43 | radcnvcl 25585 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ (0[,]+∞)) |
60 | 58, 59 | sselid 3920 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈
ℝ*) |
61 | 60 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑅 ∈
ℝ*) |
62 | 54 | simp3d 1143 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (abs‘𝑦) ≤ 𝑀) |
63 | | pserulm.l |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 < 𝑅) |
64 | 63 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑀 < 𝑅) |
65 | 56, 57, 61, 62, 64 | xrlelttrd 12903 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (abs‘𝑦) < 𝑅) |
66 | 18, 20, 43, 26, 65 | radcnvlt2 25587 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → seq0( + , (𝐺‘𝑦)) ∈ dom ⇝ ) |
67 | 15, 17, 42, 28, 66 | isumcl 15482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗) ∈ ℂ) |
68 | | pserf.f |
. . . . 5
⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) |
69 | 67, 68 | fmptd 6997 |
. . . 4
⊢ (𝜑 → 𝐹:𝑆⟶ℂ) |
70 | 15, 16, 41, 69 | ulm0 25559 |
. . 3
⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝐻(⇝𝑢‘𝑆)𝐹) |
71 | 14, 70 | syldan 591 |
. 2
⊢ ((𝜑 ∧ 𝑀 < 0) → 𝐻(⇝𝑢‘𝑆)𝐹) |
72 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈
ℕ0) |
73 | 72, 15 | eleqtrdi 2850 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈
(ℤ≥‘0)) |
74 | | eqid 2739 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
↦ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚))) |
75 | | fveq2 6783 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑦 → (𝐺‘𝑤) = (𝐺‘𝑦)) |
76 | 75 | fveq1d 6785 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑦 → ((𝐺‘𝑤)‘𝑚) = ((𝐺‘𝑦)‘𝑚)) |
77 | 76 | cbvmptv 5188 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚)) = (𝑦 ∈ 𝑆 ↦ ((𝐺‘𝑦)‘𝑚)) |
78 | | fveq2 6783 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑘 → ((𝐺‘𝑦)‘𝑚) = ((𝐺‘𝑦)‘𝑘)) |
79 | 78 | mpteq2dv 5177 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑘 → (𝑦 ∈ 𝑆 ↦ ((𝐺‘𝑦)‘𝑚)) = (𝑦 ∈ 𝑆 ↦ ((𝐺‘𝑦)‘𝑘))) |
80 | 77, 79 | eqtrid 2791 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑘 → (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚)) = (𝑦 ∈ 𝑆 ↦ ((𝐺‘𝑦)‘𝑘))) |
81 | | elfznn0 13358 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...𝑖) → 𝑘 ∈ ℕ0) |
82 | 81 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℕ0) |
83 | 35 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → 𝑆 ∈ V) |
84 | 83 | mptexd 7109 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ 𝑆 ↦ ((𝐺‘𝑦)‘𝑘)) ∈ V) |
85 | 74, 80, 82, 84 | fvmptd3 6907 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑚 ∈ ℕ0 ↦ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚)))‘𝑘) = (𝑦 ∈ 𝑆 ↦ ((𝐺‘𝑦)‘𝑘))) |
86 | 36, 73, 85 | seqof 13789 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (seq0(
∘f + , (𝑚
∈ ℕ0 ↦ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚))))‘𝑖) = (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) |
87 | 86 | eqcomd 2745 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) = (seq0( ∘f + , (𝑚 ∈ ℕ0
↦ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚))))‘𝑖)) |
88 | 87 | mpteq2dva 5175 |
. . . . . 6
⊢ (𝜑 → (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) = (𝑖 ∈ ℕ0 ↦ (seq0(
∘f + , (𝑚
∈ ℕ0 ↦ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚))))‘𝑖))) |
89 | | 0z 12339 |
. . . . . . . . 9
⊢ 0 ∈
ℤ |
90 | | seqfn 13742 |
. . . . . . . . 9
⊢ (0 ∈
ℤ → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚)))) Fn
(ℤ≥‘0)) |
91 | 89, 90 | ax-mp 5 |
. . . . . . . 8
⊢ seq0(
∘f + , (𝑚
∈ ℕ0 ↦ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚)))) Fn
(ℤ≥‘0) |
92 | 15 | fneq2i 6540 |
. . . . . . . 8
⊢ (seq0(
∘f + , (𝑚
∈ ℕ0 ↦ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚)))) Fn ℕ0 ↔ seq0(
∘f + , (𝑚
∈ ℕ0 ↦ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚)))) Fn
(ℤ≥‘0)) |
93 | 91, 92 | mpbir 230 |
. . . . . . 7
⊢ seq0(
∘f + , (𝑚
∈ ℕ0 ↦ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚)))) Fn ℕ0 |
94 | | dffn5 6837 |
. . . . . . 7
⊢ (seq0(
∘f + , (𝑚
∈ ℕ0 ↦ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚)))) Fn ℕ0 ↔ seq0(
∘f + , (𝑚
∈ ℕ0 ↦ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚)))) = (𝑖 ∈ ℕ0 ↦ (seq0(
∘f + , (𝑚
∈ ℕ0 ↦ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚))))‘𝑖))) |
95 | 93, 94 | mpbi 229 |
. . . . . 6
⊢ seq0(
∘f + , (𝑚
∈ ℕ0 ↦ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚)))) = (𝑖 ∈ ℕ0 ↦ (seq0(
∘f + , (𝑚
∈ ℕ0 ↦ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚))))‘𝑖)) |
96 | 88, 40, 95 | 3eqtr4g 2804 |
. . . . 5
⊢ (𝜑 → 𝐻 = seq0( ∘f + , (𝑚 ∈ ℕ0
↦ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚))))) |
97 | 96 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 0 ≤ 𝑀) → 𝐻 = seq0( ∘f + , (𝑚 ∈ ℕ0
↦ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚))))) |
98 | | 0zd 12340 |
. . . . 5
⊢ ((𝜑 ∧ 0 ≤ 𝑀) → 0 ∈ ℤ) |
99 | 35 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 0 ≤ 𝑀) → 𝑆 ∈ V) |
100 | 19 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑆) → 𝐴:ℕ0⟶ℂ) |
101 | 25 | sselda 3922 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑆) → 𝑤 ∈ ℂ) |
102 | 18, 100, 101 | psergf 25580 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑆) → (𝐺‘𝑤):ℕ0⟶ℂ) |
103 | 102 | ffvelrnda 6970 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝐺‘𝑤)‘𝑚) ∈ ℂ) |
104 | 103 | an32s 649 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑤 ∈ 𝑆) → ((𝐺‘𝑤)‘𝑚) ∈ ℂ) |
105 | 104 | fmpttd 6998 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚)):𝑆⟶ℂ) |
106 | 35 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → 𝑆 ∈ V) |
107 | | elmapg 8637 |
. . . . . . . . 9
⊢ ((ℂ
∈ V ∧ 𝑆 ∈ V)
→ ((𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚)) ∈ (ℂ ↑m 𝑆) ↔ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚)):𝑆⟶ℂ)) |
108 | 33, 106, 107 | sylancr 587 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → ((𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚)) ∈ (ℂ ↑m 𝑆) ↔ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚)):𝑆⟶ℂ)) |
109 | 105, 108 | mpbird 256 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚)) ∈ (ℂ ↑m 𝑆)) |
110 | 109 | fmpttd 6998 |
. . . . . 6
⊢ (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚))):ℕ0⟶(ℂ
↑m 𝑆)) |
111 | 110 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 0 ≤ 𝑀) → (𝑚 ∈ ℕ0 ↦ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚))):ℕ0⟶(ℂ
↑m 𝑆)) |
112 | | fex 7111 |
. . . . . . . 8
⊢
((abs:ℂ⟶ℝ ∧ ℂ ∈ V) → abs ∈
V) |
113 | 22, 33, 112 | mp2an 689 |
. . . . . . 7
⊢ abs
∈ V |
114 | | fvex 6796 |
. . . . . . 7
⊢ (𝐺‘𝑀) ∈ V |
115 | 113, 114 | coex 7786 |
. . . . . 6
⊢ (abs
∘ (𝐺‘𝑀)) ∈ V |
116 | 115 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 0 ≤ 𝑀) → (abs ∘ (𝐺‘𝑀)) ∈ V) |
117 | 19 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 0 ≤ 𝑀) → 𝐴:ℕ0⟶ℂ) |
118 | 4 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 0 ≤ 𝑀) → 𝑀 ∈ ℝ) |
119 | 118 | recnd 11012 |
. . . . . . . 8
⊢ ((𝜑 ∧ 0 ≤ 𝑀) → 𝑀 ∈ ℂ) |
120 | 18, 117, 119 | psergf 25580 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 ≤ 𝑀) → (𝐺‘𝑀):ℕ0⟶ℂ) |
121 | | fco 6633 |
. . . . . . 7
⊢
((abs:ℂ⟶ℝ ∧ (𝐺‘𝑀):ℕ0⟶ℂ) →
(abs ∘ (𝐺‘𝑀)):ℕ0⟶ℝ) |
122 | 22, 120, 121 | sylancr 587 |
. . . . . 6
⊢ ((𝜑 ∧ 0 ≤ 𝑀) → (abs ∘ (𝐺‘𝑀)):ℕ0⟶ℝ) |
123 | 122 | ffvelrnda 6970 |
. . . . 5
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ 𝑘 ∈ ℕ0) → ((abs
∘ (𝐺‘𝑀))‘𝑘) ∈ ℝ) |
124 | 25 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → 𝑆 ⊆ ℂ) |
125 | | simprr 770 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → 𝑧 ∈ 𝑆) |
126 | 124, 125 | sseldd 3923 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → 𝑧 ∈ ℂ) |
127 | | simprl 768 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → 𝑘 ∈ ℕ0) |
128 | 126, 127 | expcld 13873 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → (𝑧↑𝑘) ∈ ℂ) |
129 | 128 | abscld 15157 |
. . . . . . . 8
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → (abs‘(𝑧↑𝑘)) ∈ ℝ) |
130 | 119 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → 𝑀 ∈ ℂ) |
131 | 130, 127 | expcld 13873 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → (𝑀↑𝑘) ∈ ℂ) |
132 | 131 | abscld 15157 |
. . . . . . . 8
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → (abs‘(𝑀↑𝑘)) ∈ ℝ) |
133 | 19 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → 𝐴:ℕ0⟶ℂ) |
134 | 133, 127 | ffvelrnd 6971 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → (𝐴‘𝑘) ∈ ℂ) |
135 | 134 | abscld 15157 |
. . . . . . . 8
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → (abs‘(𝐴‘𝑘)) ∈ ℝ) |
136 | 134 | absge0d 15165 |
. . . . . . . 8
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → 0 ≤ (abs‘(𝐴‘𝑘))) |
137 | 126 | abscld 15157 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → (abs‘𝑧) ∈ ℝ) |
138 | 4 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → 𝑀 ∈ ℝ) |
139 | 126 | absge0d 15165 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → 0 ≤ (abs‘𝑧)) |
140 | | fveq2 6783 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (abs‘𝑦) = (abs‘𝑧)) |
141 | 140 | breq1d 5085 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → ((abs‘𝑦) ≤ 𝑀 ↔ (abs‘𝑧) ≤ 𝑀)) |
142 | 62 | ralrimiva 3104 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑦 ∈ 𝑆 (abs‘𝑦) ≤ 𝑀) |
143 | 142 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → ∀𝑦 ∈ 𝑆 (abs‘𝑦) ≤ 𝑀) |
144 | 141, 143,
125 | rspcdva 3563 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → (abs‘𝑧) ≤ 𝑀) |
145 | | leexp1a 13902 |
. . . . . . . . . 10
⊢
((((abs‘𝑧)
∈ ℝ ∧ 𝑀
∈ ℝ ∧ 𝑘
∈ ℕ0) ∧ (0 ≤ (abs‘𝑧) ∧ (abs‘𝑧) ≤ 𝑀)) → ((abs‘𝑧)↑𝑘) ≤ (𝑀↑𝑘)) |
146 | 137, 138,
127, 139, 144, 145 | syl32anc 1377 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → ((abs‘𝑧)↑𝑘) ≤ (𝑀↑𝑘)) |
147 | 126, 127 | absexpd 15173 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → (abs‘(𝑧↑𝑘)) = ((abs‘𝑧)↑𝑘)) |
148 | 130, 127 | absexpd 15173 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → (abs‘(𝑀↑𝑘)) = ((abs‘𝑀)↑𝑘)) |
149 | | absid 15017 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℝ ∧ 0 ≤
𝑀) → (abs‘𝑀) = 𝑀) |
150 | 4, 149 | sylan 580 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 0 ≤ 𝑀) → (abs‘𝑀) = 𝑀) |
151 | 150 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → (abs‘𝑀) = 𝑀) |
152 | 151 | oveq1d 7299 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → ((abs‘𝑀)↑𝑘) = (𝑀↑𝑘)) |
153 | 148, 152 | eqtrd 2779 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → (abs‘(𝑀↑𝑘)) = (𝑀↑𝑘)) |
154 | 146, 147,
153 | 3brtr4d 5107 |
. . . . . . . 8
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → (abs‘(𝑧↑𝑘)) ≤ (abs‘(𝑀↑𝑘))) |
155 | 129, 132,
135, 136, 154 | lemul2ad 11924 |
. . . . . . 7
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → ((abs‘(𝐴‘𝑘)) · (abs‘(𝑧↑𝑘))) ≤ ((abs‘(𝐴‘𝑘)) · (abs‘(𝑀↑𝑘)))) |
156 | 134, 128 | absmuld 15175 |
. . . . . . 7
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → (abs‘((𝐴‘𝑘) · (𝑧↑𝑘))) = ((abs‘(𝐴‘𝑘)) · (abs‘(𝑧↑𝑘)))) |
157 | 134, 131 | absmuld 15175 |
. . . . . . 7
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → (abs‘((𝐴‘𝑘) · (𝑀↑𝑘))) = ((abs‘(𝐴‘𝑘)) · (abs‘(𝑀↑𝑘)))) |
158 | 155, 156,
157 | 3brtr4d 5107 |
. . . . . 6
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → (abs‘((𝐴‘𝑘) · (𝑧↑𝑘))) ≤ (abs‘((𝐴‘𝑘) · (𝑀↑𝑘)))) |
159 | 35 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → 𝑆 ∈ V) |
160 | 159 | mptexd 7109 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → (𝑦 ∈ 𝑆 ↦ ((𝐺‘𝑦)‘𝑘)) ∈ V) |
161 | 74, 80, 127, 160 | fvmptd3 6907 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → ((𝑚 ∈ ℕ0 ↦ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚)))‘𝑘) = (𝑦 ∈ 𝑆 ↦ ((𝐺‘𝑦)‘𝑘))) |
162 | 161 | fveq1d 6785 |
. . . . . . . 8
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → (((𝑚 ∈ ℕ0 ↦ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚)))‘𝑘)‘𝑧) = ((𝑦 ∈ 𝑆 ↦ ((𝐺‘𝑦)‘𝑘))‘𝑧)) |
163 | | fveq2 6783 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (𝐺‘𝑦) = (𝐺‘𝑧)) |
164 | 163 | fveq1d 6785 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → ((𝐺‘𝑦)‘𝑘) = ((𝐺‘𝑧)‘𝑘)) |
165 | | eqid 2739 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝑆 ↦ ((𝐺‘𝑦)‘𝑘)) = (𝑦 ∈ 𝑆 ↦ ((𝐺‘𝑦)‘𝑘)) |
166 | | fvex 6796 |
. . . . . . . . . 10
⊢ ((𝐺‘𝑧)‘𝑘) ∈ V |
167 | 164, 165,
166 | fvmpt 6884 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑆 → ((𝑦 ∈ 𝑆 ↦ ((𝐺‘𝑦)‘𝑘))‘𝑧) = ((𝐺‘𝑧)‘𝑘)) |
168 | 167 | ad2antll 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → ((𝑦 ∈ 𝑆 ↦ ((𝐺‘𝑦)‘𝑘))‘𝑧) = ((𝐺‘𝑧)‘𝑘)) |
169 | 18 | pserval2 25579 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝐺‘𝑧)‘𝑘) = ((𝐴‘𝑘) · (𝑧↑𝑘))) |
170 | 126, 127,
169 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → ((𝐺‘𝑧)‘𝑘) = ((𝐴‘𝑘) · (𝑧↑𝑘))) |
171 | 162, 168,
170 | 3eqtrd 2783 |
. . . . . . 7
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → (((𝑚 ∈ ℕ0 ↦ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚)))‘𝑘)‘𝑧) = ((𝐴‘𝑘) · (𝑧↑𝑘))) |
172 | 171 | fveq2d 6787 |
. . . . . 6
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → (abs‘(((𝑚 ∈ ℕ0 ↦ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚)))‘𝑘)‘𝑧)) = (abs‘((𝐴‘𝑘) · (𝑧↑𝑘)))) |
173 | 120 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → (𝐺‘𝑀):ℕ0⟶ℂ) |
174 | | fvco3 6876 |
. . . . . . . 8
⊢ (((𝐺‘𝑀):ℕ0⟶ℂ ∧
𝑘 ∈
ℕ0) → ((abs ∘ (𝐺‘𝑀))‘𝑘) = (abs‘((𝐺‘𝑀)‘𝑘))) |
175 | 173, 127,
174 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → ((abs ∘ (𝐺‘𝑀))‘𝑘) = (abs‘((𝐺‘𝑀)‘𝑘))) |
176 | 18 | pserval2 25579 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝐺‘𝑀)‘𝑘) = ((𝐴‘𝑘) · (𝑀↑𝑘))) |
177 | 130, 127,
176 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → ((𝐺‘𝑀)‘𝑘) = ((𝐴‘𝑘) · (𝑀↑𝑘))) |
178 | 177 | fveq2d 6787 |
. . . . . . 7
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → (abs‘((𝐺‘𝑀)‘𝑘)) = (abs‘((𝐴‘𝑘) · (𝑀↑𝑘)))) |
179 | 175, 178 | eqtrd 2779 |
. . . . . 6
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → ((abs ∘ (𝐺‘𝑀))‘𝑘) = (abs‘((𝐴‘𝑘) · (𝑀↑𝑘)))) |
180 | 158, 172,
179 | 3brtr4d 5107 |
. . . . 5
⊢ (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆)) → (abs‘(((𝑚 ∈ ℕ0 ↦ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚)))‘𝑘)‘𝑧)) ≤ ((abs ∘ (𝐺‘𝑀))‘𝑘)) |
181 | 63 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 0 ≤ 𝑀) → 𝑀 < 𝑅) |
182 | 150, 181 | eqbrtrd 5097 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 ≤ 𝑀) → (abs‘𝑀) < 𝑅) |
183 | | id 22 |
. . . . . . . . 9
⊢ (𝑖 = 𝑚 → 𝑖 = 𝑚) |
184 | | 2fveq3 6788 |
. . . . . . . . 9
⊢ (𝑖 = 𝑚 → (abs‘((𝐺‘𝑀)‘𝑖)) = (abs‘((𝐺‘𝑀)‘𝑚))) |
185 | 183, 184 | oveq12d 7302 |
. . . . . . . 8
⊢ (𝑖 = 𝑚 → (𝑖 · (abs‘((𝐺‘𝑀)‘𝑖))) = (𝑚 · (abs‘((𝐺‘𝑀)‘𝑚)))) |
186 | 185 | cbvmptv 5188 |
. . . . . . 7
⊢ (𝑖 ∈ ℕ0
↦ (𝑖 ·
(abs‘((𝐺‘𝑀)‘𝑖)))) = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺‘𝑀)‘𝑚)))) |
187 | 18, 117, 43, 119, 182, 186 | radcnvlt1 25586 |
. . . . . 6
⊢ ((𝜑 ∧ 0 ≤ 𝑀) → (seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑀)‘𝑖))))) ∈ dom ⇝ ∧ seq0( + , (abs
∘ (𝐺‘𝑀))) ∈ dom ⇝
)) |
188 | 187 | simprd 496 |
. . . . 5
⊢ ((𝜑 ∧ 0 ≤ 𝑀) → seq0( + , (abs ∘ (𝐺‘𝑀))) ∈ dom ⇝ ) |
189 | 15, 98, 99, 111, 116, 123, 180, 188 | mtest 25572 |
. . . 4
⊢ ((𝜑 ∧ 0 ≤ 𝑀) → seq0( ∘f + ,
(𝑚 ∈
ℕ0 ↦ (𝑤 ∈ 𝑆 ↦ ((𝐺‘𝑤)‘𝑚)))) ∈ dom
(⇝𝑢‘𝑆)) |
190 | 97, 189 | eqeltrd 2840 |
. . 3
⊢ ((𝜑 ∧ 0 ≤ 𝑀) → 𝐻 ∈ dom
(⇝𝑢‘𝑆)) |
191 | | simpr 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐻(⇝𝑢‘𝑆)𝑓) → 𝐻(⇝𝑢‘𝑆)𝑓) |
192 | | ulmcl 25549 |
. . . . . . . . . 10
⊢ (𝐻(⇝𝑢‘𝑆)𝑓 → 𝑓:𝑆⟶ℂ) |
193 | 192 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐻(⇝𝑢‘𝑆)𝑓) → 𝑓:𝑆⟶ℂ) |
194 | 193 | feqmptd 6846 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐻(⇝𝑢‘𝑆)𝑓) → 𝑓 = (𝑦 ∈ 𝑆 ↦ (𝑓‘𝑦))) |
195 | | 0zd 12340 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐻(⇝𝑢‘𝑆)𝑓) ∧ 𝑦 ∈ 𝑆) → 0 ∈ ℤ) |
196 | | eqidd 2740 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐻(⇝𝑢‘𝑆)𝑓) ∧ 𝑦 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝐺‘𝑦)‘𝑗) = ((𝐺‘𝑦)‘𝑗)) |
197 | 27 | adantlr 712 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐻(⇝𝑢‘𝑆)𝑓) ∧ 𝑦 ∈ 𝑆) → (𝐺‘𝑦):ℕ0⟶ℂ) |
198 | 197 | ffvelrnda 6970 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐻(⇝𝑢‘𝑆)𝑓) ∧ 𝑦 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝐺‘𝑦)‘𝑗) ∈ ℂ) |
199 | 41 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐻(⇝𝑢‘𝑆)𝑓) ∧ 𝑦 ∈ 𝑆) → 𝐻:ℕ0⟶(ℂ
↑m 𝑆)) |
200 | | simpr 485 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐻(⇝𝑢‘𝑆)𝑓) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) |
201 | | seqex 13732 |
. . . . . . . . . . . . 13
⊢ seq0( + ,
(𝐺‘𝑦)) ∈ V |
202 | 201 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐻(⇝𝑢‘𝑆)𝑓) ∧ 𝑦 ∈ 𝑆) → seq0( + , (𝐺‘𝑦)) ∈ V) |
203 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐻(⇝𝑢‘𝑆)𝑓) ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈
ℕ0) |
204 | 35 | ad3antrrr 727 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐻(⇝𝑢‘𝑆)𝑓) ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑆 ∈ V) |
205 | 204 | mptexd 7109 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐻(⇝𝑢‘𝑆)𝑓) ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ∈ V) |
206 | 40 | fvmpt2 6895 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ ℕ0
∧ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ∈ V) → (𝐻‘𝑖) = (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) |
207 | 203, 205,
206 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐻(⇝𝑢‘𝑆)𝑓) ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → (𝐻‘𝑖) = (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) |
208 | 207 | fveq1d 6785 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐻(⇝𝑢‘𝑆)𝑓) ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝐻‘𝑖)‘𝑦) = ((𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))‘𝑦)) |
209 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐻(⇝𝑢‘𝑆)𝑓) ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑦 ∈ 𝑆) |
210 | | fvex 6796 |
. . . . . . . . . . . . . 14
⊢ (seq0( +
, (𝐺‘𝑦))‘𝑖) ∈ V |
211 | | eqid 2739 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) = (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) |
212 | 211 | fvmpt2 6895 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝑆 ∧ (seq0( + , (𝐺‘𝑦))‘𝑖) ∈ V) → ((𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))‘𝑦) = (seq0( + , (𝐺‘𝑦))‘𝑖)) |
213 | 209, 210,
212 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐻(⇝𝑢‘𝑆)𝑓) ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))‘𝑦) = (seq0( + , (𝐺‘𝑦))‘𝑖)) |
214 | 208, 213 | eqtrd 2779 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐻(⇝𝑢‘𝑆)𝑓) ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝐻‘𝑖)‘𝑦) = (seq0( + , (𝐺‘𝑦))‘𝑖)) |
215 | | simplr 766 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐻(⇝𝑢‘𝑆)𝑓) ∧ 𝑦 ∈ 𝑆) → 𝐻(⇝𝑢‘𝑆)𝑓) |
216 | 15, 195, 199, 200, 202, 214, 215 | ulmclm 25555 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐻(⇝𝑢‘𝑆)𝑓) ∧ 𝑦 ∈ 𝑆) → seq0( + , (𝐺‘𝑦)) ⇝ (𝑓‘𝑦)) |
217 | 15, 195, 196, 198, 216 | isumclim 15478 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐻(⇝𝑢‘𝑆)𝑓) ∧ 𝑦 ∈ 𝑆) → Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗) = (𝑓‘𝑦)) |
218 | 217 | mpteq2dva 5175 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐻(⇝𝑢‘𝑆)𝑓) → (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) = (𝑦 ∈ 𝑆 ↦ (𝑓‘𝑦))) |
219 | 68, 218 | eqtrid 2791 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐻(⇝𝑢‘𝑆)𝑓) → 𝐹 = (𝑦 ∈ 𝑆 ↦ (𝑓‘𝑦))) |
220 | 194, 219 | eqtr4d 2782 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐻(⇝𝑢‘𝑆)𝑓) → 𝑓 = 𝐹) |
221 | 191, 220 | breqtrd 5101 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐻(⇝𝑢‘𝑆)𝑓) → 𝐻(⇝𝑢‘𝑆)𝐹) |
222 | 221 | ex 413 |
. . . . 5
⊢ (𝜑 → (𝐻(⇝𝑢‘𝑆)𝑓 → 𝐻(⇝𝑢‘𝑆)𝐹)) |
223 | 222 | exlimdv 1937 |
. . . 4
⊢ (𝜑 → (∃𝑓 𝐻(⇝𝑢‘𝑆)𝑓 → 𝐻(⇝𝑢‘𝑆)𝐹)) |
224 | | eldmg 5810 |
. . . . 5
⊢ (𝐻 ∈ dom
(⇝𝑢‘𝑆) → (𝐻 ∈ dom
(⇝𝑢‘𝑆) ↔ ∃𝑓 𝐻(⇝𝑢‘𝑆)𝑓)) |
225 | 224 | ibi 266 |
. . . 4
⊢ (𝐻 ∈ dom
(⇝𝑢‘𝑆) → ∃𝑓 𝐻(⇝𝑢‘𝑆)𝑓) |
226 | 223, 225 | impel 506 |
. . 3
⊢ ((𝜑 ∧ 𝐻 ∈ dom
(⇝𝑢‘𝑆)) → 𝐻(⇝𝑢‘𝑆)𝐹) |
227 | 190, 226 | syldan 591 |
. 2
⊢ ((𝜑 ∧ 0 ≤ 𝑀) → 𝐻(⇝𝑢‘𝑆)𝐹) |
228 | | 0red 10987 |
. 2
⊢ (𝜑 → 0 ∈
ℝ) |
229 | 71, 227, 4, 228 | ltlecasei 11092 |
1
⊢ (𝜑 → 𝐻(⇝𝑢‘𝑆)𝐹) |