MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserulm Structured version   Visualization version   GIF version

Theorem pserulm 25116
Description: If 𝑆 is a region contained in a circle of radius 𝑀 < 𝑅, then the sequence of partial sums of the infinite series converges uniformly on 𝑆. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
pserulm.h 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
pserulm.m (𝜑𝑀 ∈ ℝ)
pserulm.l (𝜑𝑀 < 𝑅)
pserulm.y (𝜑𝑆 ⊆ (abs “ (0[,]𝑀)))
Assertion
Ref Expression
pserulm (𝜑𝐻(⇝𝑢𝑆)𝐹)
Distinct variable groups:   𝑗,𝑛,𝑟,𝑥,𝑦,𝐴   𝑖,𝑗,𝑦,𝐻   𝑖,𝑀,𝑗,𝑦   𝑥,𝑖,𝑟   𝑖,𝐺,𝑗,𝑟,𝑦   𝑆,𝑖,𝑗,𝑦   𝜑,𝑖,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑖)   𝑅(𝑥,𝑦,𝑖,𝑗,𝑛,𝑟)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑖,𝑗,𝑛,𝑟)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑛,𝑟)   𝑀(𝑥,𝑛,𝑟)

Proof of Theorem pserulm
Dummy variables 𝑘 𝑚 𝑤 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pserulm.y . . . . . 6 (𝜑𝑆 ⊆ (abs “ (0[,]𝑀)))
21adantr 484 . . . . 5 ((𝜑𝑀 < 0) → 𝑆 ⊆ (abs “ (0[,]𝑀)))
3 0xr 10726 . . . . . . . . 9 0 ∈ ℝ*
4 pserulm.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
54rexrd 10729 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ*)
6 icc0 12827 . . . . . . . . 9 ((0 ∈ ℝ*𝑀 ∈ ℝ*) → ((0[,]𝑀) = ∅ ↔ 𝑀 < 0))
73, 5, 6sylancr 590 . . . . . . . 8 (𝜑 → ((0[,]𝑀) = ∅ ↔ 𝑀 < 0))
87biimpar 481 . . . . . . 7 ((𝜑𝑀 < 0) → (0[,]𝑀) = ∅)
98imaeq2d 5901 . . . . . 6 ((𝜑𝑀 < 0) → (abs “ (0[,]𝑀)) = (abs “ ∅))
10 ima0 5917 . . . . . 6 (abs “ ∅) = ∅
119, 10eqtrdi 2809 . . . . 5 ((𝜑𝑀 < 0) → (abs “ (0[,]𝑀)) = ∅)
122, 11sseqtrd 3932 . . . 4 ((𝜑𝑀 < 0) → 𝑆 ⊆ ∅)
13 ss0 4294 . . . 4 (𝑆 ⊆ ∅ → 𝑆 = ∅)
1412, 13syl 17 . . 3 ((𝜑𝑀 < 0) → 𝑆 = ∅)
15 nn0uz 12320 . . . 4 0 = (ℤ‘0)
16 0zd 12032 . . . 4 (𝜑 → 0 ∈ ℤ)
17 0zd 12032 . . . . . . . . . 10 ((𝜑𝑦𝑆) → 0 ∈ ℤ)
18 pserf.g . . . . . . . . . . . 12 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
19 pserf.a . . . . . . . . . . . . 13 (𝜑𝐴:ℕ0⟶ℂ)
2019adantr 484 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → 𝐴:ℕ0⟶ℂ)
21 cnvimass 5921 . . . . . . . . . . . . . . 15 (abs “ (0[,]𝑀)) ⊆ dom abs
22 absf 14745 . . . . . . . . . . . . . . . 16 abs:ℂ⟶ℝ
2322fdmi 6509 . . . . . . . . . . . . . . 15 dom abs = ℂ
2421, 23sseqtri 3928 . . . . . . . . . . . . . 14 (abs “ (0[,]𝑀)) ⊆ ℂ
251, 24sstrdi 3904 . . . . . . . . . . . . 13 (𝜑𝑆 ⊆ ℂ)
2625sselda 3892 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → 𝑦 ∈ ℂ)
2718, 20, 26psergf 25106 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → (𝐺𝑦):ℕ0⟶ℂ)
2827ffvelrnda 6842 . . . . . . . . . 10 (((𝜑𝑦𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑦)‘𝑗) ∈ ℂ)
2915, 17, 28serf 13448 . . . . . . . . 9 ((𝜑𝑦𝑆) → seq0( + , (𝐺𝑦)):ℕ0⟶ℂ)
3029ffvelrnda 6842 . . . . . . . 8 (((𝜑𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → (seq0( + , (𝐺𝑦))‘𝑖) ∈ ℂ)
3130an32s 651 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑦𝑆) → (seq0( + , (𝐺𝑦))‘𝑖) ∈ ℂ)
3231fmpttd 6870 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)):𝑆⟶ℂ)
33 cnex 10656 . . . . . . 7 ℂ ∈ V
34 ssexg 5193 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
3525, 33, 34sylancl 589 . . . . . . . 8 (𝜑𝑆 ∈ V)
3635adantr 484 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → 𝑆 ∈ V)
37 elmapg 8429 . . . . . . 7 ((ℂ ∈ V ∧ 𝑆 ∈ V) → ((𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ (ℂ ↑m 𝑆) ↔ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)):𝑆⟶ℂ))
3833, 36, 37sylancr 590 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → ((𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ (ℂ ↑m 𝑆) ↔ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)):𝑆⟶ℂ))
3932, 38mpbird 260 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ (ℂ ↑m 𝑆))
40 pserulm.h . . . . 5 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
4139, 40fmptd 6869 . . . 4 (𝜑𝐻:ℕ0⟶(ℂ ↑m 𝑆))
42 eqidd 2759 . . . . . 6 (((𝜑𝑦𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑦)‘𝑗) = ((𝐺𝑦)‘𝑗))
43 pserf.r . . . . . . 7 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
441sselda 3892 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → 𝑦 ∈ (abs “ (0[,]𝑀)))
45 ffn 6498 . . . . . . . . . . . . . 14 (abs:ℂ⟶ℝ → abs Fn ℂ)
46 elpreima 6819 . . . . . . . . . . . . . 14 (abs Fn ℂ → (𝑦 ∈ (abs “ (0[,]𝑀)) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,]𝑀))))
4722, 45, 46mp2b 10 . . . . . . . . . . . . 13 (𝑦 ∈ (abs “ (0[,]𝑀)) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,]𝑀)))
4844, 47sylib 221 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,]𝑀)))
4948simprd 499 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → (abs‘𝑦) ∈ (0[,]𝑀))
50 0re 10681 . . . . . . . . . . . 12 0 ∈ ℝ
514adantr 484 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → 𝑀 ∈ ℝ)
52 elicc2 12844 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((abs‘𝑦) ∈ (0[,]𝑀) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) ≤ 𝑀)))
5350, 51, 52sylancr 590 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → ((abs‘𝑦) ∈ (0[,]𝑀) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) ≤ 𝑀)))
5449, 53mpbid 235 . . . . . . . . . 10 ((𝜑𝑦𝑆) → ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) ≤ 𝑀))
5554simp1d 1139 . . . . . . . . 9 ((𝜑𝑦𝑆) → (abs‘𝑦) ∈ ℝ)
5655rexrd 10729 . . . . . . . 8 ((𝜑𝑦𝑆) → (abs‘𝑦) ∈ ℝ*)
575adantr 484 . . . . . . . 8 ((𝜑𝑦𝑆) → 𝑀 ∈ ℝ*)
58 iccssxr 12862 . . . . . . . . . 10 (0[,]+∞) ⊆ ℝ*
5918, 19, 43radcnvcl 25111 . . . . . . . . . 10 (𝜑𝑅 ∈ (0[,]+∞))
6058, 59sseldi 3890 . . . . . . . . 9 (𝜑𝑅 ∈ ℝ*)
6160adantr 484 . . . . . . . 8 ((𝜑𝑦𝑆) → 𝑅 ∈ ℝ*)
6254simp3d 1141 . . . . . . . 8 ((𝜑𝑦𝑆) → (abs‘𝑦) ≤ 𝑀)
63 pserulm.l . . . . . . . . 9 (𝜑𝑀 < 𝑅)
6463adantr 484 . . . . . . . 8 ((𝜑𝑦𝑆) → 𝑀 < 𝑅)
6556, 57, 61, 62, 64xrlelttrd 12594 . . . . . . 7 ((𝜑𝑦𝑆) → (abs‘𝑦) < 𝑅)
6618, 20, 43, 26, 65radcnvlt2 25113 . . . . . 6 ((𝜑𝑦𝑆) → seq0( + , (𝐺𝑦)) ∈ dom ⇝ )
6715, 17, 42, 28, 66isumcl 15164 . . . . 5 ((𝜑𝑦𝑆) → Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗) ∈ ℂ)
68 pserf.f . . . . 5 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
6967, 68fmptd 6869 . . . 4 (𝜑𝐹:𝑆⟶ℂ)
7015, 16, 41, 69ulm0 25085 . . 3 ((𝜑𝑆 = ∅) → 𝐻(⇝𝑢𝑆)𝐹)
7114, 70syldan 594 . 2 ((𝜑𝑀 < 0) → 𝐻(⇝𝑢𝑆)𝐹)
72 simpr 488 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
7372, 15eleqtrdi 2862 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ (ℤ‘0))
74 eqid 2758 . . . . . . . . . 10 (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))
75 fveq2 6658 . . . . . . . . . . . . 13 (𝑤 = 𝑦 → (𝐺𝑤) = (𝐺𝑦))
7675fveq1d 6660 . . . . . . . . . . . 12 (𝑤 = 𝑦 → ((𝐺𝑤)‘𝑚) = ((𝐺𝑦)‘𝑚))
7776cbvmptv 5135 . . . . . . . . . . 11 (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑚))
78 fveq2 6658 . . . . . . . . . . . 12 (𝑚 = 𝑘 → ((𝐺𝑦)‘𝑚) = ((𝐺𝑦)‘𝑘))
7978mpteq2dv 5128 . . . . . . . . . . 11 (𝑚 = 𝑘 → (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑚)) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)))
8077, 79syl5eq 2805 . . . . . . . . . 10 (𝑚 = 𝑘 → (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)))
81 elfznn0 13049 . . . . . . . . . . 11 (𝑘 ∈ (0...𝑖) → 𝑘 ∈ ℕ0)
8281adantl 485 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℕ0)
8335ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → 𝑆 ∈ V)
8483mptexd 6978 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)) ∈ V)
8574, 80, 82, 84fvmptd3 6782 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)))
8636, 73, 85seqof 13477 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))))‘𝑖) = (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
8786eqcomd 2764 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) = (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))))‘𝑖))
8887mpteq2dva 5127 . . . . . 6 (𝜑 → (𝑖 ∈ ℕ0 ↦ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖))) = (𝑖 ∈ ℕ0 ↦ (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))))‘𝑖)))
89 0z 12031 . . . . . . . . 9 0 ∈ ℤ
90 seqfn 13430 . . . . . . . . 9 (0 ∈ ℤ → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn (ℤ‘0))
9189, 90ax-mp 5 . . . . . . . 8 seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn (ℤ‘0)
9215fneq2i 6432 . . . . . . . 8 (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn ℕ0 ↔ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn (ℤ‘0))
9391, 92mpbir 234 . . . . . . 7 seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn ℕ0
94 dffn5 6712 . . . . . . 7 (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn ℕ0 ↔ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) = (𝑖 ∈ ℕ0 ↦ (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))))‘𝑖)))
9593, 94mpbi 233 . . . . . 6 seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) = (𝑖 ∈ ℕ0 ↦ (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))))‘𝑖))
9688, 40, 953eqtr4g 2818 . . . . 5 (𝜑𝐻 = seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))))
9796adantr 484 . . . 4 ((𝜑 ∧ 0 ≤ 𝑀) → 𝐻 = seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))))
98 0zd 12032 . . . . 5 ((𝜑 ∧ 0 ≤ 𝑀) → 0 ∈ ℤ)
9935adantr 484 . . . . 5 ((𝜑 ∧ 0 ≤ 𝑀) → 𝑆 ∈ V)
10019adantr 484 . . . . . . . . . . . 12 ((𝜑𝑤𝑆) → 𝐴:ℕ0⟶ℂ)
10125sselda 3892 . . . . . . . . . . . 12 ((𝜑𝑤𝑆) → 𝑤 ∈ ℂ)
10218, 100, 101psergf 25106 . . . . . . . . . . 11 ((𝜑𝑤𝑆) → (𝐺𝑤):ℕ0⟶ℂ)
103102ffvelrnda 6842 . . . . . . . . . 10 (((𝜑𝑤𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝐺𝑤)‘𝑚) ∈ ℂ)
104103an32s 651 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑤𝑆) → ((𝐺𝑤)‘𝑚) ∈ ℂ)
105104fmpttd 6870 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)):𝑆⟶ℂ)
10635adantr 484 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → 𝑆 ∈ V)
107 elmapg 8429 . . . . . . . . 9 ((ℂ ∈ V ∧ 𝑆 ∈ V) → ((𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)) ∈ (ℂ ↑m 𝑆) ↔ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)):𝑆⟶ℂ))
10833, 106, 107sylancr 590 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → ((𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)) ∈ (ℂ ↑m 𝑆) ↔ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)):𝑆⟶ℂ))
109105, 108mpbird 260 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)) ∈ (ℂ ↑m 𝑆))
110109fmpttd 6870 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))):ℕ0⟶(ℂ ↑m 𝑆))
111110adantr 484 . . . . 5 ((𝜑 ∧ 0 ≤ 𝑀) → (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))):ℕ0⟶(ℂ ↑m 𝑆))
112 fex 6980 . . . . . . . 8 ((abs:ℂ⟶ℝ ∧ ℂ ∈ V) → abs ∈ V)
11322, 33, 112mp2an 691 . . . . . . 7 abs ∈ V
114 fvex 6671 . . . . . . 7 (𝐺𝑀) ∈ V
115113, 114coex 7640 . . . . . 6 (abs ∘ (𝐺𝑀)) ∈ V
116115a1i 11 . . . . 5 ((𝜑 ∧ 0 ≤ 𝑀) → (abs ∘ (𝐺𝑀)) ∈ V)
11719adantr 484 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝑀) → 𝐴:ℕ0⟶ℂ)
1184adantr 484 . . . . . . . . 9 ((𝜑 ∧ 0 ≤ 𝑀) → 𝑀 ∈ ℝ)
119118recnd 10707 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝑀) → 𝑀 ∈ ℂ)
12018, 117, 119psergf 25106 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝑀) → (𝐺𝑀):ℕ0⟶ℂ)
121 fco 6516 . . . . . . 7 ((abs:ℂ⟶ℝ ∧ (𝐺𝑀):ℕ0⟶ℂ) → (abs ∘ (𝐺𝑀)):ℕ0⟶ℝ)
12222, 120, 121sylancr 590 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝑀) → (abs ∘ (𝐺𝑀)):ℕ0⟶ℝ)
123122ffvelrnda 6842 . . . . 5 (((𝜑 ∧ 0 ≤ 𝑀) ∧ 𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑀))‘𝑘) ∈ ℝ)
12425ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑆 ⊆ ℂ)
125 simprr 772 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑧𝑆)
126124, 125sseldd 3893 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑧 ∈ ℂ)
127 simprl 770 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑘 ∈ ℕ0)
128126, 127expcld 13560 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (𝑧𝑘) ∈ ℂ)
129128abscld 14844 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑧𝑘)) ∈ ℝ)
130119adantr 484 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑀 ∈ ℂ)
131130, 127expcld 13560 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (𝑀𝑘) ∈ ℂ)
132131abscld 14844 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑀𝑘)) ∈ ℝ)
13319ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝐴:ℕ0⟶ℂ)
134133, 127ffvelrnd 6843 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (𝐴𝑘) ∈ ℂ)
135134abscld 14844 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝐴𝑘)) ∈ ℝ)
136134absge0d 14852 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 0 ≤ (abs‘(𝐴𝑘)))
137126abscld 14844 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘𝑧) ∈ ℝ)
1384ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑀 ∈ ℝ)
139126absge0d 14852 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 0 ≤ (abs‘𝑧))
140 fveq2 6658 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (abs‘𝑦) = (abs‘𝑧))
141140breq1d 5042 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((abs‘𝑦) ≤ 𝑀 ↔ (abs‘𝑧) ≤ 𝑀))
14262ralrimiva 3113 . . . . . . . . . . . 12 (𝜑 → ∀𝑦𝑆 (abs‘𝑦) ≤ 𝑀)
143142ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ∀𝑦𝑆 (abs‘𝑦) ≤ 𝑀)
144141, 143, 125rspcdva 3543 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘𝑧) ≤ 𝑀)
145 leexp1a 13589 . . . . . . . . . 10 ((((abs‘𝑧) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (0 ≤ (abs‘𝑧) ∧ (abs‘𝑧) ≤ 𝑀)) → ((abs‘𝑧)↑𝑘) ≤ (𝑀𝑘))
146137, 138, 127, 139, 144, 145syl32anc 1375 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((abs‘𝑧)↑𝑘) ≤ (𝑀𝑘))
147126, 127absexpd 14860 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑧𝑘)) = ((abs‘𝑧)↑𝑘))
148130, 127absexpd 14860 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑀𝑘)) = ((abs‘𝑀)↑𝑘))
149 absid 14704 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → (abs‘𝑀) = 𝑀)
1504, 149sylan 583 . . . . . . . . . . . 12 ((𝜑 ∧ 0 ≤ 𝑀) → (abs‘𝑀) = 𝑀)
151150adantr 484 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘𝑀) = 𝑀)
152151oveq1d 7165 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((abs‘𝑀)↑𝑘) = (𝑀𝑘))
153148, 152eqtrd 2793 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑀𝑘)) = (𝑀𝑘))
154146, 147, 1533brtr4d 5064 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑧𝑘)) ≤ (abs‘(𝑀𝑘)))
155129, 132, 135, 136, 154lemul2ad 11618 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((abs‘(𝐴𝑘)) · (abs‘(𝑧𝑘))) ≤ ((abs‘(𝐴𝑘)) · (abs‘(𝑀𝑘))))
156134, 128absmuld 14862 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘((𝐴𝑘) · (𝑧𝑘))) = ((abs‘(𝐴𝑘)) · (abs‘(𝑧𝑘))))
157134, 131absmuld 14862 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘((𝐴𝑘) · (𝑀𝑘))) = ((abs‘(𝐴𝑘)) · (abs‘(𝑀𝑘))))
158155, 156, 1573brtr4d 5064 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘((𝐴𝑘) · (𝑧𝑘))) ≤ (abs‘((𝐴𝑘) · (𝑀𝑘))))
15935ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑆 ∈ V)
160159mptexd 6978 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)) ∈ V)
16174, 80, 127, 160fvmptd3 6782 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)))
162161fveq1d 6660 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘)‘𝑧) = ((𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘))‘𝑧))
163 fveq2 6658 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝐺𝑦) = (𝐺𝑧))
164163fveq1d 6660 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝐺𝑦)‘𝑘) = ((𝐺𝑧)‘𝑘))
165 eqid 2758 . . . . . . . . . 10 (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘))
166 fvex 6671 . . . . . . . . . 10 ((𝐺𝑧)‘𝑘) ∈ V
167164, 165, 166fvmpt 6759 . . . . . . . . 9 (𝑧𝑆 → ((𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘))‘𝑧) = ((𝐺𝑧)‘𝑘))
168167ad2antll 728 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘))‘𝑧) = ((𝐺𝑧)‘𝑘))
16918pserval2 25105 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑧)‘𝑘) = ((𝐴𝑘) · (𝑧𝑘)))
170126, 127, 169syl2anc 587 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((𝐺𝑧)‘𝑘) = ((𝐴𝑘) · (𝑧𝑘)))
171162, 168, 1703eqtrd 2797 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘)‘𝑧) = ((𝐴𝑘) · (𝑧𝑘)))
172171fveq2d 6662 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘)‘𝑧)) = (abs‘((𝐴𝑘) · (𝑧𝑘))))
173120adantr 484 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (𝐺𝑀):ℕ0⟶ℂ)
174 fvco3 6751 . . . . . . . 8 (((𝐺𝑀):ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑀))‘𝑘) = (abs‘((𝐺𝑀)‘𝑘)))
175173, 127, 174syl2anc 587 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((abs ∘ (𝐺𝑀))‘𝑘) = (abs‘((𝐺𝑀)‘𝑘)))
17618pserval2 25105 . . . . . . . . 9 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑀)‘𝑘) = ((𝐴𝑘) · (𝑀𝑘)))
177130, 127, 176syl2anc 587 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((𝐺𝑀)‘𝑘) = ((𝐴𝑘) · (𝑀𝑘)))
178177fveq2d 6662 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘((𝐺𝑀)‘𝑘)) = (abs‘((𝐴𝑘) · (𝑀𝑘))))
179175, 178eqtrd 2793 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((abs ∘ (𝐺𝑀))‘𝑘) = (abs‘((𝐴𝑘) · (𝑀𝑘))))
180158, 172, 1793brtr4d 5064 . . . . 5 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘)‘𝑧)) ≤ ((abs ∘ (𝐺𝑀))‘𝑘))
18163adantr 484 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝑀) → 𝑀 < 𝑅)
182150, 181eqbrtrd 5054 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝑀) → (abs‘𝑀) < 𝑅)
183 id 22 . . . . . . . . 9 (𝑖 = 𝑚𝑖 = 𝑚)
184 2fveq3 6663 . . . . . . . . 9 (𝑖 = 𝑚 → (abs‘((𝐺𝑀)‘𝑖)) = (abs‘((𝐺𝑀)‘𝑚)))
185183, 184oveq12d 7168 . . . . . . . 8 (𝑖 = 𝑚 → (𝑖 · (abs‘((𝐺𝑀)‘𝑖))) = (𝑚 · (abs‘((𝐺𝑀)‘𝑚))))
186185cbvmptv 5135 . . . . . . 7 (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑀)‘𝑖)))) = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑀)‘𝑚))))
18718, 117, 43, 119, 182, 186radcnvlt1 25112 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝑀) → (seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑀)‘𝑖))))) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺𝑀))) ∈ dom ⇝ ))
188187simprd 499 . . . . 5 ((𝜑 ∧ 0 ≤ 𝑀) → seq0( + , (abs ∘ (𝐺𝑀))) ∈ dom ⇝ )
18915, 98, 99, 111, 116, 123, 180, 188mtest 25098 . . . 4 ((𝜑 ∧ 0 ≤ 𝑀) → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) ∈ dom (⇝𝑢𝑆))
19097, 189eqeltrd 2852 . . 3 ((𝜑 ∧ 0 ≤ 𝑀) → 𝐻 ∈ dom (⇝𝑢𝑆))
191 simpr 488 . . . . . . 7 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝐻(⇝𝑢𝑆)𝑓)
192 ulmcl 25075 . . . . . . . . . 10 (𝐻(⇝𝑢𝑆)𝑓𝑓:𝑆⟶ℂ)
193192adantl 485 . . . . . . . . 9 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝑓:𝑆⟶ℂ)
194193feqmptd 6721 . . . . . . . 8 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝑓 = (𝑦𝑆 ↦ (𝑓𝑦)))
195 0zd 12032 . . . . . . . . . . 11 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → 0 ∈ ℤ)
196 eqidd 2759 . . . . . . . . . . 11 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑦)‘𝑗) = ((𝐺𝑦)‘𝑗))
19727adantlr 714 . . . . . . . . . . . 12 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → (𝐺𝑦):ℕ0⟶ℂ)
198197ffvelrnda 6842 . . . . . . . . . . 11 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑦)‘𝑗) ∈ ℂ)
19941ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → 𝐻:ℕ0⟶(ℂ ↑m 𝑆))
200 simpr 488 . . . . . . . . . . . 12 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → 𝑦𝑆)
201 seqex 13420 . . . . . . . . . . . . 13 seq0( + , (𝐺𝑦)) ∈ V
202201a1i 11 . . . . . . . . . . . 12 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → seq0( + , (𝐺𝑦)) ∈ V)
203 simpr 488 . . . . . . . . . . . . . . 15 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
20435ad3antrrr 729 . . . . . . . . . . . . . . . 16 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑆 ∈ V)
205204mptexd 6978 . . . . . . . . . . . . . . 15 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ V)
20640fvmpt2 6770 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ℕ0 ∧ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ V) → (𝐻𝑖) = (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
207203, 205, 206syl2anc 587 . . . . . . . . . . . . . 14 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → (𝐻𝑖) = (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
208207fveq1d 6660 . . . . . . . . . . . . 13 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝐻𝑖)‘𝑦) = ((𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖))‘𝑦))
209 simplr 768 . . . . . . . . . . . . . 14 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑦𝑆)
210 fvex 6671 . . . . . . . . . . . . . 14 (seq0( + , (𝐺𝑦))‘𝑖) ∈ V
211 eqid 2758 . . . . . . . . . . . . . . 15 (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) = (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖))
212211fvmpt2 6770 . . . . . . . . . . . . . 14 ((𝑦𝑆 ∧ (seq0( + , (𝐺𝑦))‘𝑖) ∈ V) → ((𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖))‘𝑦) = (seq0( + , (𝐺𝑦))‘𝑖))
213209, 210, 212sylancl 589 . . . . . . . . . . . . 13 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖))‘𝑦) = (seq0( + , (𝐺𝑦))‘𝑖))
214208, 213eqtrd 2793 . . . . . . . . . . . 12 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝐻𝑖)‘𝑦) = (seq0( + , (𝐺𝑦))‘𝑖))
215 simplr 768 . . . . . . . . . . . 12 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → 𝐻(⇝𝑢𝑆)𝑓)
21615, 195, 199, 200, 202, 214, 215ulmclm 25081 . . . . . . . . . . 11 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → seq0( + , (𝐺𝑦)) ⇝ (𝑓𝑦))
21715, 195, 196, 198, 216isumclim 15160 . . . . . . . . . 10 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗) = (𝑓𝑦))
218217mpteq2dva 5127 . . . . . . . . 9 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)) = (𝑦𝑆 ↦ (𝑓𝑦)))
21968, 218syl5eq 2805 . . . . . . . 8 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝐹 = (𝑦𝑆 ↦ (𝑓𝑦)))
220194, 219eqtr4d 2796 . . . . . . 7 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝑓 = 𝐹)
221191, 220breqtrd 5058 . . . . . 6 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝐻(⇝𝑢𝑆)𝐹)
222221ex 416 . . . . 5 (𝜑 → (𝐻(⇝𝑢𝑆)𝑓𝐻(⇝𝑢𝑆)𝐹))
223222exlimdv 1934 . . . 4 (𝜑 → (∃𝑓 𝐻(⇝𝑢𝑆)𝑓𝐻(⇝𝑢𝑆)𝐹))
224 eldmg 5738 . . . . 5 (𝐻 ∈ dom (⇝𝑢𝑆) → (𝐻 ∈ dom (⇝𝑢𝑆) ↔ ∃𝑓 𝐻(⇝𝑢𝑆)𝑓))
225224ibi 270 . . . 4 (𝐻 ∈ dom (⇝𝑢𝑆) → ∃𝑓 𝐻(⇝𝑢𝑆)𝑓)
226223, 225impel 509 . . 3 ((𝜑𝐻 ∈ dom (⇝𝑢𝑆)) → 𝐻(⇝𝑢𝑆)𝐹)
227190, 226syldan 594 . 2 ((𝜑 ∧ 0 ≤ 𝑀) → 𝐻(⇝𝑢𝑆)𝐹)
228 0red 10682 . 2 (𝜑 → 0 ∈ ℝ)
22971, 227, 4, 228ltlecasei 10786 1 (𝜑𝐻(⇝𝑢𝑆)𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wral 3070  {crab 3074  Vcvv 3409  wss 3858  c0 4225   class class class wbr 5032  cmpt 5112  ccnv 5523  dom cdm 5524  cima 5527  ccom 5528   Fn wfn 6330  wf 6331  cfv 6335  (class class class)co 7150  f cof 7403  m cmap 8416  supcsup 8937  cc 10573  cr 10574  0cc0 10575   + caddc 10578   · cmul 10580  +∞cpnf 10710  *cxr 10712   < clt 10713  cle 10714  0cn0 11934  cz 12020  cuz 12282  [,]cicc 12782  ...cfz 12939  seqcseq 13418  cexp 13479  abscabs 14641  cli 14889  Σcsu 15090  𝑢culm 25070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-map 8418  df-pm 8419  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-n0 11935  df-z 12021  df-uz 12283  df-rp 12431  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-fl 13211  df-seq 13419  df-exp 13480  df-hash 13741  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-limsup 14876  df-clim 14893  df-rlim 14894  df-sum 15091  df-ulm 25071
This theorem is referenced by:  psercn2  25117  pserdvlem2  25122
  Copyright terms: Public domain W3C validator