| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl2 1193 | . . . . 5
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐹:𝐴⟶ℂ) | 
| 2 | 1 | ffvelcdmda 7104 | . . . . . . . 8
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ ℂ) | 
| 3 |  | dvcnp.k | . . . . . . . . . . . . . 14
⊢ 𝐾 =
(TopOpen‘ℂfld) | 
| 4 | 3 | cnfldtop 24804 | . . . . . . . . . . . . 13
⊢ 𝐾 ∈ Top | 
| 5 |  | simpl1 1192 | . . . . . . . . . . . . . 14
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑆 ⊆ ℂ) | 
| 6 |  | cnex 11236 | . . . . . . . . . . . . . 14
⊢ ℂ
∈ V | 
| 7 |  | ssexg 5323 | . . . . . . . . . . . . . 14
⊢ ((𝑆 ⊆ ℂ ∧ ℂ
∈ V) → 𝑆 ∈
V) | 
| 8 | 5, 6, 7 | sylancl 586 | . . . . . . . . . . . . 13
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑆 ∈ V) | 
| 9 |  | resttop 23168 | . . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Top ∧ 𝑆 ∈ V) → (𝐾 ↾t 𝑆) ∈ Top) | 
| 10 | 4, 8, 9 | sylancr 587 | . . . . . . . . . . . 12
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐾 ↾t 𝑆) ∈ Top) | 
| 11 |  | simpl3 1194 | . . . . . . . . . . . . 13
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐴 ⊆ 𝑆) | 
| 12 | 3 | cnfldtopon 24803 | . . . . . . . . . . . . . . 15
⊢ 𝐾 ∈
(TopOn‘ℂ) | 
| 13 |  | resttopon 23169 | . . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ (TopOn‘ℂ)
∧ 𝑆 ⊆ ℂ)
→ (𝐾
↾t 𝑆)
∈ (TopOn‘𝑆)) | 
| 14 | 12, 5, 13 | sylancr 587 | . . . . . . . . . . . . . 14
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) | 
| 15 |  | toponuni 22920 | . . . . . . . . . . . . . 14
⊢ ((𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ∪ (𝐾 ↾t 𝑆)) | 
| 16 | 14, 15 | syl 17 | . . . . . . . . . . . . 13
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑆 = ∪ (𝐾 ↾t 𝑆)) | 
| 17 | 11, 16 | sseqtrd 4020 | . . . . . . . . . . . 12
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐴 ⊆ ∪ (𝐾 ↾t 𝑆)) | 
| 18 |  | eqid 2737 | . . . . . . . . . . . . 13
⊢ ∪ (𝐾
↾t 𝑆) =
∪ (𝐾 ↾t 𝑆) | 
| 19 | 18 | ntrss2 23065 | . . . . . . . . . . . 12
⊢ (((𝐾 ↾t 𝑆) ∈ Top ∧ 𝐴 ⊆ ∪ (𝐾
↾t 𝑆))
→ ((int‘(𝐾
↾t 𝑆))‘𝐴) ⊆ 𝐴) | 
| 20 | 10, 17, 19 | syl2anc 584 | . . . . . . . . . . 11
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((int‘(𝐾 ↾t 𝑆))‘𝐴) ⊆ 𝐴) | 
| 21 |  | eqid 2737 | . . . . . . . . . . . . 13
⊢ (𝐾 ↾t 𝑆) = (𝐾 ↾t 𝑆) | 
| 22 |  | eqid 2737 | . . . . . . . . . . . . 13
⊢ (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) | 
| 23 |  | simp1 1137 | . . . . . . . . . . . . 13
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝑆 ⊆ ℂ) | 
| 24 |  | simp2 1138 | . . . . . . . . . . . . 13
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝐹:𝐴⟶ℂ) | 
| 25 |  | simp3 1139 | . . . . . . . . . . . . 13
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝐴 ⊆ 𝑆) | 
| 26 | 21, 3, 22, 23, 24, 25 | eldv 25933 | . . . . . . . . . . . 12
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → (𝐵(𝑆 D 𝐹)𝑦 ↔ (𝐵 ∈ ((int‘(𝐾 ↾t 𝑆))‘𝐴) ∧ 𝑦 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) limℂ 𝐵)))) | 
| 27 | 26 | simprbda 498 | . . . . . . . . . . 11
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵 ∈ ((int‘(𝐾 ↾t 𝑆))‘𝐴)) | 
| 28 | 20, 27 | sseldd 3984 | . . . . . . . . . 10
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵 ∈ 𝐴) | 
| 29 | 1, 28 | ffvelcdmd 7105 | . . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹‘𝐵) ∈ ℂ) | 
| 30 | 29 | adantr 480 | . . . . . . . 8
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝐵) ∈ ℂ) | 
| 31 | 2, 30 | subcld 11620 | . . . . . . 7
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ 𝐴) → ((𝐹‘𝑧) − (𝐹‘𝐵)) ∈ ℂ) | 
| 32 |  | ssidd 4007 | . . . . . . 7
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ℂ ⊆
ℂ) | 
| 33 |  | txtopon 23599 | . . . . . . . . 9
⊢ ((𝐾 ∈ (TopOn‘ℂ)
∧ 𝐾 ∈
(TopOn‘ℂ)) → (𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ ×
ℂ))) | 
| 34 | 12, 12, 33 | mp2an 692 | . . . . . . . 8
⊢ (𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ
× ℂ)) | 
| 35 | 34 | toponrestid 22927 | . . . . . . 7
⊢ (𝐾 ×t 𝐾) = ((𝐾 ×t 𝐾) ↾t (ℂ ×
ℂ)) | 
| 36 | 11, 5 | sstrd 3994 | . . . . . . . . . . . . 13
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐴 ⊆ ℂ) | 
| 37 |  | eqid 2737 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑥) − (𝐹‘𝐵)) / (𝑥 − 𝐵))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑥) − (𝐹‘𝐵)) / (𝑥 − 𝐵))) | 
| 38 | 21, 3, 37, 23, 24, 25 | eldv 25933 | . . . . . . . . . . . . . . 15
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → (𝐵(𝑆 D 𝐹)𝑦 ↔ (𝐵 ∈ ((int‘(𝐾 ↾t 𝑆))‘𝐴) ∧ 𝑦 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑥) − (𝐹‘𝐵)) / (𝑥 − 𝐵))) limℂ 𝐵)))) | 
| 39 | 38 | simprbda 498 | . . . . . . . . . . . . . 14
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵 ∈ ((int‘(𝐾 ↾t 𝑆))‘𝐴)) | 
| 40 | 20, 39 | sseldd 3984 | . . . . . . . . . . . . 13
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵 ∈ 𝐴) | 
| 41 | 1, 36, 40 | dvlem 25931 | . . . . . . . . . . . 12
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)) ∈ ℂ) | 
| 42 | 36 | ssdifssd 4147 | . . . . . . . . . . . . . 14
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐴 ∖ {𝐵}) ⊆ ℂ) | 
| 43 | 42 | sselda 3983 | . . . . . . . . . . . . 13
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧 ∈ ℂ) | 
| 44 | 36, 40 | sseldd 3984 | . . . . . . . . . . . . . 14
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵 ∈ ℂ) | 
| 45 | 44 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ) | 
| 46 | 43, 45 | subcld 11620 | . . . . . . . . . . . 12
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧 − 𝐵) ∈ ℂ) | 
| 47 | 26 | simplbda 499 | . . . . . . . . . . . 12
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) limℂ 𝐵)) | 
| 48 |  | limcresi 25920 | . . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ 𝐴 ↦ (𝑧 − 𝐵)) limℂ 𝐵) ⊆ (((𝑧 ∈ 𝐴 ↦ (𝑧 − 𝐵)) ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵) | 
| 49 |  | difss 4136 | . . . . . . . . . . . . . . . 16
⊢ (𝐴 ∖ {𝐵}) ⊆ 𝐴 | 
| 50 |  | resmpt 6055 | . . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑧 ∈ 𝐴 ↦ (𝑧 − 𝐵)) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧 − 𝐵))) | 
| 51 | 49, 50 | ax-mp 5 | . . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ 𝐴 ↦ (𝑧 − 𝐵)) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧 − 𝐵)) | 
| 52 | 51 | oveq1i 7441 | . . . . . . . . . . . . . 14
⊢ (((𝑧 ∈ 𝐴 ↦ (𝑧 − 𝐵)) ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧 − 𝐵)) limℂ 𝐵) | 
| 53 | 48, 52 | sseqtri 4032 | . . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝐴 ↦ (𝑧 − 𝐵)) limℂ 𝐵) ⊆ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧 − 𝐵)) limℂ 𝐵) | 
| 54 | 44 | subidd 11608 | . . . . . . . . . . . . . 14
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐵 − 𝐵) = 0) | 
| 55 |  | ssid 4006 | . . . . . . . . . . . . . . . . 17
⊢ ℂ
⊆ ℂ | 
| 56 |  | cncfmptid 24939 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ⊆ ℂ ∧ ℂ
⊆ ℂ) → (𝑧
∈ 𝐴 ↦ 𝑧) ∈ (𝐴–cn→ℂ)) | 
| 57 | 36, 55, 56 | sylancl 586 | . . . . . . . . . . . . . . . 16
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧 ∈ 𝐴 ↦ 𝑧) ∈ (𝐴–cn→ℂ)) | 
| 58 |  | cncfmptc 24938 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ⊆ ℂ ∧ ℂ
⊆ ℂ) → (𝑧
∈ 𝐴 ↦ 𝐵) ∈ (𝐴–cn→ℂ)) | 
| 59 | 44, 36, 32, 58 | syl3anc 1373 | . . . . . . . . . . . . . . . 16
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧 ∈ 𝐴 ↦ 𝐵) ∈ (𝐴–cn→ℂ)) | 
| 60 | 57, 59 | subcncf 25479 | . . . . . . . . . . . . . . 15
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧 ∈ 𝐴 ↦ (𝑧 − 𝐵)) ∈ (𝐴–cn→ℂ)) | 
| 61 |  | oveq1 7438 | . . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝐵 → (𝑧 − 𝐵) = (𝐵 − 𝐵)) | 
| 62 | 60, 40, 61 | cnmptlimc 25925 | . . . . . . . . . . . . . 14
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐵 − 𝐵) ∈ ((𝑧 ∈ 𝐴 ↦ (𝑧 − 𝐵)) limℂ 𝐵)) | 
| 63 | 54, 62 | eqeltrrd 2842 | . . . . . . . . . . . . 13
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧 ∈ 𝐴 ↦ (𝑧 − 𝐵)) limℂ 𝐵)) | 
| 64 | 53, 63 | sselid 3981 | . . . . . . . . . . . 12
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧 − 𝐵)) limℂ 𝐵)) | 
| 65 | 3 | mpomulcn 24891 | . . . . . . . . . . . . 13
⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐾 ×t 𝐾) Cn 𝐾) | 
| 66 | 23, 24, 25 | dvcl 25934 | . . . . . . . . . . . . . 14
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ) | 
| 67 |  | 0cn 11253 | . . . . . . . . . . . . . 14
⊢ 0 ∈
ℂ | 
| 68 |  | opelxpi 5722 | . . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℂ ∧ 0 ∈
ℂ) → 〈𝑦,
0〉 ∈ (ℂ × ℂ)) | 
| 69 | 66, 67, 68 | sylancl 586 | . . . . . . . . . . . . 13
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 〈𝑦, 0〉 ∈ (ℂ ×
ℂ)) | 
| 70 | 34 | toponunii 22922 | . . . . . . . . . . . . . 14
⊢ (ℂ
× ℂ) = ∪ (𝐾 ×t 𝐾) | 
| 71 | 70 | cncnpi 23286 | . . . . . . . . . . . . 13
⊢ (((𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐾 ×t 𝐾) Cn 𝐾) ∧ 〈𝑦, 0〉 ∈ (ℂ × ℂ))
→ (𝑢 ∈ ℂ,
𝑣 ∈ ℂ ↦
(𝑢 · 𝑣)) ∈ (((𝐾 ×t 𝐾) CnP 𝐾)‘〈𝑦, 0〉)) | 
| 72 | 65, 69, 71 | sylancr 587 | . . . . . . . . . . . 12
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((𝐾 ×t 𝐾) CnP 𝐾)‘〈𝑦, 0〉)) | 
| 73 | 41, 46, 32, 32, 3, 35, 47, 64, 72 | limccnp2 25927 | . . . . . . . . . . 11
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))0) ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧 − 𝐵))) limℂ 𝐵)) | 
| 74 |  | df-mpt 5226 | . . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧 − 𝐵))) = {〈𝑧, 𝑤〉 ∣ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧 − 𝐵)))} | 
| 75 | 74 | oveq1i 7441 | . . . . . . . . . . 11
⊢ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧 − 𝐵))) limℂ 𝐵) = ({〈𝑧, 𝑤〉 ∣ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧 − 𝐵)))} limℂ 𝐵) | 
| 76 | 73, 75 | eleqtrdi 2851 | . . . . . . . . . 10
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))0) ∈ ({〈𝑧, 𝑤〉 ∣ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧 − 𝐵)))} limℂ 𝐵)) | 
| 77 |  | 0cnd 11254 | . . . . . . . . . . 11
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ℂ) | 
| 78 |  | ovmpot 7594 | . . . . . . . . . . 11
⊢ ((𝑦 ∈ ℂ ∧ 0 ∈
ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))0) = (𝑦 · 0)) | 
| 79 | 66, 77, 78 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))0) = (𝑦 · 0)) | 
| 80 | 1, 36, 28 | dvlem 25931 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)) ∈ ℂ) | 
| 81 | 36, 28 | sseldd 3984 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵 ∈ ℂ) | 
| 82 | 81 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ) | 
| 83 | 43, 82 | subcld 11620 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧 − 𝐵) ∈ ℂ) | 
| 84 |  | ovmpot 7594 | . . . . . . . . . . . . . . . 16
⊢
(((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)) ∈ ℂ ∧ (𝑧 − 𝐵) ∈ ℂ) → ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧 − 𝐵)) = ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)) · (𝑧 − 𝐵))) | 
| 85 | 80, 83, 84 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧 − 𝐵)) = ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)) · (𝑧 − 𝐵))) | 
| 86 | 85 | eqeq2d 2748 | . . . . . . . . . . . . . 14
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑤 = ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧 − 𝐵)) ↔ 𝑤 = ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)) · (𝑧 − 𝐵)))) | 
| 87 | 86 | pm5.32da 579 | . . . . . . . . . . . . 13
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧 − 𝐵))) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)) · (𝑧 − 𝐵))))) | 
| 88 | 87 | opabbidv 5209 | . . . . . . . . . . . 12
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → {〈𝑧, 𝑤〉 ∣ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧 − 𝐵)))} = {〈𝑧, 𝑤〉 ∣ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)) · (𝑧 − 𝐵)))}) | 
| 89 |  | df-mpt 5226 | . . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)) · (𝑧 − 𝐵))) = {〈𝑧, 𝑤〉 ∣ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)) · (𝑧 − 𝐵)))} | 
| 90 | 88, 89 | eqtr4di 2795 | . . . . . . . . . . 11
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → {〈𝑧, 𝑤〉 ∣ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧 − 𝐵)))} = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)) · (𝑧 − 𝐵)))) | 
| 91 | 90 | oveq1d 7446 | . . . . . . . . . 10
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ({〈𝑧, 𝑤〉 ∣ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧 − 𝐵)))} limℂ 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)) · (𝑧 − 𝐵))) limℂ 𝐵)) | 
| 92 | 76, 79, 91 | 3eltr3d 2855 | . . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑦 · 0) ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)) · (𝑧 − 𝐵))) limℂ 𝐵)) | 
| 93 | 66 | mul01d 11460 | . . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑦 · 0) = 0) | 
| 94 | 1 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐹:𝐴⟶ℂ) | 
| 95 |  | simpr 484 | . . . . . . . . . . . . . . 15
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧 ∈ (𝐴 ∖ {𝐵})) | 
| 96 | 49, 95 | sselid 3981 | . . . . . . . . . . . . . 14
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧 ∈ 𝐴) | 
| 97 | 94, 96 | ffvelcdmd 7105 | . . . . . . . . . . . . 13
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝐹‘𝑧) ∈ ℂ) | 
| 98 | 29 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝐹‘𝐵) ∈ ℂ) | 
| 99 | 97, 98 | subcld 11620 | . . . . . . . . . . . 12
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((𝐹‘𝑧) − (𝐹‘𝐵)) ∈ ℂ) | 
| 100 |  | eldifsni 4790 | . . . . . . . . . . . . . 14
⊢ (𝑧 ∈ (𝐴 ∖ {𝐵}) → 𝑧 ≠ 𝐵) | 
| 101 | 100 | adantl 481 | . . . . . . . . . . . . 13
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧 ≠ 𝐵) | 
| 102 | 43, 82, 101 | subne0d 11629 | . . . . . . . . . . . 12
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧 − 𝐵) ≠ 0) | 
| 103 | 99, 83, 102 | divcan1d 12044 | . . . . . . . . . . 11
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)) · (𝑧 − 𝐵)) = ((𝐹‘𝑧) − (𝐹‘𝐵))) | 
| 104 | 103 | mpteq2dva 5242 | . . . . . . . . . 10
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)) · (𝑧 − 𝐵))) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹‘𝑧) − (𝐹‘𝐵)))) | 
| 105 | 104 | oveq1d 7446 | . . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)) · (𝑧 − 𝐵))) limℂ 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹‘𝑧) − (𝐹‘𝐵))) limℂ 𝐵)) | 
| 106 | 92, 93, 105 | 3eltr3d 2855 | . . . . . . . 8
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹‘𝑧) − (𝐹‘𝐵))) limℂ 𝐵)) | 
| 107 | 31 | fmpttd 7135 | . . . . . . . . . 10
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧 ∈ 𝐴 ↦ ((𝐹‘𝑧) − (𝐹‘𝐵))):𝐴⟶ℂ) | 
| 108 | 107 | limcdif 25911 | . . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧 ∈ 𝐴 ↦ ((𝐹‘𝑧) − (𝐹‘𝐵))) limℂ 𝐵) = (((𝑧 ∈ 𝐴 ↦ ((𝐹‘𝑧) − (𝐹‘𝐵))) ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵)) | 
| 109 |  | resmpt 6055 | . . . . . . . . . . 11
⊢ ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑧 ∈ 𝐴 ↦ ((𝐹‘𝑧) − (𝐹‘𝐵))) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹‘𝑧) − (𝐹‘𝐵)))) | 
| 110 | 49, 109 | ax-mp 5 | . . . . . . . . . 10
⊢ ((𝑧 ∈ 𝐴 ↦ ((𝐹‘𝑧) − (𝐹‘𝐵))) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹‘𝑧) − (𝐹‘𝐵))) | 
| 111 | 110 | oveq1i 7441 | . . . . . . . . 9
⊢ (((𝑧 ∈ 𝐴 ↦ ((𝐹‘𝑧) − (𝐹‘𝐵))) ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹‘𝑧) − (𝐹‘𝐵))) limℂ 𝐵) | 
| 112 | 108, 111 | eqtrdi 2793 | . . . . . . . 8
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧 ∈ 𝐴 ↦ ((𝐹‘𝑧) − (𝐹‘𝐵))) limℂ 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹‘𝑧) − (𝐹‘𝐵))) limℂ 𝐵)) | 
| 113 | 106, 112 | eleqtrrd 2844 | . . . . . . 7
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧 ∈ 𝐴 ↦ ((𝐹‘𝑧) − (𝐹‘𝐵))) limℂ 𝐵)) | 
| 114 |  | cncfmptc 24938 | . . . . . . . . 9
⊢ (((𝐹‘𝐵) ∈ ℂ ∧ 𝐴 ⊆ ℂ ∧ ℂ ⊆
ℂ) → (𝑧 ∈
𝐴 ↦ (𝐹‘𝐵)) ∈ (𝐴–cn→ℂ)) | 
| 115 | 29, 36, 32, 114 | syl3anc 1373 | . . . . . . . 8
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ (𝐴–cn→ℂ)) | 
| 116 |  | eqidd 2738 | . . . . . . . 8
⊢ (𝑧 = 𝐵 → (𝐹‘𝐵) = (𝐹‘𝐵)) | 
| 117 | 115, 28, 116 | cnmptlimc 25925 | . . . . . . 7
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹‘𝐵) ∈ ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝐵)) limℂ 𝐵)) | 
| 118 | 3 | addcn 24887 | . . . . . . . 8
⊢  + ∈
((𝐾 ×t
𝐾) Cn 𝐾) | 
| 119 |  | opelxpi 5722 | . . . . . . . . 9
⊢ ((0
∈ ℂ ∧ (𝐹‘𝐵) ∈ ℂ) → 〈0, (𝐹‘𝐵)〉 ∈ (ℂ ×
ℂ)) | 
| 120 | 67, 29, 119 | sylancr 587 | . . . . . . . 8
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 〈0, (𝐹‘𝐵)〉 ∈ (ℂ ×
ℂ)) | 
| 121 | 70 | cncnpi 23286 | . . . . . . . 8
⊢ (( +
∈ ((𝐾
×t 𝐾) Cn
𝐾) ∧ 〈0, (𝐹‘𝐵)〉 ∈ (ℂ × ℂ))
→ + ∈ (((𝐾
×t 𝐾) CnP
𝐾)‘〈0, (𝐹‘𝐵)〉)) | 
| 122 | 118, 120,
121 | sylancr 587 | . . . . . . 7
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → + ∈ (((𝐾 ×t 𝐾) CnP 𝐾)‘〈0, (𝐹‘𝐵)〉)) | 
| 123 | 31, 30, 32, 32, 3, 35, 113, 117, 122 | limccnp2 25927 | . . . . . 6
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (0 + (𝐹‘𝐵)) ∈ ((𝑧 ∈ 𝐴 ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) + (𝐹‘𝐵))) limℂ 𝐵)) | 
| 124 | 29 | addlidd 11462 | . . . . . 6
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (0 + (𝐹‘𝐵)) = (𝐹‘𝐵)) | 
| 125 | 2, 30 | npcand 11624 | . . . . . . . . 9
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ 𝐴) → (((𝐹‘𝑧) − (𝐹‘𝐵)) + (𝐹‘𝐵)) = (𝐹‘𝑧)) | 
| 126 | 125 | mpteq2dva 5242 | . . . . . . . 8
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧 ∈ 𝐴 ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) + (𝐹‘𝐵))) = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))) | 
| 127 | 1 | feqmptd 6977 | . . . . . . . 8
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐹 = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))) | 
| 128 | 126, 127 | eqtr4d 2780 | . . . . . . 7
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧 ∈ 𝐴 ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) + (𝐹‘𝐵))) = 𝐹) | 
| 129 | 128 | oveq1d 7446 | . . . . . 6
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧 ∈ 𝐴 ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) + (𝐹‘𝐵))) limℂ 𝐵) = (𝐹 limℂ 𝐵)) | 
| 130 | 123, 124,
129 | 3eltr3d 2855 | . . . . 5
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)) | 
| 131 |  | dvcnp.j | . . . . . . 7
⊢ 𝐽 = (𝐾 ↾t 𝐴) | 
| 132 | 3, 131 | cnplimc 25922 | . . . . . 6
⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) | 
| 133 | 36, 28, 132 | syl2anc 584 | . . . . 5
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) | 
| 134 | 1, 130, 133 | mpbir2and 713 | . . . 4
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) | 
| 135 | 134 | ex 412 | . . 3
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → (𝐵(𝑆 D 𝐹)𝑦 → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))) | 
| 136 | 135 | exlimdv 1933 | . 2
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → (∃𝑦 𝐵(𝑆 D 𝐹)𝑦 → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))) | 
| 137 |  | eldmg 5909 | . . 3
⊢ (𝐵 ∈ dom (𝑆 D 𝐹) → (𝐵 ∈ dom (𝑆 D 𝐹) ↔ ∃𝑦 𝐵(𝑆 D 𝐹)𝑦)) | 
| 138 | 137 | ibi 267 | . 2
⊢ (𝐵 ∈ dom (𝑆 D 𝐹) → ∃𝑦 𝐵(𝑆 D 𝐹)𝑦) | 
| 139 | 136, 138 | impel 505 | 1
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) |