MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnp2 Structured version   Visualization version   GIF version

Theorem dvcnp2 25837
Description: A function is continuous at each point for which it is differentiable. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) Avoid ax-mulf 11108. (Revised by GG, 16-Mar-2025.)
Hypotheses
Ref Expression
dvcnp.j 𝐽 = (𝐾t 𝐴)
dvcnp.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
dvcnp2 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))

Proof of Theorem dvcnp2
Dummy variables 𝑦 𝑧 𝑥 𝑤 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1193 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐹:𝐴⟶ℂ)
21ffvelcdmda 7022 . . . . . . . 8 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
3 dvcnp.k . . . . . . . . . . . . . 14 𝐾 = (TopOpen‘ℂfld)
43cnfldtop 24687 . . . . . . . . . . . . 13 𝐾 ∈ Top
5 simpl1 1192 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑆 ⊆ ℂ)
6 cnex 11109 . . . . . . . . . . . . . 14 ℂ ∈ V
7 ssexg 5265 . . . . . . . . . . . . . 14 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
85, 6, 7sylancl 586 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑆 ∈ V)
9 resttop 23063 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ 𝑆 ∈ V) → (𝐾t 𝑆) ∈ Top)
104, 8, 9sylancr 587 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐾t 𝑆) ∈ Top)
11 simpl3 1194 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐴𝑆)
123cnfldtopon 24686 . . . . . . . . . . . . . . 15 𝐾 ∈ (TopOn‘ℂ)
13 resttopon 23064 . . . . . . . . . . . . . . 15 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
1412, 5, 13sylancr 587 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
15 toponuni 22817 . . . . . . . . . . . . . 14 ((𝐾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = (𝐾t 𝑆))
1614, 15syl 17 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑆 = (𝐾t 𝑆))
1711, 16sseqtrd 3974 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐴 (𝐾t 𝑆))
18 eqid 2729 . . . . . . . . . . . . 13 (𝐾t 𝑆) = (𝐾t 𝑆)
1918ntrss2 22960 . . . . . . . . . . . 12 (((𝐾t 𝑆) ∈ Top ∧ 𝐴 (𝐾t 𝑆)) → ((int‘(𝐾t 𝑆))‘𝐴) ⊆ 𝐴)
2010, 17, 19syl2anc 584 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((int‘(𝐾t 𝑆))‘𝐴) ⊆ 𝐴)
21 eqid 2729 . . . . . . . . . . . . 13 (𝐾t 𝑆) = (𝐾t 𝑆)
22 eqid 2729 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)))
23 simp1 1136 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝑆 ⊆ ℂ)
24 simp2 1137 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝐹:𝐴⟶ℂ)
25 simp3 1138 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝐴𝑆)
2621, 3, 22, 23, 24, 25eldv 25815 . . . . . . . . . . . 12 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → (𝐵(𝑆 D 𝐹)𝑦 ↔ (𝐵 ∈ ((int‘(𝐾t 𝑆))‘𝐴) ∧ 𝑦 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))) lim 𝐵))))
2726simprbda 498 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵 ∈ ((int‘(𝐾t 𝑆))‘𝐴))
2820, 27sseldd 3938 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵𝐴)
291, 28ffvelcdmd 7023 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹𝐵) ∈ ℂ)
3029adantr 480 . . . . . . . 8 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧𝐴) → (𝐹𝐵) ∈ ℂ)
312, 30subcld 11493 . . . . . . 7 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧𝐴) → ((𝐹𝑧) − (𝐹𝐵)) ∈ ℂ)
32 ssidd 3961 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ℂ ⊆ ℂ)
33 txtopon 23494 . . . . . . . . 9 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐾 ∈ (TopOn‘ℂ)) → (𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ × ℂ)))
3412, 12, 33mp2an 692 . . . . . . . 8 (𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ × ℂ))
3534toponrestid 22824 . . . . . . 7 (𝐾 ×t 𝐾) = ((𝐾 ×t 𝐾) ↾t (ℂ × ℂ))
3611, 5sstrd 3948 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐴 ⊆ ℂ)
37 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑥) − (𝐹𝐵)) / (𝑥𝐵))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑥) − (𝐹𝐵)) / (𝑥𝐵)))
3821, 3, 37, 23, 24, 25eldv 25815 . . . . . . . . . . . . . . 15 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → (𝐵(𝑆 D 𝐹)𝑦 ↔ (𝐵 ∈ ((int‘(𝐾t 𝑆))‘𝐴) ∧ 𝑦 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑥) − (𝐹𝐵)) / (𝑥𝐵))) lim 𝐵))))
3938simprbda 498 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵 ∈ ((int‘(𝐾t 𝑆))‘𝐴))
4020, 39sseldd 3938 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵𝐴)
411, 36, 40dvlem 25813 . . . . . . . . . . . 12 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) ∈ ℂ)
4236ssdifssd 4100 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐴 ∖ {𝐵}) ⊆ ℂ)
4342sselda 3937 . . . . . . . . . . . . 13 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧 ∈ ℂ)
4436, 40sseldd 3938 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵 ∈ ℂ)
4544adantr 480 . . . . . . . . . . . . 13 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ)
4643, 45subcld 11493 . . . . . . . . . . . 12 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧𝐵) ∈ ℂ)
4726simplbda 499 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))) lim 𝐵))
48 limcresi 25802 . . . . . . . . . . . . . 14 ((𝑧𝐴 ↦ (𝑧𝐵)) lim 𝐵) ⊆ (((𝑧𝐴 ↦ (𝑧𝐵)) ↾ (𝐴 ∖ {𝐵})) lim 𝐵)
49 difss 4089 . . . . . . . . . . . . . . . 16 (𝐴 ∖ {𝐵}) ⊆ 𝐴
50 resmpt 5992 . . . . . . . . . . . . . . . 16 ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑧𝐴 ↦ (𝑧𝐵)) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧𝐵)))
5149, 50ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑧𝐴 ↦ (𝑧𝐵)) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧𝐵))
5251oveq1i 7363 . . . . . . . . . . . . . 14 (((𝑧𝐴 ↦ (𝑧𝐵)) ↾ (𝐴 ∖ {𝐵})) lim 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧𝐵)) lim 𝐵)
5348, 52sseqtri 3986 . . . . . . . . . . . . 13 ((𝑧𝐴 ↦ (𝑧𝐵)) lim 𝐵) ⊆ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧𝐵)) lim 𝐵)
5444subidd 11481 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐵𝐵) = 0)
55 ssid 3960 . . . . . . . . . . . . . . . . 17 ℂ ⊆ ℂ
56 cncfmptid 24822 . . . . . . . . . . . . . . . . 17 ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧𝐴𝑧) ∈ (𝐴cn→ℂ))
5736, 55, 56sylancl 586 . . . . . . . . . . . . . . . 16 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴𝑧) ∈ (𝐴cn→ℂ))
58 cncfmptc 24821 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℂ ∧ 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧𝐴𝐵) ∈ (𝐴cn→ℂ))
5944, 36, 32, 58syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴𝐵) ∈ (𝐴cn→ℂ))
6057, 59subcncf 25361 . . . . . . . . . . . . . . 15 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴 ↦ (𝑧𝐵)) ∈ (𝐴cn→ℂ))
61 oveq1 7360 . . . . . . . . . . . . . . 15 (𝑧 = 𝐵 → (𝑧𝐵) = (𝐵𝐵))
6260, 40, 61cnmptlimc 25807 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐵𝐵) ∈ ((𝑧𝐴 ↦ (𝑧𝐵)) lim 𝐵))
6354, 62eqeltrrd 2829 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧𝐴 ↦ (𝑧𝐵)) lim 𝐵))
6453, 63sselid 3935 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧𝐵)) lim 𝐵))
653mpomulcn 24774 . . . . . . . . . . . . 13 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
6623, 24, 25dvcl 25816 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ)
67 0cn 11126 . . . . . . . . . . . . . 14 0 ∈ ℂ
68 opelxpi 5660 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ 0 ∈ ℂ) → ⟨𝑦, 0⟩ ∈ (ℂ × ℂ))
6966, 67, 68sylancl 586 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ⟨𝑦, 0⟩ ∈ (ℂ × ℂ))
7034toponunii 22819 . . . . . . . . . . . . . 14 (ℂ × ℂ) = (𝐾 ×t 𝐾)
7170cncnpi 23181 . . . . . . . . . . . . 13 (((𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐾 ×t 𝐾) Cn 𝐾) ∧ ⟨𝑦, 0⟩ ∈ (ℂ × ℂ)) → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((𝐾 ×t 𝐾) CnP 𝐾)‘⟨𝑦, 0⟩))
7265, 69, 71sylancr 587 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((𝐾 ×t 𝐾) CnP 𝐾)‘⟨𝑦, 0⟩))
7341, 46, 32, 32, 3, 35, 47, 64, 72limccnp2 25809 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))0) ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧𝐵))) lim 𝐵))
74 df-mpt 5177 . . . . . . . . . . . 12 (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧𝐵))) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧𝐵)))}
7574oveq1i 7363 . . . . . . . . . . 11 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧𝐵))) lim 𝐵) = ({⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧𝐵)))} lim 𝐵)
7673, 75eleqtrdi 2838 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))0) ∈ ({⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧𝐵)))} lim 𝐵))
77 0cnd 11127 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ℂ)
78 ovmpot 7514 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))0) = (𝑦 · 0))
7966, 77, 78syl2anc 584 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))0) = (𝑦 · 0))
801, 36, 28dvlem 25813 . . . . . . . . . . . . . . . 16 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) ∈ ℂ)
8136, 28sseldd 3938 . . . . . . . . . . . . . . . . . 18 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵 ∈ ℂ)
8281adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ)
8343, 82subcld 11493 . . . . . . . . . . . . . . . 16 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧𝐵) ∈ ℂ)
84 ovmpot 7514 . . . . . . . . . . . . . . . 16 (((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) ∈ ℂ ∧ (𝑧𝐵) ∈ ℂ) → ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧𝐵)) = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵)))
8580, 83, 84syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧𝐵)) = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵)))
8685eqeq2d 2740 . . . . . . . . . . . . . 14 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑤 = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧𝐵)) ↔ 𝑤 = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵))))
8786pm5.32da 579 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧𝐵))) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵)))))
8887opabbidv 5161 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧𝐵)))} = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵)))})
89 df-mpt 5177 . . . . . . . . . . . 12 (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵))) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵)))}
9088, 89eqtr4di 2782 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧𝐵)))} = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵))))
9190oveq1d 7368 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ({⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧𝐵)))} lim 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵))) lim 𝐵))
9276, 79, 913eltr3d 2842 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑦 · 0) ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵))) lim 𝐵))
9366mul01d 11333 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑦 · 0) = 0)
941adantr 480 . . . . . . . . . . . . . 14 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐹:𝐴⟶ℂ)
95 simpr 484 . . . . . . . . . . . . . . 15 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧 ∈ (𝐴 ∖ {𝐵}))
9649, 95sselid 3935 . . . . . . . . . . . . . 14 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧𝐴)
9794, 96ffvelcdmd 7023 . . . . . . . . . . . . 13 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝐹𝑧) ∈ ℂ)
9829adantr 480 . . . . . . . . . . . . 13 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝐹𝐵) ∈ ℂ)
9997, 98subcld 11493 . . . . . . . . . . . 12 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((𝐹𝑧) − (𝐹𝐵)) ∈ ℂ)
100 eldifsni 4744 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝐴 ∖ {𝐵}) → 𝑧𝐵)
101100adantl 481 . . . . . . . . . . . . 13 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧𝐵)
10243, 82, 101subne0d 11502 . . . . . . . . . . . 12 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧𝐵) ≠ 0)
10399, 83, 102divcan1d 11919 . . . . . . . . . . 11 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵)) = ((𝐹𝑧) − (𝐹𝐵)))
104103mpteq2dva 5188 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵))) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))))
105104oveq1d 7368 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵))) lim 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵))
10692, 93, 1053eltr3d 2842 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵))
10731fmpttd 7053 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))):𝐴⟶ℂ)
108107limcdif 25793 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵) = (((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) ↾ (𝐴 ∖ {𝐵})) lim 𝐵))
109 resmpt 5992 . . . . . . . . . . 11 ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))))
11049, 109ax-mp 5 . . . . . . . . . 10 ((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵)))
111110oveq1i 7363 . . . . . . . . 9 (((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) ↾ (𝐴 ∖ {𝐵})) lim 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵)
112108, 111eqtrdi 2780 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵))
113106, 112eleqtrrd 2831 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵))
114 cncfmptc 24821 . . . . . . . . 9 (((𝐹𝐵) ∈ ℂ ∧ 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn→ℂ))
11529, 36, 32, 114syl3anc 1373 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn→ℂ))
116 eqidd 2730 . . . . . . . 8 (𝑧 = 𝐵 → (𝐹𝐵) = (𝐹𝐵))
117115, 28, 116cnmptlimc 25807 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹𝐵) ∈ ((𝑧𝐴 ↦ (𝐹𝐵)) lim 𝐵))
1183addcn 24770 . . . . . . . 8 + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
119 opelxpi 5660 . . . . . . . . 9 ((0 ∈ ℂ ∧ (𝐹𝐵) ∈ ℂ) → ⟨0, (𝐹𝐵)⟩ ∈ (ℂ × ℂ))
12067, 29, 119sylancr 587 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ⟨0, (𝐹𝐵)⟩ ∈ (ℂ × ℂ))
12170cncnpi 23181 . . . . . . . 8 (( + ∈ ((𝐾 ×t 𝐾) Cn 𝐾) ∧ ⟨0, (𝐹𝐵)⟩ ∈ (ℂ × ℂ)) → + ∈ (((𝐾 ×t 𝐾) CnP 𝐾)‘⟨0, (𝐹𝐵)⟩))
122118, 120, 121sylancr 587 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → + ∈ (((𝐾 ×t 𝐾) CnP 𝐾)‘⟨0, (𝐹𝐵)⟩))
12331, 30, 32, 32, 3, 35, 113, 117, 122limccnp2 25809 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (0 + (𝐹𝐵)) ∈ ((𝑧𝐴 ↦ (((𝐹𝑧) − (𝐹𝐵)) + (𝐹𝐵))) lim 𝐵))
12429addlidd 11335 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (0 + (𝐹𝐵)) = (𝐹𝐵))
1252, 30npcand 11497 . . . . . . . . 9 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧𝐴) → (((𝐹𝑧) − (𝐹𝐵)) + (𝐹𝐵)) = (𝐹𝑧))
126125mpteq2dva 5188 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴 ↦ (((𝐹𝑧) − (𝐹𝐵)) + (𝐹𝐵))) = (𝑧𝐴 ↦ (𝐹𝑧)))
1271feqmptd 6895 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐹 = (𝑧𝐴 ↦ (𝐹𝑧)))
128126, 127eqtr4d 2767 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴 ↦ (((𝐹𝑧) − (𝐹𝐵)) + (𝐹𝐵))) = 𝐹)
129128oveq1d 7368 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧𝐴 ↦ (((𝐹𝑧) − (𝐹𝐵)) + (𝐹𝐵))) lim 𝐵) = (𝐹 lim 𝐵))
130123, 124, 1293eltr3d 2842 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
131 dvcnp.j . . . . . . 7 𝐽 = (𝐾t 𝐴)
1323, 131cnplimc 25804 . . . . . 6 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
13336, 28, 132syl2anc 584 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
1341, 130, 133mpbir2and 713 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))
135134ex 412 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → (𝐵(𝑆 D 𝐹)𝑦𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)))
136135exlimdv 1933 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → (∃𝑦 𝐵(𝑆 D 𝐹)𝑦𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)))
137 eldmg 5845 . . 3 (𝐵 ∈ dom (𝑆 D 𝐹) → (𝐵 ∈ dom (𝑆 D 𝐹) ↔ ∃𝑦 𝐵(𝑆 D 𝐹)𝑦))
138137ibi 267 . 2 (𝐵 ∈ dom (𝑆 D 𝐹) → ∃𝑦 𝐵(𝑆 D 𝐹)𝑦)
139136, 138impel 505 1 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  Vcvv 3438  cdif 3902  wss 3905  {csn 4579  cop 4585   cuni 4861   class class class wbr 5095  {copab 5157  cmpt 5176   × cxp 5621  dom cdm 5623  cres 5625  wf 6482  cfv 6486  (class class class)co 7353  cmpo 7355  cc 11026  0cc0 11028   + caddc 11031   · cmul 11033  cmin 11365   / cdiv 11795  t crest 17342  TopOpenctopn 17343  fldccnfld 21279  Topctop 22796  TopOnctopon 22813  intcnt 22920   Cn ccn 23127   CnP ccnp 23128   ×t ctx 23463  cnccncf 24785   lim climc 25779   D cdv 25780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-icc 13273  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-ntr 22923  df-cn 23130  df-cnp 23131  df-tx 23465  df-hmeo 23658  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784
This theorem is referenced by:  dvcn  25839  dvmulbr  25857  dvmulbrOLD  25858  dvcobr  25865  dvcobrOLD  25866  fouriersw  46216
  Copyright terms: Public domain W3C validator