Step | Hyp | Ref
| Expression |
1 | | simpl2 1191 |
. . . . 5
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐹:𝐴⟶ℂ) |
2 | 1 | ffvelrnda 6961 |
. . . . . . . 8
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ ℂ) |
3 | | dvcnp.k |
. . . . . . . . . . . . . 14
⊢ 𝐾 =
(TopOpen‘ℂfld) |
4 | 3 | cnfldtop 23947 |
. . . . . . . . . . . . 13
⊢ 𝐾 ∈ Top |
5 | | simpl1 1190 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑆 ⊆ ℂ) |
6 | | cnex 10952 |
. . . . . . . . . . . . . 14
⊢ ℂ
∈ V |
7 | | ssexg 5247 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ⊆ ℂ ∧ ℂ
∈ V) → 𝑆 ∈
V) |
8 | 5, 6, 7 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑆 ∈ V) |
9 | | resttop 22311 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Top ∧ 𝑆 ∈ V) → (𝐾 ↾t 𝑆) ∈ Top) |
10 | 4, 8, 9 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐾 ↾t 𝑆) ∈ Top) |
11 | | simpl3 1192 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐴 ⊆ 𝑆) |
12 | 3 | cnfldtopon 23946 |
. . . . . . . . . . . . . . 15
⊢ 𝐾 ∈
(TopOn‘ℂ) |
13 | | resttopon 22312 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ (TopOn‘ℂ)
∧ 𝑆 ⊆ ℂ)
→ (𝐾
↾t 𝑆)
∈ (TopOn‘𝑆)) |
14 | 12, 5, 13 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) |
15 | | toponuni 22063 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ∪ (𝐾 ↾t 𝑆)) |
16 | 14, 15 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑆 = ∪ (𝐾 ↾t 𝑆)) |
17 | 11, 16 | sseqtrd 3961 |
. . . . . . . . . . . 12
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐴 ⊆ ∪ (𝐾 ↾t 𝑆)) |
18 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ ∪ (𝐾
↾t 𝑆) =
∪ (𝐾 ↾t 𝑆) |
19 | 18 | ntrss2 22208 |
. . . . . . . . . . . 12
⊢ (((𝐾 ↾t 𝑆) ∈ Top ∧ 𝐴 ⊆ ∪ (𝐾
↾t 𝑆))
→ ((int‘(𝐾
↾t 𝑆))‘𝐴) ⊆ 𝐴) |
20 | 10, 17, 19 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((int‘(𝐾 ↾t 𝑆))‘𝐴) ⊆ 𝐴) |
21 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝐾 ↾t 𝑆) = (𝐾 ↾t 𝑆) |
22 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) |
23 | | simp1 1135 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝑆 ⊆ ℂ) |
24 | | simp2 1136 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝐹:𝐴⟶ℂ) |
25 | | simp3 1137 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝐴 ⊆ 𝑆) |
26 | 21, 3, 22, 23, 24, 25 | eldv 25062 |
. . . . . . . . . . . 12
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → (𝐵(𝑆 D 𝐹)𝑦 ↔ (𝐵 ∈ ((int‘(𝐾 ↾t 𝑆))‘𝐴) ∧ 𝑦 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) limℂ 𝐵)))) |
27 | 26 | simprbda 499 |
. . . . . . . . . . 11
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵 ∈ ((int‘(𝐾 ↾t 𝑆))‘𝐴)) |
28 | 20, 27 | sseldd 3922 |
. . . . . . . . . 10
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵 ∈ 𝐴) |
29 | 1, 28 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹‘𝐵) ∈ ℂ) |
30 | 29 | adantr 481 |
. . . . . . . 8
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝐵) ∈ ℂ) |
31 | 2, 30 | subcld 11332 |
. . . . . . 7
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ 𝐴) → ((𝐹‘𝑧) − (𝐹‘𝐵)) ∈ ℂ) |
32 | | ssid 3943 |
. . . . . . . 8
⊢ ℂ
⊆ ℂ |
33 | 32 | a1i 11 |
. . . . . . 7
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ℂ ⊆
ℂ) |
34 | | txtopon 22742 |
. . . . . . . . 9
⊢ ((𝐾 ∈ (TopOn‘ℂ)
∧ 𝐾 ∈
(TopOn‘ℂ)) → (𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ ×
ℂ))) |
35 | 12, 12, 34 | mp2an 689 |
. . . . . . . 8
⊢ (𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ
× ℂ)) |
36 | 35 | toponrestid 22070 |
. . . . . . 7
⊢ (𝐾 ×t 𝐾) = ((𝐾 ×t 𝐾) ↾t (ℂ ×
ℂ)) |
37 | 11, 5 | sstrd 3931 |
. . . . . . . . . . 11
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐴 ⊆ ℂ) |
38 | 1, 37, 28 | dvlem 25060 |
. . . . . . . . . 10
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)) ∈ ℂ) |
39 | 37 | ssdifssd 4077 |
. . . . . . . . . . . 12
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐴 ∖ {𝐵}) ⊆ ℂ) |
40 | 39 | sselda 3921 |
. . . . . . . . . . 11
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧 ∈ ℂ) |
41 | 37, 28 | sseldd 3922 |
. . . . . . . . . . . 12
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵 ∈ ℂ) |
42 | 41 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ) |
43 | 40, 42 | subcld 11332 |
. . . . . . . . . 10
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧 − 𝐵) ∈ ℂ) |
44 | 26 | simplbda 500 |
. . . . . . . . . 10
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) limℂ 𝐵)) |
45 | | limcresi 25049 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝐴 ↦ (𝑧 − 𝐵)) limℂ 𝐵) ⊆ (((𝑧 ∈ 𝐴 ↦ (𝑧 − 𝐵)) ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵) |
46 | | difss 4066 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∖ {𝐵}) ⊆ 𝐴 |
47 | | resmpt 5945 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑧 ∈ 𝐴 ↦ (𝑧 − 𝐵)) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧 − 𝐵))) |
48 | 46, 47 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝐴 ↦ (𝑧 − 𝐵)) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧 − 𝐵)) |
49 | 48 | oveq1i 7285 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ 𝐴 ↦ (𝑧 − 𝐵)) ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧 − 𝐵)) limℂ 𝐵) |
50 | 45, 49 | sseqtri 3957 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝐴 ↦ (𝑧 − 𝐵)) limℂ 𝐵) ⊆ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧 − 𝐵)) limℂ 𝐵) |
51 | 41 | subidd 11320 |
. . . . . . . . . . . 12
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐵 − 𝐵) = 0) |
52 | 3 | subcn 24029 |
. . . . . . . . . . . . . . 15
⊢ −
∈ ((𝐾
×t 𝐾) Cn
𝐾) |
53 | 52 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → − ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
54 | | cncfmptid 24076 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ⊆ ℂ ∧ ℂ
⊆ ℂ) → (𝑧
∈ 𝐴 ↦ 𝑧) ∈ (𝐴–cn→ℂ)) |
55 | 37, 32, 54 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧 ∈ 𝐴 ↦ 𝑧) ∈ (𝐴–cn→ℂ)) |
56 | | cncfmptc 24075 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ⊆ ℂ ∧ ℂ
⊆ ℂ) → (𝑧
∈ 𝐴 ↦ 𝐵) ∈ (𝐴–cn→ℂ)) |
57 | 41, 37, 33, 56 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧 ∈ 𝐴 ↦ 𝐵) ∈ (𝐴–cn→ℂ)) |
58 | 3, 53, 55, 57 | cncfmpt2f 24078 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧 ∈ 𝐴 ↦ (𝑧 − 𝐵)) ∈ (𝐴–cn→ℂ)) |
59 | | oveq1 7282 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝐵 → (𝑧 − 𝐵) = (𝐵 − 𝐵)) |
60 | 58, 28, 59 | cnmptlimc 25054 |
. . . . . . . . . . . 12
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐵 − 𝐵) ∈ ((𝑧 ∈ 𝐴 ↦ (𝑧 − 𝐵)) limℂ 𝐵)) |
61 | 51, 60 | eqeltrrd 2840 |
. . . . . . . . . . 11
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧 ∈ 𝐴 ↦ (𝑧 − 𝐵)) limℂ 𝐵)) |
62 | 50, 61 | sselid 3919 |
. . . . . . . . . 10
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧 − 𝐵)) limℂ 𝐵)) |
63 | 3 | mulcn 24030 |
. . . . . . . . . . 11
⊢ ·
∈ ((𝐾
×t 𝐾) Cn
𝐾) |
64 | 23, 24, 25 | dvcl 25063 |
. . . . . . . . . . . 12
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ) |
65 | | 0cn 10967 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℂ |
66 | | opelxpi 5626 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℂ ∧ 0 ∈
ℂ) → 〈𝑦,
0〉 ∈ (ℂ × ℂ)) |
67 | 64, 65, 66 | sylancl 586 |
. . . . . . . . . . 11
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 〈𝑦, 0〉 ∈ (ℂ ×
ℂ)) |
68 | 35 | toponunii 22065 |
. . . . . . . . . . . 12
⊢ (ℂ
× ℂ) = ∪ (𝐾 ×t 𝐾) |
69 | 68 | cncnpi 22429 |
. . . . . . . . . . 11
⊢ ((
· ∈ ((𝐾
×t 𝐾) Cn
𝐾) ∧ 〈𝑦, 0〉 ∈ (ℂ
× ℂ)) → · ∈ (((𝐾 ×t 𝐾) CnP 𝐾)‘〈𝑦, 0〉)) |
70 | 63, 67, 69 | sylancr 587 |
. . . . . . . . . 10
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → · ∈ (((𝐾 ×t 𝐾) CnP 𝐾)‘〈𝑦, 0〉)) |
71 | 38, 43, 33, 33, 3, 36, 44, 62, 70 | limccnp2 25056 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑦 · 0) ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)) · (𝑧 − 𝐵))) limℂ 𝐵)) |
72 | 64 | mul01d 11174 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑦 · 0) = 0) |
73 | 1 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐹:𝐴⟶ℂ) |
74 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧 ∈ (𝐴 ∖ {𝐵})) |
75 | 46, 74 | sselid 3919 |
. . . . . . . . . . . . . 14
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧 ∈ 𝐴) |
76 | 73, 75 | ffvelrnd 6962 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝐹‘𝑧) ∈ ℂ) |
77 | 29 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝐹‘𝐵) ∈ ℂ) |
78 | 76, 77 | subcld 11332 |
. . . . . . . . . . . 12
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((𝐹‘𝑧) − (𝐹‘𝐵)) ∈ ℂ) |
79 | | eldifsni 4723 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ (𝐴 ∖ {𝐵}) → 𝑧 ≠ 𝐵) |
80 | 79 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧 ≠ 𝐵) |
81 | 40, 42, 80 | subne0d 11341 |
. . . . . . . . . . . 12
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧 − 𝐵) ≠ 0) |
82 | 78, 43, 81 | divcan1d 11752 |
. . . . . . . . . . 11
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)) · (𝑧 − 𝐵)) = ((𝐹‘𝑧) − (𝐹‘𝐵))) |
83 | 82 | mpteq2dva 5174 |
. . . . . . . . . 10
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)) · (𝑧 − 𝐵))) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹‘𝑧) − (𝐹‘𝐵)))) |
84 | 83 | oveq1d 7290 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)) · (𝑧 − 𝐵))) limℂ 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹‘𝑧) − (𝐹‘𝐵))) limℂ 𝐵)) |
85 | 71, 72, 84 | 3eltr3d 2853 |
. . . . . . . 8
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹‘𝑧) − (𝐹‘𝐵))) limℂ 𝐵)) |
86 | 31 | fmpttd 6989 |
. . . . . . . . . 10
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧 ∈ 𝐴 ↦ ((𝐹‘𝑧) − (𝐹‘𝐵))):𝐴⟶ℂ) |
87 | 86 | limcdif 25040 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧 ∈ 𝐴 ↦ ((𝐹‘𝑧) − (𝐹‘𝐵))) limℂ 𝐵) = (((𝑧 ∈ 𝐴 ↦ ((𝐹‘𝑧) − (𝐹‘𝐵))) ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵)) |
88 | | resmpt 5945 |
. . . . . . . . . . 11
⊢ ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑧 ∈ 𝐴 ↦ ((𝐹‘𝑧) − (𝐹‘𝐵))) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹‘𝑧) − (𝐹‘𝐵)))) |
89 | 46, 88 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝐴 ↦ ((𝐹‘𝑧) − (𝐹‘𝐵))) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹‘𝑧) − (𝐹‘𝐵))) |
90 | 89 | oveq1i 7285 |
. . . . . . . . 9
⊢ (((𝑧 ∈ 𝐴 ↦ ((𝐹‘𝑧) − (𝐹‘𝐵))) ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹‘𝑧) − (𝐹‘𝐵))) limℂ 𝐵) |
91 | 87, 90 | eqtrdi 2794 |
. . . . . . . 8
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧 ∈ 𝐴 ↦ ((𝐹‘𝑧) − (𝐹‘𝐵))) limℂ 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹‘𝑧) − (𝐹‘𝐵))) limℂ 𝐵)) |
92 | 85, 91 | eleqtrrd 2842 |
. . . . . . 7
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧 ∈ 𝐴 ↦ ((𝐹‘𝑧) − (𝐹‘𝐵))) limℂ 𝐵)) |
93 | | cncfmptc 24075 |
. . . . . . . . 9
⊢ (((𝐹‘𝐵) ∈ ℂ ∧ 𝐴 ⊆ ℂ ∧ ℂ ⊆
ℂ) → (𝑧 ∈
𝐴 ↦ (𝐹‘𝐵)) ∈ (𝐴–cn→ℂ)) |
94 | 29, 37, 33, 93 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ (𝐴–cn→ℂ)) |
95 | | eqidd 2739 |
. . . . . . . 8
⊢ (𝑧 = 𝐵 → (𝐹‘𝐵) = (𝐹‘𝐵)) |
96 | 94, 28, 95 | cnmptlimc 25054 |
. . . . . . 7
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹‘𝐵) ∈ ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝐵)) limℂ 𝐵)) |
97 | 3 | addcn 24028 |
. . . . . . . 8
⊢ + ∈
((𝐾 ×t
𝐾) Cn 𝐾) |
98 | | opelxpi 5626 |
. . . . . . . . 9
⊢ ((0
∈ ℂ ∧ (𝐹‘𝐵) ∈ ℂ) → 〈0, (𝐹‘𝐵)〉 ∈ (ℂ ×
ℂ)) |
99 | 65, 29, 98 | sylancr 587 |
. . . . . . . 8
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 〈0, (𝐹‘𝐵)〉 ∈ (ℂ ×
ℂ)) |
100 | 68 | cncnpi 22429 |
. . . . . . . 8
⊢ (( +
∈ ((𝐾
×t 𝐾) Cn
𝐾) ∧ 〈0, (𝐹‘𝐵)〉 ∈ (ℂ × ℂ))
→ + ∈ (((𝐾
×t 𝐾) CnP
𝐾)‘〈0, (𝐹‘𝐵)〉)) |
101 | 97, 99, 100 | sylancr 587 |
. . . . . . 7
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → + ∈ (((𝐾 ×t 𝐾) CnP 𝐾)‘〈0, (𝐹‘𝐵)〉)) |
102 | 31, 30, 33, 33, 3, 36, 92, 96, 101 | limccnp2 25056 |
. . . . . 6
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (0 + (𝐹‘𝐵)) ∈ ((𝑧 ∈ 𝐴 ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) + (𝐹‘𝐵))) limℂ 𝐵)) |
103 | 29 | addid2d 11176 |
. . . . . 6
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (0 + (𝐹‘𝐵)) = (𝐹‘𝐵)) |
104 | 2, 30 | npcand 11336 |
. . . . . . . . 9
⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ 𝐴) → (((𝐹‘𝑧) − (𝐹‘𝐵)) + (𝐹‘𝐵)) = (𝐹‘𝑧)) |
105 | 104 | mpteq2dva 5174 |
. . . . . . . 8
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧 ∈ 𝐴 ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) + (𝐹‘𝐵))) = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))) |
106 | 1 | feqmptd 6837 |
. . . . . . . 8
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐹 = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))) |
107 | 105, 106 | eqtr4d 2781 |
. . . . . . 7
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧 ∈ 𝐴 ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) + (𝐹‘𝐵))) = 𝐹) |
108 | 107 | oveq1d 7290 |
. . . . . 6
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧 ∈ 𝐴 ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) + (𝐹‘𝐵))) limℂ 𝐵) = (𝐹 limℂ 𝐵)) |
109 | 102, 103,
108 | 3eltr3d 2853 |
. . . . 5
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)) |
110 | | dvcnp.j |
. . . . . . 7
⊢ 𝐽 = (𝐾 ↾t 𝐴) |
111 | 3, 110 | cnplimc 25051 |
. . . . . 6
⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) |
112 | 37, 28, 111 | syl2anc 584 |
. . . . 5
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) |
113 | 1, 109, 112 | mpbir2and 710 |
. . . 4
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) |
114 | 113 | ex 413 |
. . 3
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → (𝐵(𝑆 D 𝐹)𝑦 → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
115 | 114 | exlimdv 1936 |
. 2
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → (∃𝑦 𝐵(𝑆 D 𝐹)𝑦 → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
116 | | eldmg 5807 |
. . 3
⊢ (𝐵 ∈ dom (𝑆 D 𝐹) → (𝐵 ∈ dom (𝑆 D 𝐹) ↔ ∃𝑦 𝐵(𝑆 D 𝐹)𝑦)) |
117 | 116 | ibi 266 |
. 2
⊢ (𝐵 ∈ dom (𝑆 D 𝐹) → ∃𝑦 𝐵(𝑆 D 𝐹)𝑦) |
118 | 115, 117 | impel 506 |
1
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) |