MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnp2 Structured version   Visualization version   GIF version

Theorem dvcnp2 25284
Description: A function is continuous at each point for which it is differentiable. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvcnp.j 𝐽 = (𝐾t 𝐴)
dvcnp.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
dvcnp2 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))

Proof of Theorem dvcnp2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1192 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐹:𝐴⟶ℂ)
21ffvelcdmda 7035 . . . . . . . 8 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
3 dvcnp.k . . . . . . . . . . . . . 14 𝐾 = (TopOpen‘ℂfld)
43cnfldtop 24147 . . . . . . . . . . . . 13 𝐾 ∈ Top
5 simpl1 1191 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑆 ⊆ ℂ)
6 cnex 11132 . . . . . . . . . . . . . 14 ℂ ∈ V
7 ssexg 5280 . . . . . . . . . . . . . 14 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
85, 6, 7sylancl 586 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑆 ∈ V)
9 resttop 22511 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ 𝑆 ∈ V) → (𝐾t 𝑆) ∈ Top)
104, 8, 9sylancr 587 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐾t 𝑆) ∈ Top)
11 simpl3 1193 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐴𝑆)
123cnfldtopon 24146 . . . . . . . . . . . . . . 15 𝐾 ∈ (TopOn‘ℂ)
13 resttopon 22512 . . . . . . . . . . . . . . 15 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
1412, 5, 13sylancr 587 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
15 toponuni 22263 . . . . . . . . . . . . . 14 ((𝐾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = (𝐾t 𝑆))
1614, 15syl 17 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑆 = (𝐾t 𝑆))
1711, 16sseqtrd 3984 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐴 (𝐾t 𝑆))
18 eqid 2736 . . . . . . . . . . . . 13 (𝐾t 𝑆) = (𝐾t 𝑆)
1918ntrss2 22408 . . . . . . . . . . . 12 (((𝐾t 𝑆) ∈ Top ∧ 𝐴 (𝐾t 𝑆)) → ((int‘(𝐾t 𝑆))‘𝐴) ⊆ 𝐴)
2010, 17, 19syl2anc 584 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((int‘(𝐾t 𝑆))‘𝐴) ⊆ 𝐴)
21 eqid 2736 . . . . . . . . . . . . 13 (𝐾t 𝑆) = (𝐾t 𝑆)
22 eqid 2736 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)))
23 simp1 1136 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝑆 ⊆ ℂ)
24 simp2 1137 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝐹:𝐴⟶ℂ)
25 simp3 1138 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝐴𝑆)
2621, 3, 22, 23, 24, 25eldv 25262 . . . . . . . . . . . 12 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → (𝐵(𝑆 D 𝐹)𝑦 ↔ (𝐵 ∈ ((int‘(𝐾t 𝑆))‘𝐴) ∧ 𝑦 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))) lim 𝐵))))
2726simprbda 499 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵 ∈ ((int‘(𝐾t 𝑆))‘𝐴))
2820, 27sseldd 3945 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵𝐴)
291, 28ffvelcdmd 7036 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹𝐵) ∈ ℂ)
3029adantr 481 . . . . . . . 8 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧𝐴) → (𝐹𝐵) ∈ ℂ)
312, 30subcld 11512 . . . . . . 7 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧𝐴) → ((𝐹𝑧) − (𝐹𝐵)) ∈ ℂ)
32 ssid 3966 . . . . . . . 8 ℂ ⊆ ℂ
3332a1i 11 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ℂ ⊆ ℂ)
34 txtopon 22942 . . . . . . . . 9 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐾 ∈ (TopOn‘ℂ)) → (𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ × ℂ)))
3512, 12, 34mp2an 690 . . . . . . . 8 (𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ × ℂ))
3635toponrestid 22270 . . . . . . 7 (𝐾 ×t 𝐾) = ((𝐾 ×t 𝐾) ↾t (ℂ × ℂ))
3711, 5sstrd 3954 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐴 ⊆ ℂ)
381, 37, 28dvlem 25260 . . . . . . . . . 10 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) ∈ ℂ)
3937ssdifssd 4102 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐴 ∖ {𝐵}) ⊆ ℂ)
4039sselda 3944 . . . . . . . . . . 11 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧 ∈ ℂ)
4137, 28sseldd 3945 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵 ∈ ℂ)
4241adantr 481 . . . . . . . . . . 11 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ)
4340, 42subcld 11512 . . . . . . . . . 10 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧𝐵) ∈ ℂ)
4426simplbda 500 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))) lim 𝐵))
45 limcresi 25249 . . . . . . . . . . . 12 ((𝑧𝐴 ↦ (𝑧𝐵)) lim 𝐵) ⊆ (((𝑧𝐴 ↦ (𝑧𝐵)) ↾ (𝐴 ∖ {𝐵})) lim 𝐵)
46 difss 4091 . . . . . . . . . . . . . 14 (𝐴 ∖ {𝐵}) ⊆ 𝐴
47 resmpt 5991 . . . . . . . . . . . . . 14 ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑧𝐴 ↦ (𝑧𝐵)) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧𝐵)))
4846, 47ax-mp 5 . . . . . . . . . . . . 13 ((𝑧𝐴 ↦ (𝑧𝐵)) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧𝐵))
4948oveq1i 7367 . . . . . . . . . . . 12 (((𝑧𝐴 ↦ (𝑧𝐵)) ↾ (𝐴 ∖ {𝐵})) lim 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧𝐵)) lim 𝐵)
5045, 49sseqtri 3980 . . . . . . . . . . 11 ((𝑧𝐴 ↦ (𝑧𝐵)) lim 𝐵) ⊆ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧𝐵)) lim 𝐵)
5141subidd 11500 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐵𝐵) = 0)
523subcn 24229 . . . . . . . . . . . . . . 15 − ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
5352a1i 11 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → − ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
54 cncfmptid 24276 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧𝐴𝑧) ∈ (𝐴cn→ℂ))
5537, 32, 54sylancl 586 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴𝑧) ∈ (𝐴cn→ℂ))
56 cncfmptc 24275 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℂ ∧ 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧𝐴𝐵) ∈ (𝐴cn→ℂ))
5741, 37, 33, 56syl3anc 1371 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴𝐵) ∈ (𝐴cn→ℂ))
583, 53, 55, 57cncfmpt2f 24278 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴 ↦ (𝑧𝐵)) ∈ (𝐴cn→ℂ))
59 oveq1 7364 . . . . . . . . . . . . 13 (𝑧 = 𝐵 → (𝑧𝐵) = (𝐵𝐵))
6058, 28, 59cnmptlimc 25254 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐵𝐵) ∈ ((𝑧𝐴 ↦ (𝑧𝐵)) lim 𝐵))
6151, 60eqeltrrd 2839 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧𝐴 ↦ (𝑧𝐵)) lim 𝐵))
6250, 61sselid 3942 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧𝐵)) lim 𝐵))
633mulcn 24230 . . . . . . . . . . 11 · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
6423, 24, 25dvcl 25263 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ)
65 0cn 11147 . . . . . . . . . . . 12 0 ∈ ℂ
66 opelxpi 5670 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 0 ∈ ℂ) → ⟨𝑦, 0⟩ ∈ (ℂ × ℂ))
6764, 65, 66sylancl 586 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ⟨𝑦, 0⟩ ∈ (ℂ × ℂ))
6835toponunii 22265 . . . . . . . . . . . 12 (ℂ × ℂ) = (𝐾 ×t 𝐾)
6968cncnpi 22629 . . . . . . . . . . 11 (( · ∈ ((𝐾 ×t 𝐾) Cn 𝐾) ∧ ⟨𝑦, 0⟩ ∈ (ℂ × ℂ)) → · ∈ (((𝐾 ×t 𝐾) CnP 𝐾)‘⟨𝑦, 0⟩))
7063, 67, 69sylancr 587 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → · ∈ (((𝐾 ×t 𝐾) CnP 𝐾)‘⟨𝑦, 0⟩))
7138, 43, 33, 33, 3, 36, 44, 62, 70limccnp2 25256 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑦 · 0) ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵))) lim 𝐵))
7264mul01d 11354 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑦 · 0) = 0)
731adantr 481 . . . . . . . . . . . . . 14 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐹:𝐴⟶ℂ)
74 simpr 485 . . . . . . . . . . . . . . 15 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧 ∈ (𝐴 ∖ {𝐵}))
7546, 74sselid 3942 . . . . . . . . . . . . . 14 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧𝐴)
7673, 75ffvelcdmd 7036 . . . . . . . . . . . . 13 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝐹𝑧) ∈ ℂ)
7729adantr 481 . . . . . . . . . . . . 13 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝐹𝐵) ∈ ℂ)
7876, 77subcld 11512 . . . . . . . . . . . 12 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((𝐹𝑧) − (𝐹𝐵)) ∈ ℂ)
79 eldifsni 4750 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝐴 ∖ {𝐵}) → 𝑧𝐵)
8079adantl 482 . . . . . . . . . . . . 13 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧𝐵)
8140, 42, 80subne0d 11521 . . . . . . . . . . . 12 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧𝐵) ≠ 0)
8278, 43, 81divcan1d 11932 . . . . . . . . . . 11 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵)) = ((𝐹𝑧) − (𝐹𝐵)))
8382mpteq2dva 5205 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵))) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))))
8483oveq1d 7372 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵))) lim 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵))
8571, 72, 843eltr3d 2852 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵))
8631fmpttd 7063 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))):𝐴⟶ℂ)
8786limcdif 25240 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵) = (((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) ↾ (𝐴 ∖ {𝐵})) lim 𝐵))
88 resmpt 5991 . . . . . . . . . . 11 ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))))
8946, 88ax-mp 5 . . . . . . . . . 10 ((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵)))
9089oveq1i 7367 . . . . . . . . 9 (((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) ↾ (𝐴 ∖ {𝐵})) lim 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵)
9187, 90eqtrdi 2792 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵))
9285, 91eleqtrrd 2841 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵))
93 cncfmptc 24275 . . . . . . . . 9 (((𝐹𝐵) ∈ ℂ ∧ 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn→ℂ))
9429, 37, 33, 93syl3anc 1371 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn→ℂ))
95 eqidd 2737 . . . . . . . 8 (𝑧 = 𝐵 → (𝐹𝐵) = (𝐹𝐵))
9694, 28, 95cnmptlimc 25254 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹𝐵) ∈ ((𝑧𝐴 ↦ (𝐹𝐵)) lim 𝐵))
973addcn 24228 . . . . . . . 8 + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
98 opelxpi 5670 . . . . . . . . 9 ((0 ∈ ℂ ∧ (𝐹𝐵) ∈ ℂ) → ⟨0, (𝐹𝐵)⟩ ∈ (ℂ × ℂ))
9965, 29, 98sylancr 587 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ⟨0, (𝐹𝐵)⟩ ∈ (ℂ × ℂ))
10068cncnpi 22629 . . . . . . . 8 (( + ∈ ((𝐾 ×t 𝐾) Cn 𝐾) ∧ ⟨0, (𝐹𝐵)⟩ ∈ (ℂ × ℂ)) → + ∈ (((𝐾 ×t 𝐾) CnP 𝐾)‘⟨0, (𝐹𝐵)⟩))
10197, 99, 100sylancr 587 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → + ∈ (((𝐾 ×t 𝐾) CnP 𝐾)‘⟨0, (𝐹𝐵)⟩))
10231, 30, 33, 33, 3, 36, 92, 96, 101limccnp2 25256 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (0 + (𝐹𝐵)) ∈ ((𝑧𝐴 ↦ (((𝐹𝑧) − (𝐹𝐵)) + (𝐹𝐵))) lim 𝐵))
10329addid2d 11356 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (0 + (𝐹𝐵)) = (𝐹𝐵))
1042, 30npcand 11516 . . . . . . . . 9 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧𝐴) → (((𝐹𝑧) − (𝐹𝐵)) + (𝐹𝐵)) = (𝐹𝑧))
105104mpteq2dva 5205 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴 ↦ (((𝐹𝑧) − (𝐹𝐵)) + (𝐹𝐵))) = (𝑧𝐴 ↦ (𝐹𝑧)))
1061feqmptd 6910 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐹 = (𝑧𝐴 ↦ (𝐹𝑧)))
107105, 106eqtr4d 2779 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴 ↦ (((𝐹𝑧) − (𝐹𝐵)) + (𝐹𝐵))) = 𝐹)
108107oveq1d 7372 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧𝐴 ↦ (((𝐹𝑧) − (𝐹𝐵)) + (𝐹𝐵))) lim 𝐵) = (𝐹 lim 𝐵))
109102, 103, 1083eltr3d 2852 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
110 dvcnp.j . . . . . . 7 𝐽 = (𝐾t 𝐴)
1113, 110cnplimc 25251 . . . . . 6 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
11237, 28, 111syl2anc 584 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
1131, 109, 112mpbir2and 711 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))
114113ex 413 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → (𝐵(𝑆 D 𝐹)𝑦𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)))
115114exlimdv 1936 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → (∃𝑦 𝐵(𝑆 D 𝐹)𝑦𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)))
116 eldmg 5854 . . 3 (𝐵 ∈ dom (𝑆 D 𝐹) → (𝐵 ∈ dom (𝑆 D 𝐹) ↔ ∃𝑦 𝐵(𝑆 D 𝐹)𝑦))
117116ibi 266 . 2 (𝐵 ∈ dom (𝑆 D 𝐹) → ∃𝑦 𝐵(𝑆 D 𝐹)𝑦)
118115, 117impel 506 1 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2943  Vcvv 3445  cdif 3907  wss 3910  {csn 4586  cop 4592   cuni 4865   class class class wbr 5105  cmpt 5188   × cxp 5631  dom cdm 5633  cres 5635  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051   + caddc 11054   · cmul 11056  cmin 11385   / cdiv 11812  t crest 17302  TopOpenctopn 17303  fldccnfld 20796  Topctop 22242  TopOnctopon 22259  intcnt 22368   Cn ccn 22575   CnP ccnp 22576   ×t ctx 22911  cnccncf 24239   lim climc 25226   D cdv 25227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-ntr 22371  df-cn 22578  df-cnp 22579  df-tx 22913  df-hmeo 23106  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231
This theorem is referenced by:  dvcn  25285  dvmulbr  25303  dvcobr  25310  fouriersw  44462
  Copyright terms: Public domain W3C validator