MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet3lem2 Structured version   Visualization version   GIF version

Theorem iscmet3lem2 23300
Description: Lemma for iscmet3 23301. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
iscmet3.1 𝑍 = (ℤ𝑀)
iscmet3.2 𝐽 = (MetOpen‘𝐷)
iscmet3.3 (𝜑𝑀 ∈ ℤ)
iscmet3.4 (𝜑𝐷 ∈ (Met‘𝑋))
iscmet3.6 (𝜑𝐹:𝑍𝑋)
iscmet3.9 (𝜑 → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
iscmet3.10 (𝜑 → ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
iscmet3.7 (𝜑𝐺 ∈ (Fil‘𝑋))
iscmet3.8 (𝜑𝑆:ℤ⟶𝐺)
iscmet3.5 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
Assertion
Ref Expression
iscmet3lem2 (𝜑 → (𝐽 fLim 𝐺) ≠ ∅)
Distinct variable groups:   𝑘,𝑛,𝑢,𝑣,𝐷   𝑘,𝐺   𝑘,𝐹,𝑛,𝑢,𝑣   𝑘,𝑋,𝑛   𝑘,𝐽,𝑛   𝑆,𝑘,𝑛,𝑢,𝑣   𝑘,𝑍,𝑛   𝑘,𝑀,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝐺(𝑣,𝑢,𝑛)   𝐽(𝑣,𝑢)   𝑀(𝑣,𝑢)   𝑋(𝑣,𝑢)   𝑍(𝑣,𝑢)

Proof of Theorem iscmet3lem2
Dummy variables 𝑗 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscmet3.5 . . 3 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
2 eldmg 5520 . . . 4 (𝐹 ∈ dom (⇝𝑡𝐽) → (𝐹 ∈ dom (⇝𝑡𝐽) ↔ ∃𝑥 𝐹(⇝𝑡𝐽)𝑥))
32ibi 258 . . 3 (𝐹 ∈ dom (⇝𝑡𝐽) → ∃𝑥 𝐹(⇝𝑡𝐽)𝑥)
41, 3syl 17 . 2 (𝜑 → ∃𝑥 𝐹(⇝𝑡𝐽)𝑥)
5 iscmet3.4 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
6 metxmet 22349 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
75, 6syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
8 iscmet3.2 . . . . . . 7 𝐽 = (MetOpen‘𝐷)
98mopntopon 22454 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
107, 9syl 17 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
11 lmcl 21312 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝑥) → 𝑥𝑋)
1210, 11sylan 571 . . . 4 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → 𝑥𝑋)
137adantr 468 . . . . . . 7 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → 𝐷 ∈ (∞Met‘𝑋))
148mopni2 22508 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝐽𝑥𝑦) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)
15143expia 1143 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝐽) → (𝑥𝑦 → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦))
1613, 15sylan 571 . . . . . 6 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) → (𝑥𝑦 → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦))
17 iscmet3.7 . . . . . . . . 9 (𝜑𝐺 ∈ (Fil‘𝑋))
1817ad3antrrr 712 . . . . . . . 8 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝐺 ∈ (Fil‘𝑋))
19 iscmet3.3 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
2019ad2antrr 708 . . . . . . . . . . 11 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝑀 ∈ ℤ)
21 rphalfcl 12068 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
2221adantl 469 . . . . . . . . . . 11 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
23 iscmet3.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
2423iscmet3lem3 23298 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ (𝑟 / 2) ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < (𝑟 / 2))
2520, 22, 24syl2anc 575 . . . . . . . . . 10 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < (𝑟 / 2))
2613adantr 468 . . . . . . . . . . . 12 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋))
2712adantr 468 . . . . . . . . . . . 12 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝑥𝑋)
28 blcntr 22428 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑟 / 2) ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)))
2926, 27, 22, 28syl3anc 1483 . . . . . . . . . . 11 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)))
30 simplr 776 . . . . . . . . . . 11 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝐹(⇝𝑡𝐽)𝑥)
3122rpxrd 12083 . . . . . . . . . . . 12 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ*)
328blopn 22515 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑟 / 2) ∈ ℝ*) → (𝑥(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽)
3326, 27, 31, 32syl3anc 1483 . . . . . . . . . . 11 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽)
3423, 29, 20, 30, 33lmcvg 21277 . . . . . . . . . 10 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2)))
3523rexanuz2 14308 . . . . . . . . . . 11 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < (𝑟 / 2) ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))
3623r19.2uz 14310 . . . . . . . . . . . 12 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → ∃𝑘𝑍 (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))
3717ad3antrrr 712 . . . . . . . . . . . . . 14 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → 𝐺 ∈ (Fil‘𝑋))
38 iscmet3.8 . . . . . . . . . . . . . . . 16 (𝜑𝑆:ℤ⟶𝐺)
3938ad3antrrr 712 . . . . . . . . . . . . . . 15 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → 𝑆:ℤ⟶𝐺)
40 eluzelz 11910 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
4140, 23eleq2s 2903 . . . . . . . . . . . . . . . 16 (𝑘𝑍𝑘 ∈ ℤ)
4241ad2antrl 710 . . . . . . . . . . . . . . 15 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → 𝑘 ∈ ℤ)
43 ffvelrn 6575 . . . . . . . . . . . . . . 15 ((𝑆:ℤ⟶𝐺𝑘 ∈ ℤ) → (𝑆𝑘) ∈ 𝐺)
4439, 42, 43syl2anc 575 . . . . . . . . . . . . . 14 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → (𝑆𝑘) ∈ 𝐺)
45 rpxr 12050 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
4645adantl 469 . . . . . . . . . . . . . . . 16 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
47 blssm 22433 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ*) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋)
4826, 27, 46, 47syl3anc 1483 . . . . . . . . . . . . . . 15 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋)
4948adantr 468 . . . . . . . . . . . . . 14 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋)
5041adantl 469 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → 𝑘 ∈ ℤ)
51 1rp 12046 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ+
52 rphalfcl 12068 . . . . . . . . . . . . . . . . . . . . . . 23 (1 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
5351, 52ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (1 / 2) ∈ ℝ+
54 rpexpcl 13098 . . . . . . . . . . . . . . . . . . . . . 22 (((1 / 2) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / 2)↑𝑘) ∈ ℝ+)
5553, 54mpan 673 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → ((1 / 2)↑𝑘) ∈ ℝ+)
5650, 55syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((1 / 2)↑𝑘) ∈ ℝ+)
5756rpred 12082 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((1 / 2)↑𝑘) ∈ ℝ)
5822adantr 468 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (𝑟 / 2) ∈ ℝ+)
5958rpred 12082 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (𝑟 / 2) ∈ ℝ)
60 ltle 10407 . . . . . . . . . . . . . . . . . . 19 ((((1 / 2)↑𝑘) ∈ ℝ ∧ (𝑟 / 2) ∈ ℝ) → (((1 / 2)↑𝑘) < (𝑟 / 2) → ((1 / 2)↑𝑘) ≤ (𝑟 / 2)))
6157, 59, 60syl2anc 575 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (((1 / 2)↑𝑘) < (𝑟 / 2) → ((1 / 2)↑𝑘) ≤ (𝑟 / 2)))
62 simpll 774 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝜑)
63 fveq2 6404 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑘 → (𝑆𝑛) = (𝑆𝑘))
6463eleq2d 2871 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑘 → ((𝐹𝑘) ∈ (𝑆𝑛) ↔ (𝐹𝑘) ∈ (𝑆𝑘)))
65 iscmet3.10 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
6665r19.21bi 3120 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘𝑍) → ∀𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
67 eluzfz2 12568 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ (𝑀...𝑘))
6867, 23eleq2s 2903 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘𝑍𝑘 ∈ (𝑀...𝑘))
6968adantl 469 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘𝑍) → 𝑘 ∈ (𝑀...𝑘))
7064, 66, 69rspcdva 3508 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (𝑆𝑘))
7170adantr 468 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → (𝐹𝑘) ∈ (𝑆𝑘))
72 simpr 473 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → 𝑦 ∈ (𝑆𝑘))
73 iscmet3.9 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
7473ad2antrr 708 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
7541ad2antlr 709 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → 𝑘 ∈ ℤ)
76 rsp 3117 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) → (𝑘 ∈ ℤ → ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
7774, 75, 76sylc 65 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
78 oveq1 6877 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑢 = (𝐹𝑘) → (𝑢𝐷𝑣) = ((𝐹𝑘)𝐷𝑣))
7978breq1d 4854 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑢 = (𝐹𝑘) → ((𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ((𝐹𝑘)𝐷𝑣) < ((1 / 2)↑𝑘)))
80 oveq2 6878 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = 𝑦 → ((𝐹𝑘)𝐷𝑣) = ((𝐹𝑘)𝐷𝑦))
8180breq1d 4854 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = 𝑦 → (((𝐹𝑘)𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ((𝐹𝑘)𝐷𝑦) < ((1 / 2)↑𝑘)))
8279, 81rspc2va 3516 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐹𝑘) ∈ (𝑆𝑘) ∧ 𝑦 ∈ (𝑆𝑘)) ∧ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) → ((𝐹𝑘)𝐷𝑦) < ((1 / 2)↑𝑘))
8371, 72, 77, 82syl21anc 857 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → ((𝐹𝑘)𝐷𝑦) < ((1 / 2)↑𝑘))
847ad2antrr 708 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → 𝐷 ∈ (∞Met‘𝑋))
8541, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘𝑍 → ((1 / 2)↑𝑘) ∈ ℝ+)
8685rpxrd 12083 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘𝑍 → ((1 / 2)↑𝑘) ∈ ℝ*)
8786ad2antlr 709 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → ((1 / 2)↑𝑘) ∈ ℝ*)
88 iscmet3.6 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐹:𝑍𝑋)
8988ffvelrnda 6577 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ 𝑋)
9089adantr 468 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → (𝐹𝑘) ∈ 𝑋)
9117adantr 468 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘𝑍) → 𝐺 ∈ (Fil‘𝑋))
9238, 41, 43syl2an 585 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘𝑍) → (𝑆𝑘) ∈ 𝐺)
93 filelss 21866 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐺 ∈ (Fil‘𝑋) ∧ (𝑆𝑘) ∈ 𝐺) → (𝑆𝑘) ⊆ 𝑋)
9491, 92, 93syl2anc 575 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘𝑍) → (𝑆𝑘) ⊆ 𝑋)
9594sselda 3798 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → 𝑦𝑋)
96 elbl2 22405 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐷 ∈ (∞Met‘𝑋) ∧ ((1 / 2)↑𝑘) ∈ ℝ*) ∧ ((𝐹𝑘) ∈ 𝑋𝑦𝑋)) → (𝑦 ∈ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ↔ ((𝐹𝑘)𝐷𝑦) < ((1 / 2)↑𝑘)))
9784, 87, 90, 95, 96syl22anc 858 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → (𝑦 ∈ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ↔ ((𝐹𝑘)𝐷𝑦) < ((1 / 2)↑𝑘)))
9883, 97mpbird 248 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → 𝑦 ∈ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)))
9998ex 399 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → (𝑦 ∈ (𝑆𝑘) → 𝑦 ∈ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘))))
10099ssrdv 3804 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)))
10162, 100sylan 571 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)))
10226adantr 468 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → 𝐷 ∈ (∞Met‘𝑋))
10388ad2antrr 708 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝐹:𝑍𝑋)
104103ffvelrnda 6577 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ 𝑋)
10556rpxrd 12083 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((1 / 2)↑𝑘) ∈ ℝ*)
10631adantr 468 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (𝑟 / 2) ∈ ℝ*)
107 ssbl 22438 . . . . . . . . . . . . . . . . . . . . 21 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋) ∧ (((1 / 2)↑𝑘) ∈ ℝ* ∧ (𝑟 / 2) ∈ ℝ*) ∧ ((1 / 2)↑𝑘) ≤ (𝑟 / 2)) → ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)))
1081073expia 1143 . . . . . . . . . . . . . . . . . . . 20 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋) ∧ (((1 / 2)↑𝑘) ∈ ℝ* ∧ (𝑟 / 2) ∈ ℝ*)) → (((1 / 2)↑𝑘) ≤ (𝑟 / 2) → ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
109102, 104, 105, 106, 108syl22anc 858 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (((1 / 2)↑𝑘) ≤ (𝑟 / 2) → ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
110 sstr 3806 . . . . . . . . . . . . . . . . . . 19 (((𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ∧ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)))
111101, 109, 110syl6an 666 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (((1 / 2)↑𝑘) ≤ (𝑟 / 2) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
11261, 111syld 47 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (((1 / 2)↑𝑘) < (𝑟 / 2) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
113112adantrd 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
114113impr 444 . . . . . . . . . . . . . . 15 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)))
11527adantr 468 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → 𝑥𝑋)
116 blcom 22409 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑟 / 2) ∈ ℝ*) ∧ (𝑥𝑋 ∧ (𝐹𝑘) ∈ 𝑋)) → ((𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ↔ 𝑥 ∈ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
117102, 106, 115, 104, 116syl22anc 858 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ↔ 𝑥 ∈ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
118 rpre 12049 . . . . . . . . . . . . . . . . . . . 20 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
119118ad2antlr 709 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → 𝑟 ∈ ℝ)
120 blhalf 22420 . . . . . . . . . . . . . . . . . . . 20 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋) ∧ (𝑟 ∈ ℝ ∧ 𝑥 ∈ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)))) → ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))
121120expr 446 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) → ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
122102, 104, 119, 121syl21anc 857 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (𝑥 ∈ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) → ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
123117, 122sylbid 231 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) → ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
124123adantld 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
125124impr 444 . . . . . . . . . . . . . . 15 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))
126114, 125sstrd 3808 . . . . . . . . . . . . . 14 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → (𝑆𝑘) ⊆ (𝑥(ball‘𝐷)𝑟))
127 filss 21867 . . . . . . . . . . . . . 14 ((𝐺 ∈ (Fil‘𝑋) ∧ ((𝑆𝑘) ∈ 𝐺 ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋 ∧ (𝑆𝑘) ⊆ (𝑥(ball‘𝐷)𝑟))) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺)
12837, 44, 49, 126, 127syl13anc 1484 . . . . . . . . . . . . 13 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺)
129128rexlimdvaa 3220 . . . . . . . . . . . 12 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (∃𝑘𝑍 (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺))
13036, 129syl5 34 . . . . . . . . . . 11 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺))
13135, 130syl5bir 234 . . . . . . . . . 10 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → ((∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < (𝑟 / 2) ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺))
13225, 34, 131mp2and 682 . . . . . . . . 9 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺)
133132ad2ant2r 744 . . . . . . . 8 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺)
13410adantr 468 . . . . . . . . . 10 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → 𝐽 ∈ (TopOn‘𝑋))
135 toponss 20942 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) → 𝑦𝑋)
136134, 135sylan 571 . . . . . . . . 9 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) → 𝑦𝑋)
137136adantr 468 . . . . . . . 8 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝑦𝑋)
138 simprr 780 . . . . . . . 8 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)
139 filss 21867 . . . . . . . 8 ((𝐺 ∈ (Fil‘𝑋) ∧ ((𝑥(ball‘𝐷)𝑟) ∈ 𝐺𝑦𝑋 ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝑦𝐺)
14018, 133, 137, 138, 139syl13anc 1484 . . . . . . 7 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝑦𝐺)
141140rexlimdvaa 3220 . . . . . 6 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) → (∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦𝑦𝐺))
14216, 141syld 47 . . . . 5 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) → (𝑥𝑦𝑦𝐺))
143142ralrimiva 3154 . . . 4 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → ∀𝑦𝐽 (𝑥𝑦𝑦𝐺))
144 flimopn 21989 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐺) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐺))))
14510, 17, 144syl2anc 575 . . . . 5 (𝜑 → (𝑥 ∈ (𝐽 fLim 𝐺) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐺))))
146145adantr 468 . . . 4 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → (𝑥 ∈ (𝐽 fLim 𝐺) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐺))))
14712, 143, 146mpbir2and 695 . . 3 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → 𝑥 ∈ (𝐽 fLim 𝐺))
148147ne0d 4123 . 2 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → (𝐽 fLim 𝐺) ≠ ∅)
1494, 148exlimddv 2026 1 (𝜑 → (𝐽 fLim 𝐺) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wex 1859  wcel 2156  wne 2978  wral 3096  wrex 3097  wss 3769  c0 4116   class class class wbr 4844  dom cdm 5311  wf 6093  cfv 6097  (class class class)co 6870  cr 10216  1c1 10218  *cxr 10354   < clt 10355  cle 10356   / cdiv 10965  2c2 11352  cz 11639  cuz 11900  +crp 12042  ...cfz 12545  cexp 13079  ∞Metcxmt 19935  Metcme 19936  ballcbl 19937  MetOpencmopn 19940  TopOnctopon 20925  𝑡clm 21241  Filcfil 21859   fLim cflim 21948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-cnex 10273  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293  ax-pre-mulgt0 10294  ax-pre-sup 10295
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-om 7292  df-1st 7394  df-2nd 7395  df-wrecs 7638  df-recs 7700  df-rdg 7738  df-er 7975  df-map 8090  df-pm 8091  df-en 8189  df-dom 8190  df-sdom 8191  df-sup 8583  df-inf 8584  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-sub 10549  df-neg 10550  df-div 10966  df-nn 11302  df-2 11360  df-3 11361  df-n0 11556  df-z 11640  df-uz 11901  df-q 12004  df-rp 12043  df-xneg 12158  df-xadd 12159  df-xmul 12160  df-fz 12546  df-fl 12813  df-seq 13021  df-exp 13080  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438  df-rlim 14439  df-topgen 16305  df-psmet 19942  df-xmet 19943  df-met 19944  df-bl 19945  df-mopn 19946  df-fbas 19947  df-top 20909  df-topon 20926  df-bases 20961  df-ntr 21035  df-nei 21113  df-lm 21244  df-fil 21860  df-flim 21953
This theorem is referenced by:  iscmet3  23301
  Copyright terms: Public domain W3C validator