MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axsegconlem8 Structured version   Visualization version   GIF version

Theorem axsegconlem8 28171
Description: Lemma for axsegcon 28174. Show that a particular mapping generates a point. (Contributed by Scott Fenton, 18-Sep-2013.)
Hypotheses
Ref Expression
axsegconlem2.1 ๐‘† = ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)
axsegconlem7.2 ๐‘‡ = ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)
axsegconlem8.3 ๐น = (๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜๐‘†) + (โˆšโ€˜๐‘‡)) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜๐‘‡) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜๐‘†)))
Assertion
Ref Expression
axsegconlem8 (((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ด โ‰  ๐ต) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โ†’ ๐น โˆˆ (๐”ผโ€˜๐‘))
Distinct variable groups:   ๐ด,๐‘   ๐ต,๐‘   ๐ถ,๐‘   ๐ท,๐‘   ๐‘,๐‘   ๐ด,๐‘˜   ๐ต,๐‘˜   ๐ถ,๐‘˜   ๐ท,๐‘˜   ๐‘˜,๐‘   ๐‘†,๐‘˜   ๐‘‡,๐‘˜
Allowed substitution hints:   ๐‘†(๐‘)   ๐‘‡(๐‘)   ๐น(๐‘˜,๐‘)

Proof of Theorem axsegconlem8
StepHypRef Expression
1 axsegconlem8.3 . 2 ๐น = (๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜๐‘†) + (โˆšโ€˜๐‘‡)) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜๐‘‡) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜๐‘†)))
2 axsegconlem2.1 . . . . . . . . . . 11 ๐‘† = ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)
32axsegconlem4 28167 . . . . . . . . . 10 ((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘)) โ†’ (โˆšโ€˜๐‘†) โˆˆ โ„)
433adant3 1132 . . . . . . . . 9 ((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ด โ‰  ๐ต) โ†’ (โˆšโ€˜๐‘†) โˆˆ โ„)
54ad2antrr 724 . . . . . . . 8 ((((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ด โ‰  ๐ต) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘˜ โˆˆ (1...๐‘)) โ†’ (โˆšโ€˜๐‘†) โˆˆ โ„)
6 axsegconlem7.2 . . . . . . . . . 10 ๐‘‡ = ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)
76axsegconlem4 28167 . . . . . . . . 9 ((๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘)) โ†’ (โˆšโ€˜๐‘‡) โˆˆ โ„)
87ad2antlr 725 . . . . . . . 8 ((((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ด โ‰  ๐ต) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘˜ โˆˆ (1...๐‘)) โ†’ (โˆšโ€˜๐‘‡) โˆˆ โ„)
95, 8readdcld 11239 . . . . . . 7 ((((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ด โ‰  ๐ต) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘˜ โˆˆ (1...๐‘)) โ†’ ((โˆšโ€˜๐‘†) + (โˆšโ€˜๐‘‡)) โˆˆ โ„)
10 simpl2 1192 . . . . . . . 8 (((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ด โ‰  ๐ต) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โ†’ ๐ต โˆˆ (๐”ผโ€˜๐‘))
11 fveere 28148 . . . . . . . 8 ((๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐‘˜ โˆˆ (1...๐‘)) โ†’ (๐ตโ€˜๐‘˜) โˆˆ โ„)
1210, 11sylan 580 . . . . . . 7 ((((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ด โ‰  ๐ต) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘˜ โˆˆ (1...๐‘)) โ†’ (๐ตโ€˜๐‘˜) โˆˆ โ„)
139, 12remulcld 11240 . . . . . 6 ((((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ด โ‰  ๐ต) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘˜ โˆˆ (1...๐‘)) โ†’ (((โˆšโ€˜๐‘†) + (โˆšโ€˜๐‘‡)) ยท (๐ตโ€˜๐‘˜)) โˆˆ โ„)
14 simpl1 1191 . . . . . . . 8 (((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ด โ‰  ๐ต) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โ†’ ๐ด โˆˆ (๐”ผโ€˜๐‘))
15 fveere 28148 . . . . . . . 8 ((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐‘˜ โˆˆ (1...๐‘)) โ†’ (๐ดโ€˜๐‘˜) โˆˆ โ„)
1614, 15sylan 580 . . . . . . 7 ((((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ด โ‰  ๐ต) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘˜ โˆˆ (1...๐‘)) โ†’ (๐ดโ€˜๐‘˜) โˆˆ โ„)
178, 16remulcld 11240 . . . . . 6 ((((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ด โ‰  ๐ต) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘˜ โˆˆ (1...๐‘)) โ†’ ((โˆšโ€˜๐‘‡) ยท (๐ดโ€˜๐‘˜)) โˆˆ โ„)
1813, 17resubcld 11638 . . . . 5 ((((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ด โ‰  ๐ต) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘˜ โˆˆ (1...๐‘)) โ†’ ((((โˆšโ€˜๐‘†) + (โˆšโ€˜๐‘‡)) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜๐‘‡) ยท (๐ดโ€˜๐‘˜))) โˆˆ โ„)
192axsegconlem6 28169 . . . . . . 7 ((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ด โ‰  ๐ต) โ†’ 0 < (โˆšโ€˜๐‘†))
2019gt0ne0d 11774 . . . . . 6 ((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ด โ‰  ๐ต) โ†’ (โˆšโ€˜๐‘†) โ‰  0)
2120ad2antrr 724 . . . . 5 ((((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ด โ‰  ๐ต) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘˜ โˆˆ (1...๐‘)) โ†’ (โˆšโ€˜๐‘†) โ‰  0)
2218, 5, 21redivcld 12038 . . . 4 ((((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ด โ‰  ๐ต) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘˜ โˆˆ (1...๐‘)) โ†’ (((((โˆšโ€˜๐‘†) + (โˆšโ€˜๐‘‡)) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜๐‘‡) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜๐‘†)) โˆˆ โ„)
2322ralrimiva 3146 . . 3 (((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ด โ‰  ๐ต) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โ†’ โˆ€๐‘˜ โˆˆ (1...๐‘)(((((โˆšโ€˜๐‘†) + (โˆšโ€˜๐‘‡)) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜๐‘‡) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜๐‘†)) โˆˆ โ„)
24 eleenn 28143 . . . . 5 (๐ท โˆˆ (๐”ผโ€˜๐‘) โ†’ ๐‘ โˆˆ โ„•)
2524ad2antll 727 . . . 4 (((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ด โ‰  ๐ต) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โ†’ ๐‘ โˆˆ โ„•)
26 mptelee 28142 . . . 4 (๐‘ โˆˆ โ„• โ†’ ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜๐‘†) + (โˆšโ€˜๐‘‡)) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜๐‘‡) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜๐‘†))) โˆˆ (๐”ผโ€˜๐‘) โ†” โˆ€๐‘˜ โˆˆ (1...๐‘)(((((โˆšโ€˜๐‘†) + (โˆšโ€˜๐‘‡)) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜๐‘‡) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜๐‘†)) โˆˆ โ„))
2725, 26syl 17 . . 3 (((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ด โ‰  ๐ต) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โ†’ ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜๐‘†) + (โˆšโ€˜๐‘‡)) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜๐‘‡) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜๐‘†))) โˆˆ (๐”ผโ€˜๐‘) โ†” โˆ€๐‘˜ โˆˆ (1...๐‘)(((((โˆšโ€˜๐‘†) + (โˆšโ€˜๐‘‡)) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜๐‘‡) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜๐‘†)) โˆˆ โ„))
2823, 27mpbird 256 . 2 (((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ด โ‰  ๐ต) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โ†’ (๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜๐‘†) + (โˆšโ€˜๐‘‡)) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜๐‘‡) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜๐‘†))) โˆˆ (๐”ผโ€˜๐‘))
291, 28eqeltrid 2837 1 (((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ด โ‰  ๐ต) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โ†’ ๐น โˆˆ (๐”ผโ€˜๐‘))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 396   โˆง w3a 1087   = wceq 1541   โˆˆ wcel 2106   โ‰  wne 2940  โˆ€wral 3061   โ†ฆ cmpt 5230  โ€˜cfv 6540  (class class class)co 7405  โ„cr 11105  0cc0 11106  1c1 11107   + caddc 11109   ยท cmul 11111   โˆ’ cmin 11440   / cdiv 11867  โ„•cn 12208  2c2 12263  ...cfz 13480  โ†‘cexp 14023  โˆšcsqrt 15176  ฮฃcsu 15628  ๐”ผcee 28135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-ico 13326  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-ee 28138
This theorem is referenced by:  axsegconlem10  28173  axsegcon  28174
  Copyright terms: Public domain W3C validator