Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axsegconlem8 Structured version   Visualization version   GIF version

Theorem axsegconlem8 26718
 Description: Lemma for axsegcon 26721. Show that a particular mapping generates a point. (Contributed by Scott Fenton, 18-Sep-2013.)
Hypotheses
Ref Expression
axsegconlem2.1 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)
axsegconlem7.2 𝑇 = Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)
axsegconlem8.3 𝐹 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) − ((√‘𝑇) · (𝐴𝑘))) / (√‘𝑆)))
Assertion
Ref Expression
axsegconlem8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐷,𝑝   𝑁,𝑝   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝑁   𝑆,𝑘   𝑇,𝑘
Allowed substitution hints:   𝑆(𝑝)   𝑇(𝑝)   𝐹(𝑘,𝑝)

Proof of Theorem axsegconlem8
StepHypRef Expression
1 axsegconlem8.3 . 2 𝐹 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) − ((√‘𝑇) · (𝐴𝑘))) / (√‘𝑆)))
2 axsegconlem2.1 . . . . . . . . . . 11 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)
32axsegconlem4 26714 . . . . . . . . . 10 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (√‘𝑆) ∈ ℝ)
433adant3 1129 . . . . . . . . 9 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → (√‘𝑆) ∈ ℝ)
54ad2antrr 725 . . . . . . . 8 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑘 ∈ (1...𝑁)) → (√‘𝑆) ∈ ℝ)
6 axsegconlem7.2 . . . . . . . . . 10 𝑇 = Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)
76axsegconlem4 26714 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (√‘𝑇) ∈ ℝ)
87ad2antlr 726 . . . . . . . 8 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑘 ∈ (1...𝑁)) → (√‘𝑇) ∈ ℝ)
95, 8readdcld 10659 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑘 ∈ (1...𝑁)) → ((√‘𝑆) + (√‘𝑇)) ∈ ℝ)
10 simpl2 1189 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
11 fveere 26695 . . . . . . . 8 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℝ)
1210, 11sylan 583 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℝ)
139, 12remulcld 10660 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑘 ∈ (1...𝑁)) → (((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) ∈ ℝ)
14 simpl1 1188 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
15 fveere 26695 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℝ)
1614, 15sylan 583 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℝ)
178, 16remulcld 10660 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑘 ∈ (1...𝑁)) → ((√‘𝑇) · (𝐴𝑘)) ∈ ℝ)
1813, 17resubcld 11057 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑘 ∈ (1...𝑁)) → ((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) − ((√‘𝑇) · (𝐴𝑘))) ∈ ℝ)
192axsegconlem6 26716 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → 0 < (√‘𝑆))
2019gt0ne0d 11193 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → (√‘𝑆) ≠ 0)
2120ad2antrr 725 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑘 ∈ (1...𝑁)) → (√‘𝑆) ≠ 0)
2218, 5, 21redivcld 11457 . . . 4 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑘 ∈ (1...𝑁)) → (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) − ((√‘𝑇) · (𝐴𝑘))) / (√‘𝑆)) ∈ ℝ)
2322ralrimiva 3149 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∀𝑘 ∈ (1...𝑁)(((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) − ((√‘𝑇) · (𝐴𝑘))) / (√‘𝑆)) ∈ ℝ)
24 eleenn 26690 . . . . 5 (𝐷 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)
2524ad2antll 728 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
26 mptelee 26689 . . . 4 (𝑁 ∈ ℕ → ((𝑘 ∈ (1...𝑁) ↦ (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) − ((√‘𝑇) · (𝐴𝑘))) / (√‘𝑆))) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)(((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) − ((√‘𝑇) · (𝐴𝑘))) / (√‘𝑆)) ∈ ℝ))
2725, 26syl 17 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝑘 ∈ (1...𝑁) ↦ (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) − ((√‘𝑇) · (𝐴𝑘))) / (√‘𝑆))) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)(((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) − ((√‘𝑇) · (𝐴𝑘))) / (√‘𝑆)) ∈ ℝ))
2823, 27mpbird 260 . 2 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (𝑘 ∈ (1...𝑁) ↦ (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) − ((√‘𝑇) · (𝐴𝑘))) / (√‘𝑆))) ∈ (𝔼‘𝑁))
291, 28eqeltrid 2894 1 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106   ↦ cmpt 5110  ‘cfv 6324  (class class class)co 7135  ℝcr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   − cmin 10859   / cdiv 11286  ℕcn 11625  2c2 11680  ...cfz 12885  ↑cexp 13425  √csqrt 14584  Σcsu 15034  𝔼cee 26682 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-ee 26685 This theorem is referenced by:  axsegconlem10  26720  axsegcon  26721
 Copyright terms: Public domain W3C validator