Proof of Theorem axsegconlem8
Step | Hyp | Ref
| Expression |
1 | | axsegconlem8.3 |
. 2
⊢ 𝐹 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑘)) − ((√‘𝑇) · (𝐴‘𝑘))) / (√‘𝑆))) |
2 | | axsegconlem2.1 |
. . . . . . . . . . 11
⊢ 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) |
3 | 2 | axsegconlem4 27191 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (√‘𝑆) ∈ ℝ) |
4 | 3 | 3adant3 1130 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → (√‘𝑆) ∈ ℝ) |
5 | 4 | ad2antrr 722 |
. . . . . . . 8
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑘 ∈ (1...𝑁)) → (√‘𝑆) ∈ ℝ) |
6 | | axsegconlem7.2 |
. . . . . . . . . 10
⊢ 𝑇 = Σ𝑝 ∈ (1...𝑁)(((𝐶‘𝑝) − (𝐷‘𝑝))↑2) |
7 | 6 | axsegconlem4 27191 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (√‘𝑇) ∈ ℝ) |
8 | 7 | ad2antlr 723 |
. . . . . . . 8
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑘 ∈ (1...𝑁)) → (√‘𝑇) ∈ ℝ) |
9 | 5, 8 | readdcld 10935 |
. . . . . . 7
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑘 ∈ (1...𝑁)) → ((√‘𝑆) + (√‘𝑇)) ∈ ℝ) |
10 | | simpl2 1190 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁)) |
11 | | fveere 27172 |
. . . . . . . 8
⊢ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵‘𝑘) ∈ ℝ) |
12 | 10, 11 | sylan 579 |
. . . . . . 7
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵‘𝑘) ∈ ℝ) |
13 | 9, 12 | remulcld 10936 |
. . . . . 6
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑘 ∈ (1...𝑁)) → (((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑘)) ∈ ℝ) |
14 | | simpl1 1189 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁)) |
15 | | fveere 27172 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴‘𝑘) ∈ ℝ) |
16 | 14, 15 | sylan 579 |
. . . . . . 7
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴‘𝑘) ∈ ℝ) |
17 | 8, 16 | remulcld 10936 |
. . . . . 6
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑘 ∈ (1...𝑁)) → ((√‘𝑇) · (𝐴‘𝑘)) ∈ ℝ) |
18 | 13, 17 | resubcld 11333 |
. . . . 5
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑘 ∈ (1...𝑁)) → ((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑘)) − ((√‘𝑇) · (𝐴‘𝑘))) ∈ ℝ) |
19 | 2 | axsegconlem6 27193 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → 0 < (√‘𝑆)) |
20 | 19 | gt0ne0d 11469 |
. . . . . 6
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → (√‘𝑆) ≠ 0) |
21 | 20 | ad2antrr 722 |
. . . . 5
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑘 ∈ (1...𝑁)) → (√‘𝑆) ≠ 0) |
22 | 18, 5, 21 | redivcld 11733 |
. . . 4
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑘 ∈ (1...𝑁)) → (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑘)) − ((√‘𝑇) · (𝐴‘𝑘))) / (√‘𝑆)) ∈ ℝ) |
23 | 22 | ralrimiva 3107 |
. . 3
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∀𝑘 ∈ (1...𝑁)(((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑘)) − ((√‘𝑇) · (𝐴‘𝑘))) / (√‘𝑆)) ∈ ℝ) |
24 | | eleenn 27167 |
. . . . 5
⊢ (𝐷 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ) |
25 | 24 | ad2antll 725 |
. . . 4
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ) |
26 | | mptelee 27166 |
. . . 4
⊢ (𝑁 ∈ ℕ → ((𝑘 ∈ (1...𝑁) ↦ (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑘)) − ((√‘𝑇) · (𝐴‘𝑘))) / (√‘𝑆))) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)(((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑘)) − ((√‘𝑇) · (𝐴‘𝑘))) / (√‘𝑆)) ∈ ℝ)) |
27 | 25, 26 | syl 17 |
. . 3
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝑘 ∈ (1...𝑁) ↦ (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑘)) − ((√‘𝑇) · (𝐴‘𝑘))) / (√‘𝑆))) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)(((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑘)) − ((√‘𝑇) · (𝐴‘𝑘))) / (√‘𝑆)) ∈ ℝ)) |
28 | 23, 27 | mpbird 256 |
. 2
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (𝑘 ∈ (1...𝑁) ↦ (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑘)) − ((√‘𝑇) · (𝐴‘𝑘))) / (√‘𝑆))) ∈ (𝔼‘𝑁)) |
29 | 1, 28 | eqeltrid 2843 |
1
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁)) |