MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleei Structured version   Visualization version   GIF version

Theorem eleei 28800
Description: The forward direction of elee 28797. (Contributed by Scott Fenton, 1-Jul-2013.)
Assertion
Ref Expression
eleei (𝐴 ∈ (𝔼‘𝑁) → 𝐴:(1...𝑁)⟶ℝ)

Proof of Theorem eleei
StepHypRef Expression
1 eleenn 28799 . . 3 (𝐴 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)
2 elee 28797 . . 3 (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴:(1...𝑁)⟶ℝ))
31, 2syl 17 . 2 (𝐴 ∈ (𝔼‘𝑁) → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴:(1...𝑁)⟶ℝ))
43ibi 267 1 (𝐴 ∈ (𝔼‘𝑁) → 𝐴:(1...𝑁)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wf 6495  cfv 6499  (class class class)co 7369  cr 11043  1c1 11045  cn 12162  ...cfz 13444  𝔼cee 28791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-ee 28794
This theorem is referenced by:  eedimeq  28801  fveere  28804  eqeefv  28806
  Copyright terms: Public domain W3C validator