MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleei Structured version   Visualization version   GIF version

Theorem eleei 28649
Description: The forward direction of elee 28646. (Contributed by Scott Fenton, 1-Jul-2013.)
Assertion
Ref Expression
eleei (𝐴 ∈ (π”Όβ€˜π‘) β†’ 𝐴:(1...𝑁)βŸΆβ„)

Proof of Theorem eleei
StepHypRef Expression
1 eleenn 28648 . . 3 (𝐴 ∈ (π”Όβ€˜π‘) β†’ 𝑁 ∈ β„•)
2 elee 28646 . . 3 (𝑁 ∈ β„• β†’ (𝐴 ∈ (π”Όβ€˜π‘) ↔ 𝐴:(1...𝑁)βŸΆβ„))
31, 2syl 17 . 2 (𝐴 ∈ (π”Όβ€˜π‘) β†’ (𝐴 ∈ (π”Όβ€˜π‘) ↔ 𝐴:(1...𝑁)βŸΆβ„))
43ibi 267 1 (𝐴 ∈ (π”Όβ€˜π‘) β†’ 𝐴:(1...𝑁)βŸΆβ„)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∈ wcel 2098  βŸΆwf 6530  β€˜cfv 6534  (class class class)co 7402  β„cr 11106  1c1 11108  β„•cn 12211  ...cfz 13485  π”Όcee 28640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-map 8819  df-ee 28643
This theorem is referenced by:  eedimeq  28650  fveere  28653  eqeefv  28655
  Copyright terms: Public domain W3C validator