MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleei Structured version   Visualization version   GIF version

Theorem eleei 27261
Description: The forward direction of elee 27258. (Contributed by Scott Fenton, 1-Jul-2013.)
Assertion
Ref Expression
eleei (𝐴 ∈ (𝔼‘𝑁) → 𝐴:(1...𝑁)⟶ℝ)

Proof of Theorem eleei
StepHypRef Expression
1 eleenn 27260 . . 3 (𝐴 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)
2 elee 27258 . . 3 (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴:(1...𝑁)⟶ℝ))
31, 2syl 17 . 2 (𝐴 ∈ (𝔼‘𝑁) → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴:(1...𝑁)⟶ℝ))
43ibi 266 1 (𝐴 ∈ (𝔼‘𝑁) → 𝐴:(1...𝑁)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2110  wf 6427  cfv 6431  (class class class)co 7269  cr 10869  1c1 10871  cn 11971  ...cfz 13236  𝔼cee 27252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10926  ax-resscn 10927
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-fv 6439  df-ov 7272  df-oprab 7273  df-mpo 7274  df-map 8598  df-ee 27255
This theorem is referenced by:  eedimeq  27262  fveere  27265  eqeefv  27267
  Copyright terms: Public domain W3C validator