Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eleei | Structured version Visualization version GIF version |
Description: The forward direction of elee 27258. (Contributed by Scott Fenton, 1-Jul-2013.) |
Ref | Expression |
---|---|
eleei | ⊢ (𝐴 ∈ (𝔼‘𝑁) → 𝐴:(1...𝑁)⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleenn 27260 | . . 3 ⊢ (𝐴 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ) | |
2 | elee 27258 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴:(1...𝑁)⟶ℝ)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝔼‘𝑁) → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴:(1...𝑁)⟶ℝ)) |
4 | 3 | ibi 266 | 1 ⊢ (𝐴 ∈ (𝔼‘𝑁) → 𝐴:(1...𝑁)⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2110 ⟶wf 6427 ‘cfv 6431 (class class class)co 7269 ℝcr 10869 1c1 10871 ℕcn 11971 ...cfz 13236 𝔼cee 27252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10926 ax-resscn 10927 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-fv 6439 df-ov 7272 df-oprab 7273 df-mpo 7274 df-map 8598 df-ee 27255 |
This theorem is referenced by: eedimeq 27262 fveere 27265 eqeefv 27267 |
Copyright terms: Public domain | W3C validator |