|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > eleesubd | Structured version Visualization version GIF version | ||
| Description: Membership of a subtraction mapping in a Euclidean space. Deduction form of eleesub 28927. (Contributed by Scott Fenton, 17-Jul-2013.) | 
| Ref | Expression | 
|---|---|
| eleesubd.1 | ⊢ (𝜑 → 𝐶 = (𝑖 ∈ (1...𝑁) ↦ ((𝐴‘𝑖) − (𝐵‘𝑖)))) | 
| Ref | Expression | 
|---|---|
| eleesubd | ⊢ ((𝜑 ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleesubd.1 | . . 3 ⊢ (𝜑 → 𝐶 = (𝑖 ∈ (1...𝑁) ↦ ((𝐴‘𝑖) − (𝐵‘𝑖)))) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐶 = (𝑖 ∈ (1...𝑁) ↦ ((𝐴‘𝑖) − (𝐵‘𝑖)))) | 
| 3 | fveere 28917 | . . . . . . 7 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴‘𝑖) ∈ ℝ) | |
| 4 | fveere 28917 | . . . . . . 7 ⊢ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵‘𝑖) ∈ ℝ) | |
| 5 | resubcl 11574 | . . . . . . 7 ⊢ (((𝐴‘𝑖) ∈ ℝ ∧ (𝐵‘𝑖) ∈ ℝ) → ((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℝ) | |
| 6 | 3, 4, 5 | syl2an 596 | . . . . . 6 ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁))) → ((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℝ) | 
| 7 | 6 | anandirs 679 | . . . . 5 ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℝ) | 
| 8 | 7 | ralrimiva 3145 | . . . 4 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ∀𝑖 ∈ (1...𝑁)((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℝ) | 
| 9 | eleenn 28912 | . . . . . 6 ⊢ (𝐴 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ) | |
| 10 | mptelee 28911 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((𝑖 ∈ (1...𝑁) ↦ ((𝐴‘𝑖) − (𝐵‘𝑖))) ∈ (𝔼‘𝑁) ↔ ∀𝑖 ∈ (1...𝑁)((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℝ)) | |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ (𝔼‘𝑁) → ((𝑖 ∈ (1...𝑁) ↦ ((𝐴‘𝑖) − (𝐵‘𝑖))) ∈ (𝔼‘𝑁) ↔ ∀𝑖 ∈ (1...𝑁)((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℝ)) | 
| 12 | 11 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((𝑖 ∈ (1...𝑁) ↦ ((𝐴‘𝑖) − (𝐵‘𝑖))) ∈ (𝔼‘𝑁) ↔ ∀𝑖 ∈ (1...𝑁)((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℝ)) | 
| 13 | 8, 12 | mpbird 257 | . . 3 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝑖 ∈ (1...𝑁) ↦ ((𝐴‘𝑖) − (𝐵‘𝑖))) ∈ (𝔼‘𝑁)) | 
| 14 | 13 | 3adant1 1130 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝑖 ∈ (1...𝑁) ↦ ((𝐴‘𝑖) − (𝐵‘𝑖))) ∈ (𝔼‘𝑁)) | 
| 15 | 2, 14 | eqeltrd 2840 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ↦ cmpt 5224 ‘cfv 6560 (class class class)co 7432 ℝcr 11155 1c1 11157 − cmin 11493 ℕcn 12267 ...cfz 13548 𝔼cee 28904 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-ltxr 11301 df-sub 11495 df-neg 11496 df-ee 28907 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |