| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleesubd | Structured version Visualization version GIF version | ||
| Description: Membership of a subtraction mapping in a Euclidean space. Deduction form of eleesub 28856. (Contributed by Scott Fenton, 17-Jul-2013.) |
| Ref | Expression |
|---|---|
| eleesubd.1 | ⊢ (𝜑 → 𝐶 = (𝑖 ∈ (1...𝑁) ↦ ((𝐴‘𝑖) − (𝐵‘𝑖)))) |
| Ref | Expression |
|---|---|
| eleesubd | ⊢ ((𝜑 ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleesubd.1 | . . 3 ⊢ (𝜑 → 𝐶 = (𝑖 ∈ (1...𝑁) ↦ ((𝐴‘𝑖) − (𝐵‘𝑖)))) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐶 = (𝑖 ∈ (1...𝑁) ↦ ((𝐴‘𝑖) − (𝐵‘𝑖)))) |
| 3 | fveere 28846 | . . . . . . 7 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴‘𝑖) ∈ ℝ) | |
| 4 | fveere 28846 | . . . . . . 7 ⊢ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵‘𝑖) ∈ ℝ) | |
| 5 | resubcl 11428 | . . . . . . 7 ⊢ (((𝐴‘𝑖) ∈ ℝ ∧ (𝐵‘𝑖) ∈ ℝ) → ((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℝ) | |
| 6 | 3, 4, 5 | syl2an 596 | . . . . . 6 ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁))) → ((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℝ) |
| 7 | 6 | anandirs 679 | . . . . 5 ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℝ) |
| 8 | 7 | ralrimiva 3121 | . . . 4 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ∀𝑖 ∈ (1...𝑁)((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℝ) |
| 9 | eleenn 28841 | . . . . . 6 ⊢ (𝐴 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ) | |
| 10 | mptelee 28840 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((𝑖 ∈ (1...𝑁) ↦ ((𝐴‘𝑖) − (𝐵‘𝑖))) ∈ (𝔼‘𝑁) ↔ ∀𝑖 ∈ (1...𝑁)((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℝ)) | |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ (𝔼‘𝑁) → ((𝑖 ∈ (1...𝑁) ↦ ((𝐴‘𝑖) − (𝐵‘𝑖))) ∈ (𝔼‘𝑁) ↔ ∀𝑖 ∈ (1...𝑁)((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℝ)) |
| 12 | 11 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((𝑖 ∈ (1...𝑁) ↦ ((𝐴‘𝑖) − (𝐵‘𝑖))) ∈ (𝔼‘𝑁) ↔ ∀𝑖 ∈ (1...𝑁)((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℝ)) |
| 13 | 8, 12 | mpbird 257 | . . 3 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝑖 ∈ (1...𝑁) ↦ ((𝐴‘𝑖) − (𝐵‘𝑖))) ∈ (𝔼‘𝑁)) |
| 14 | 13 | 3adant1 1130 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝑖 ∈ (1...𝑁) ↦ ((𝐴‘𝑖) − (𝐵‘𝑖))) ∈ (𝔼‘𝑁)) |
| 15 | 2, 14 | eqeltrd 2828 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ↦ cmpt 5173 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 1c1 11010 − cmin 11347 ℕcn 12128 ...cfz 13410 𝔼cee 28833 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-sub 11349 df-neg 11350 df-ee 28836 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |