MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axsegconlem1 Structured version   Visualization version   GIF version

Theorem axsegconlem1 28947
Description: Lemma for axsegcon 28957. Handle the degenerate case. (Contributed by Scott Fenton, 7-Jun-2013.)
Assertion
Ref Expression
axsegconlem1 ((𝐴 = 𝐵 ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
Distinct variable groups:   𝑡,𝑁,𝑖,𝑥   𝑡,𝐴,𝑖,𝑥   𝑡,𝐵,𝑖,𝑥   𝑡,𝐶,𝑖,𝑥   𝑡,𝐷,𝑖,𝑥

Proof of Theorem axsegconlem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveere 28931 . . . . . . . . . 10 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℝ)
213ad2antl1 1184 . . . . . . . . 9 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℝ)
3 fveere 28931 . . . . . . . . . . 11 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℝ)
433ad2antl2 1185 . . . . . . . . . 10 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℝ)
5 fveere 28931 . . . . . . . . . . 11 ((𝐷 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐷𝑘) ∈ ℝ)
653ad2antl3 1186 . . . . . . . . . 10 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐷𝑘) ∈ ℝ)
74, 6resubcld 11689 . . . . . . . . 9 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐶𝑘) − (𝐷𝑘)) ∈ ℝ)
82, 7resubcld 11689 . . . . . . . 8 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘))) ∈ ℝ)
98ralrimiva 3144 . . . . . . 7 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ∀𝑘 ∈ (1...𝑁)((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘))) ∈ ℝ)
10 eleenn 28926 . . . . . . . . 9 (𝐵 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)
11 mptelee 28925 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘))) ∈ ℝ))
1210, 11syl 17 . . . . . . . 8 (𝐵 ∈ (𝔼‘𝑁) → ((𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘))) ∈ ℝ))
13123ad2ant1 1132 . . . . . . 7 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ((𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘))) ∈ ℝ))
149, 13mpbird 257 . . . . . 6 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∈ (𝔼‘𝑁))
15 fveecn 28932 . . . . . . . . 9 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
16153ad2antl1 1184 . . . . . . . 8 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
17 fveecn 28932 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
18173ad2antl2 1185 . . . . . . . 8 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
19 fveecn 28932 . . . . . . . . 9 ((𝐷 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐷𝑖) ∈ ℂ)
20193ad2antl3 1186 . . . . . . . 8 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐷𝑖) ∈ ℂ)
21 1m0e1 12385 . . . . . . . . . . . 12 (1 − 0) = 1
2221oveq1i 7441 . . . . . . . . . . 11 ((1 − 0) · (𝐵𝑖)) = (1 · (𝐵𝑖))
23 mullid 11258 . . . . . . . . . . . 12 ((𝐵𝑖) ∈ ℂ → (1 · (𝐵𝑖)) = (𝐵𝑖))
24233ad2ant1 1132 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ ∧ (𝐷𝑖) ∈ ℂ) → (1 · (𝐵𝑖)) = (𝐵𝑖))
2522, 24eqtrid 2787 . . . . . . . . . 10 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ ∧ (𝐷𝑖) ∈ ℂ) → ((1 − 0) · (𝐵𝑖)) = (𝐵𝑖))
26 subcl 11505 . . . . . . . . . . . . 13 (((𝐶𝑖) ∈ ℂ ∧ (𝐷𝑖) ∈ ℂ) → ((𝐶𝑖) − (𝐷𝑖)) ∈ ℂ)
27 subcl 11505 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℂ ∧ ((𝐶𝑖) − (𝐷𝑖)) ∈ ℂ) → ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))) ∈ ℂ)
2826, 27sylan2 593 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℂ ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝐷𝑖) ∈ ℂ)) → ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))) ∈ ℂ)
29283impb 1114 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ ∧ (𝐷𝑖) ∈ ℂ) → ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))) ∈ ℂ)
3029mul02d 11457 . . . . . . . . . 10 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ ∧ (𝐷𝑖) ∈ ℂ) → (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))) = 0)
3125, 30oveq12d 7449 . . . . . . . . 9 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ ∧ (𝐷𝑖) ∈ ℂ) → (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))) = ((𝐵𝑖) + 0))
32 addrid 11439 . . . . . . . . . 10 ((𝐵𝑖) ∈ ℂ → ((𝐵𝑖) + 0) = (𝐵𝑖))
33323ad2ant1 1132 . . . . . . . . 9 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ ∧ (𝐷𝑖) ∈ ℂ) → ((𝐵𝑖) + 0) = (𝐵𝑖))
3431, 33eqtr2d 2776 . . . . . . . 8 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ ∧ (𝐷𝑖) ∈ ℂ) → (𝐵𝑖) = (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))))
3516, 18, 20, 34syl3anc 1370 . . . . . . 7 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) = (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))))
3635ralrimiva 3144 . . . . . 6 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))))
3718, 20subcld 11618 . . . . . . . . 9 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐶𝑖) − (𝐷𝑖)) ∈ ℂ)
3816, 37nncand 11623 . . . . . . . 8 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))) = ((𝐶𝑖) − (𝐷𝑖)))
3938oveq1d 7446 . . . . . . 7 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2) = (((𝐶𝑖) − (𝐷𝑖))↑2))
4039sumeq2dv 15735 . . . . . 6 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))
41 0elunit 13506 . . . . . . 7 0 ∈ (0[,]1)
42 fveq1 6906 . . . . . . . . . . . . . 14 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) → (𝑥𝑖) = ((𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘))))‘𝑖))
43 fveq2 6907 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → (𝐵𝑘) = (𝐵𝑖))
44 fveq2 6907 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → (𝐶𝑘) = (𝐶𝑖))
45 fveq2 6907 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → (𝐷𝑘) = (𝐷𝑖))
4644, 45oveq12d 7449 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → ((𝐶𝑘) − (𝐷𝑘)) = ((𝐶𝑖) − (𝐷𝑖)))
4743, 46oveq12d 7449 . . . . . . . . . . . . . . 15 (𝑘 = 𝑖 → ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘))) = ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))
48 eqid 2735 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘))))
49 ovex 7464 . . . . . . . . . . . . . . 15 ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))) ∈ V
5047, 48, 49fvmpt 7016 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑁) → ((𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘))))‘𝑖) = ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))
5142, 50sylan9eq 2795 . . . . . . . . . . . . 13 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥𝑖) = ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))
5251oveq2d 7447 . . . . . . . . . . . 12 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑡 · (𝑥𝑖)) = (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))))
5352oveq2d 7447 . . . . . . . . . . 11 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))))
5453eqeq2d 2746 . . . . . . . . . 10 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ↔ (𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))))))
5554ralbidva 3174 . . . . . . . . 9 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))))))
5651oveq2d 7447 . . . . . . . . . . . 12 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) − (𝑥𝑖)) = ((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))))
5756oveq1d 7446 . . . . . . . . . . 11 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) − (𝑥𝑖))↑2) = (((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2))
5857sumeq2dv 15735 . . . . . . . . . 10 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) → Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2))
5958eqeq1d 2737 . . . . . . . . 9 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) → (Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
6055, 59anbi12d 632 . . . . . . . 8 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) → ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) ↔ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
61 oveq2 7439 . . . . . . . . . . . . 13 (𝑡 = 0 → (1 − 𝑡) = (1 − 0))
6261oveq1d 7446 . . . . . . . . . . . 12 (𝑡 = 0 → ((1 − 𝑡) · (𝐵𝑖)) = ((1 − 0) · (𝐵𝑖)))
63 oveq1 7438 . . . . . . . . . . . 12 (𝑡 = 0 → (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))) = (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))))
6462, 63oveq12d 7449 . . . . . . . . . . 11 (𝑡 = 0 → (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))) = (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))))
6564eqeq2d 2746 . . . . . . . . . 10 (𝑡 = 0 → ((𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))) ↔ (𝐵𝑖) = (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))))))
6665ralbidv 3176 . . . . . . . . 9 (𝑡 = 0 → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))))))
6766anbi1d 631 . . . . . . . 8 (𝑡 = 0 → ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) ↔ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
6860, 67rspc2ev 3635 . . . . . . 7 (((𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∈ (𝔼‘𝑁) ∧ 0 ∈ (0[,]1) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
6941, 68mp3an2 1448 . . . . . 6 (((𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∈ (𝔼‘𝑁) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
7014, 36, 40, 69syl12anc 837 . . . . 5 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
71703expb 1119 . . . 4 ((𝐵 ∈ (𝔼‘𝑁) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
7271adantll 714 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
73 fveq1 6906 . . . . . . . . 9 (𝐴 = 𝐵 → (𝐴𝑖) = (𝐵𝑖))
7473oveq2d 7447 . . . . . . . 8 (𝐴 = 𝐵 → ((1 − 𝑡) · (𝐴𝑖)) = ((1 − 𝑡) · (𝐵𝑖)))
7574oveq1d 7446 . . . . . . 7 (𝐴 = 𝐵 → (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))))
7675eqeq2d 2746 . . . . . 6 (𝐴 = 𝐵 → ((𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ↔ (𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖)))))
7776ralbidv 3176 . . . . 5 (𝐴 = 𝐵 → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖)))))
7877anbi1d 631 . . . 4 (𝐴 = 𝐵 → ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) ↔ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
79782rexbidv 3220 . . 3 (𝐴 = 𝐵 → (∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
8072, 79imbitrrid 246 . 2 (𝐴 = 𝐵 → (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
8180imp 406 1 ((𝐴 = 𝐵 ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  cmpt 5231  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  cn 12264  2c2 12319  [,]cicc 13387  ...cfz 13544  cexp 14099  Σcsu 15719  𝔼cee 28918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-icc 13391  df-fz 13545  df-seq 14040  df-sum 15720  df-ee 28921
This theorem is referenced by:  axsegcon  28957
  Copyright terms: Public domain W3C validator