MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axsegconlem1 Structured version   Visualization version   GIF version

Theorem axsegconlem1 26711
Description: Lemma for axsegcon 26721. Handle the degenerate case. (Contributed by Scott Fenton, 7-Jun-2013.)
Assertion
Ref Expression
axsegconlem1 ((𝐴 = 𝐵 ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
Distinct variable groups:   𝑡,𝑁,𝑖,𝑥   𝑡,𝐴,𝑖,𝑥   𝑡,𝐵,𝑖,𝑥   𝑡,𝐶,𝑖,𝑥   𝑡,𝐷,𝑖,𝑥

Proof of Theorem axsegconlem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveere 26695 . . . . . . . . . 10 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℝ)
213ad2antl1 1182 . . . . . . . . 9 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℝ)
3 fveere 26695 . . . . . . . . . . 11 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℝ)
433ad2antl2 1183 . . . . . . . . . 10 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℝ)
5 fveere 26695 . . . . . . . . . . 11 ((𝐷 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐷𝑘) ∈ ℝ)
653ad2antl3 1184 . . . . . . . . . 10 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐷𝑘) ∈ ℝ)
74, 6resubcld 11057 . . . . . . . . 9 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐶𝑘) − (𝐷𝑘)) ∈ ℝ)
82, 7resubcld 11057 . . . . . . . 8 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘))) ∈ ℝ)
98ralrimiva 3149 . . . . . . 7 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ∀𝑘 ∈ (1...𝑁)((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘))) ∈ ℝ)
10 eleenn 26690 . . . . . . . . 9 (𝐵 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)
11 mptelee 26689 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘))) ∈ ℝ))
1210, 11syl 17 . . . . . . . 8 (𝐵 ∈ (𝔼‘𝑁) → ((𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘))) ∈ ℝ))
13123ad2ant1 1130 . . . . . . 7 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ((𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘))) ∈ ℝ))
149, 13mpbird 260 . . . . . 6 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∈ (𝔼‘𝑁))
15 fveecn 26696 . . . . . . . . 9 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
16153ad2antl1 1182 . . . . . . . 8 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
17 fveecn 26696 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
18173ad2antl2 1183 . . . . . . . 8 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
19 fveecn 26696 . . . . . . . . 9 ((𝐷 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐷𝑖) ∈ ℂ)
20193ad2antl3 1184 . . . . . . . 8 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐷𝑖) ∈ ℂ)
21 1m0e1 11746 . . . . . . . . . . . 12 (1 − 0) = 1
2221oveq1i 7145 . . . . . . . . . . 11 ((1 − 0) · (𝐵𝑖)) = (1 · (𝐵𝑖))
23 mulid2 10629 . . . . . . . . . . . 12 ((𝐵𝑖) ∈ ℂ → (1 · (𝐵𝑖)) = (𝐵𝑖))
24233ad2ant1 1130 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ ∧ (𝐷𝑖) ∈ ℂ) → (1 · (𝐵𝑖)) = (𝐵𝑖))
2522, 24syl5eq 2845 . . . . . . . . . 10 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ ∧ (𝐷𝑖) ∈ ℂ) → ((1 − 0) · (𝐵𝑖)) = (𝐵𝑖))
26 subcl 10874 . . . . . . . . . . . . 13 (((𝐶𝑖) ∈ ℂ ∧ (𝐷𝑖) ∈ ℂ) → ((𝐶𝑖) − (𝐷𝑖)) ∈ ℂ)
27 subcl 10874 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℂ ∧ ((𝐶𝑖) − (𝐷𝑖)) ∈ ℂ) → ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))) ∈ ℂ)
2826, 27sylan2 595 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℂ ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝐷𝑖) ∈ ℂ)) → ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))) ∈ ℂ)
29283impb 1112 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ ∧ (𝐷𝑖) ∈ ℂ) → ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))) ∈ ℂ)
3029mul02d 10827 . . . . . . . . . 10 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ ∧ (𝐷𝑖) ∈ ℂ) → (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))) = 0)
3125, 30oveq12d 7153 . . . . . . . . 9 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ ∧ (𝐷𝑖) ∈ ℂ) → (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))) = ((𝐵𝑖) + 0))
32 addid1 10809 . . . . . . . . . 10 ((𝐵𝑖) ∈ ℂ → ((𝐵𝑖) + 0) = (𝐵𝑖))
33323ad2ant1 1130 . . . . . . . . 9 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ ∧ (𝐷𝑖) ∈ ℂ) → ((𝐵𝑖) + 0) = (𝐵𝑖))
3431, 33eqtr2d 2834 . . . . . . . 8 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ ∧ (𝐷𝑖) ∈ ℂ) → (𝐵𝑖) = (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))))
3516, 18, 20, 34syl3anc 1368 . . . . . . 7 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) = (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))))
3635ralrimiva 3149 . . . . . 6 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))))
3718, 20subcld 10986 . . . . . . . . 9 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐶𝑖) − (𝐷𝑖)) ∈ ℂ)
3816, 37nncand 10991 . . . . . . . 8 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))) = ((𝐶𝑖) − (𝐷𝑖)))
3938oveq1d 7150 . . . . . . 7 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2) = (((𝐶𝑖) − (𝐷𝑖))↑2))
4039sumeq2dv 15052 . . . . . 6 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))
41 0elunit 12847 . . . . . . 7 0 ∈ (0[,]1)
42 fveq1 6644 . . . . . . . . . . . . . 14 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) → (𝑥𝑖) = ((𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘))))‘𝑖))
43 fveq2 6645 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → (𝐵𝑘) = (𝐵𝑖))
44 fveq2 6645 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → (𝐶𝑘) = (𝐶𝑖))
45 fveq2 6645 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → (𝐷𝑘) = (𝐷𝑖))
4644, 45oveq12d 7153 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → ((𝐶𝑘) − (𝐷𝑘)) = ((𝐶𝑖) − (𝐷𝑖)))
4743, 46oveq12d 7153 . . . . . . . . . . . . . . 15 (𝑘 = 𝑖 → ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘))) = ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))
48 eqid 2798 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘))))
49 ovex 7168 . . . . . . . . . . . . . . 15 ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))) ∈ V
5047, 48, 49fvmpt 6745 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑁) → ((𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘))))‘𝑖) = ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))
5142, 50sylan9eq 2853 . . . . . . . . . . . . 13 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥𝑖) = ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))
5251oveq2d 7151 . . . . . . . . . . . 12 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑡 · (𝑥𝑖)) = (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))))
5352oveq2d 7151 . . . . . . . . . . 11 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))))
5453eqeq2d 2809 . . . . . . . . . 10 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ↔ (𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))))))
5554ralbidva 3161 . . . . . . . . 9 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))))))
5651oveq2d 7151 . . . . . . . . . . . 12 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) − (𝑥𝑖)) = ((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))))
5756oveq1d 7150 . . . . . . . . . . 11 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) − (𝑥𝑖))↑2) = (((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2))
5857sumeq2dv 15052 . . . . . . . . . 10 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) → Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2))
5958eqeq1d 2800 . . . . . . . . 9 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) → (Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
6055, 59anbi12d 633 . . . . . . . 8 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) → ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) ↔ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
61 oveq2 7143 . . . . . . . . . . . . 13 (𝑡 = 0 → (1 − 𝑡) = (1 − 0))
6261oveq1d 7150 . . . . . . . . . . . 12 (𝑡 = 0 → ((1 − 𝑡) · (𝐵𝑖)) = ((1 − 0) · (𝐵𝑖)))
63 oveq1 7142 . . . . . . . . . . . 12 (𝑡 = 0 → (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))) = (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))))
6462, 63oveq12d 7153 . . . . . . . . . . 11 (𝑡 = 0 → (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))) = (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))))
6564eqeq2d 2809 . . . . . . . . . 10 (𝑡 = 0 → ((𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))) ↔ (𝐵𝑖) = (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))))))
6665ralbidv 3162 . . . . . . . . 9 (𝑡 = 0 → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))))))
6766anbi1d 632 . . . . . . . 8 (𝑡 = 0 → ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) ↔ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
6860, 67rspc2ev 3583 . . . . . . 7 (((𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∈ (𝔼‘𝑁) ∧ 0 ∈ (0[,]1) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
6941, 68mp3an2 1446 . . . . . 6 (((𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∈ (𝔼‘𝑁) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
7014, 36, 40, 69syl12anc 835 . . . . 5 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
71703expb 1117 . . . 4 ((𝐵 ∈ (𝔼‘𝑁) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
7271adantll 713 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
73 fveq1 6644 . . . . . . . . 9 (𝐴 = 𝐵 → (𝐴𝑖) = (𝐵𝑖))
7473oveq2d 7151 . . . . . . . 8 (𝐴 = 𝐵 → ((1 − 𝑡) · (𝐴𝑖)) = ((1 − 𝑡) · (𝐵𝑖)))
7574oveq1d 7150 . . . . . . 7 (𝐴 = 𝐵 → (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))))
7675eqeq2d 2809 . . . . . 6 (𝐴 = 𝐵 → ((𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ↔ (𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖)))))
7776ralbidv 3162 . . . . 5 (𝐴 = 𝐵 → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖)))))
7877anbi1d 632 . . . 4 (𝐴 = 𝐵 → ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) ↔ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
79782rexbidv 3259 . . 3 (𝐴 = 𝐵 → (∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
8072, 79syl5ibr 249 . 2 (𝐴 = 𝐵 → (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
8180imp 410 1 ((𝐴 = 𝐵 ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wrex 3107  cmpt 5110  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cmin 10859  cn 11625  2c2 11680  [,]cicc 12729  ...cfz 12885  cexp 13425  Σcsu 15034  𝔼cee 26682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-icc 12733  df-fz 12886  df-seq 13365  df-sum 15035  df-ee 26685
This theorem is referenced by:  axsegcon  26721
  Copyright terms: Public domain W3C validator