MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axsegconlem1 Structured version   Visualization version   GIF version

Theorem axsegconlem1 27188
Description: Lemma for axsegcon 27198. Handle the degenerate case. (Contributed by Scott Fenton, 7-Jun-2013.)
Assertion
Ref Expression
axsegconlem1 ((𝐴 = 𝐵 ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
Distinct variable groups:   𝑡,𝑁,𝑖,𝑥   𝑡,𝐴,𝑖,𝑥   𝑡,𝐵,𝑖,𝑥   𝑡,𝐶,𝑖,𝑥   𝑡,𝐷,𝑖,𝑥

Proof of Theorem axsegconlem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveere 27172 . . . . . . . . . 10 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℝ)
213ad2antl1 1183 . . . . . . . . 9 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℝ)
3 fveere 27172 . . . . . . . . . . 11 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℝ)
433ad2antl2 1184 . . . . . . . . . 10 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℝ)
5 fveere 27172 . . . . . . . . . . 11 ((𝐷 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐷𝑘) ∈ ℝ)
653ad2antl3 1185 . . . . . . . . . 10 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐷𝑘) ∈ ℝ)
74, 6resubcld 11333 . . . . . . . . 9 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐶𝑘) − (𝐷𝑘)) ∈ ℝ)
82, 7resubcld 11333 . . . . . . . 8 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘))) ∈ ℝ)
98ralrimiva 3107 . . . . . . 7 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ∀𝑘 ∈ (1...𝑁)((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘))) ∈ ℝ)
10 eleenn 27167 . . . . . . . . 9 (𝐵 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)
11 mptelee 27166 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘))) ∈ ℝ))
1210, 11syl 17 . . . . . . . 8 (𝐵 ∈ (𝔼‘𝑁) → ((𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘))) ∈ ℝ))
13123ad2ant1 1131 . . . . . . 7 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ((𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘))) ∈ ℝ))
149, 13mpbird 256 . . . . . 6 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∈ (𝔼‘𝑁))
15 fveecn 27173 . . . . . . . . 9 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
16153ad2antl1 1183 . . . . . . . 8 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
17 fveecn 27173 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
18173ad2antl2 1184 . . . . . . . 8 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
19 fveecn 27173 . . . . . . . . 9 ((𝐷 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐷𝑖) ∈ ℂ)
20193ad2antl3 1185 . . . . . . . 8 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐷𝑖) ∈ ℂ)
21 1m0e1 12024 . . . . . . . . . . . 12 (1 − 0) = 1
2221oveq1i 7265 . . . . . . . . . . 11 ((1 − 0) · (𝐵𝑖)) = (1 · (𝐵𝑖))
23 mulid2 10905 . . . . . . . . . . . 12 ((𝐵𝑖) ∈ ℂ → (1 · (𝐵𝑖)) = (𝐵𝑖))
24233ad2ant1 1131 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ ∧ (𝐷𝑖) ∈ ℂ) → (1 · (𝐵𝑖)) = (𝐵𝑖))
2522, 24syl5eq 2791 . . . . . . . . . 10 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ ∧ (𝐷𝑖) ∈ ℂ) → ((1 − 0) · (𝐵𝑖)) = (𝐵𝑖))
26 subcl 11150 . . . . . . . . . . . . 13 (((𝐶𝑖) ∈ ℂ ∧ (𝐷𝑖) ∈ ℂ) → ((𝐶𝑖) − (𝐷𝑖)) ∈ ℂ)
27 subcl 11150 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℂ ∧ ((𝐶𝑖) − (𝐷𝑖)) ∈ ℂ) → ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))) ∈ ℂ)
2826, 27sylan2 592 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℂ ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝐷𝑖) ∈ ℂ)) → ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))) ∈ ℂ)
29283impb 1113 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ ∧ (𝐷𝑖) ∈ ℂ) → ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))) ∈ ℂ)
3029mul02d 11103 . . . . . . . . . 10 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ ∧ (𝐷𝑖) ∈ ℂ) → (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))) = 0)
3125, 30oveq12d 7273 . . . . . . . . 9 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ ∧ (𝐷𝑖) ∈ ℂ) → (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))) = ((𝐵𝑖) + 0))
32 addid1 11085 . . . . . . . . . 10 ((𝐵𝑖) ∈ ℂ → ((𝐵𝑖) + 0) = (𝐵𝑖))
33323ad2ant1 1131 . . . . . . . . 9 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ ∧ (𝐷𝑖) ∈ ℂ) → ((𝐵𝑖) + 0) = (𝐵𝑖))
3431, 33eqtr2d 2779 . . . . . . . 8 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ ∧ (𝐷𝑖) ∈ ℂ) → (𝐵𝑖) = (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))))
3516, 18, 20, 34syl3anc 1369 . . . . . . 7 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) = (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))))
3635ralrimiva 3107 . . . . . 6 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))))
3718, 20subcld 11262 . . . . . . . . 9 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐶𝑖) − (𝐷𝑖)) ∈ ℂ)
3816, 37nncand 11267 . . . . . . . 8 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))) = ((𝐶𝑖) − (𝐷𝑖)))
3938oveq1d 7270 . . . . . . 7 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2) = (((𝐶𝑖) − (𝐷𝑖))↑2))
4039sumeq2dv 15343 . . . . . 6 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))
41 0elunit 13130 . . . . . . 7 0 ∈ (0[,]1)
42 fveq1 6755 . . . . . . . . . . . . . 14 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) → (𝑥𝑖) = ((𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘))))‘𝑖))
43 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → (𝐵𝑘) = (𝐵𝑖))
44 fveq2 6756 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → (𝐶𝑘) = (𝐶𝑖))
45 fveq2 6756 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → (𝐷𝑘) = (𝐷𝑖))
4644, 45oveq12d 7273 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → ((𝐶𝑘) − (𝐷𝑘)) = ((𝐶𝑖) − (𝐷𝑖)))
4743, 46oveq12d 7273 . . . . . . . . . . . . . . 15 (𝑘 = 𝑖 → ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘))) = ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))
48 eqid 2738 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘))))
49 ovex 7288 . . . . . . . . . . . . . . 15 ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))) ∈ V
5047, 48, 49fvmpt 6857 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑁) → ((𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘))))‘𝑖) = ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))
5142, 50sylan9eq 2799 . . . . . . . . . . . . 13 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥𝑖) = ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))
5251oveq2d 7271 . . . . . . . . . . . 12 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑡 · (𝑥𝑖)) = (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))))
5352oveq2d 7271 . . . . . . . . . . 11 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))))
5453eqeq2d 2749 . . . . . . . . . 10 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ↔ (𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))))))
5554ralbidva 3119 . . . . . . . . 9 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))))))
5651oveq2d 7271 . . . . . . . . . . . 12 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) − (𝑥𝑖)) = ((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))))
5756oveq1d 7270 . . . . . . . . . . 11 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) − (𝑥𝑖))↑2) = (((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2))
5857sumeq2dv 15343 . . . . . . . . . 10 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) → Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2))
5958eqeq1d 2740 . . . . . . . . 9 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) → (Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
6055, 59anbi12d 630 . . . . . . . 8 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) → ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) ↔ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
61 oveq2 7263 . . . . . . . . . . . . 13 (𝑡 = 0 → (1 − 𝑡) = (1 − 0))
6261oveq1d 7270 . . . . . . . . . . . 12 (𝑡 = 0 → ((1 − 𝑡) · (𝐵𝑖)) = ((1 − 0) · (𝐵𝑖)))
63 oveq1 7262 . . . . . . . . . . . 12 (𝑡 = 0 → (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))) = (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))))
6462, 63oveq12d 7273 . . . . . . . . . . 11 (𝑡 = 0 → (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))) = (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))))
6564eqeq2d 2749 . . . . . . . . . 10 (𝑡 = 0 → ((𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))) ↔ (𝐵𝑖) = (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))))))
6665ralbidv 3120 . . . . . . . . 9 (𝑡 = 0 → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖)))))))
6766anbi1d 629 . . . . . . . 8 (𝑡 = 0 → ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) ↔ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
6860, 67rspc2ev 3564 . . . . . . 7 (((𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∈ (𝔼‘𝑁) ∧ 0 ∈ (0[,]1) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
6941, 68mp3an2 1447 . . . . . 6 (((𝑘 ∈ (1...𝑁) ↦ ((𝐵𝑘) − ((𝐶𝑘) − (𝐷𝑘)))) ∈ (𝔼‘𝑁) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 0) · (𝐵𝑖)) + (0 · ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝐵𝑖) − ((𝐶𝑖) − (𝐷𝑖))))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
7014, 36, 40, 69syl12anc 833 . . . . 5 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
71703expb 1118 . . . 4 ((𝐵 ∈ (𝔼‘𝑁) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
7271adantll 710 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
73 fveq1 6755 . . . . . . . . 9 (𝐴 = 𝐵 → (𝐴𝑖) = (𝐵𝑖))
7473oveq2d 7271 . . . . . . . 8 (𝐴 = 𝐵 → ((1 − 𝑡) · (𝐴𝑖)) = ((1 − 𝑡) · (𝐵𝑖)))
7574oveq1d 7270 . . . . . . 7 (𝐴 = 𝐵 → (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))))
7675eqeq2d 2749 . . . . . 6 (𝐴 = 𝐵 → ((𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ↔ (𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖)))))
7776ralbidv 3120 . . . . 5 (𝐴 = 𝐵 → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖)))))
7877anbi1d 629 . . . 4 (𝐴 = 𝐵 → ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) ↔ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
79782rexbidv 3228 . . 3 (𝐴 = 𝐵 → (∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
8072, 79syl5ibr 245 . 2 (𝐴 = 𝐵 → (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
8180imp 406 1 ((𝐴 = 𝐵 ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  cmpt 5153  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  cn 11903  2c2 11958  [,]cicc 13011  ...cfz 13168  cexp 13710  Σcsu 15325  𝔼cee 27159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-icc 13015  df-fz 13169  df-seq 13650  df-sum 15326  df-ee 27162
This theorem is referenced by:  axsegcon  27198
  Copyright terms: Public domain W3C validator