MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleesub Structured version   Visualization version   GIF version

Theorem eleesub 26260
Description: Membership of a subtraction mapping in a Euclidean space. (Contributed by Scott Fenton, 17-Jul-2013.)
Hypothesis
Ref Expression
eleesub.1 𝐶 = (𝑖 ∈ (1...𝑁) ↦ ((𝐴𝑖) − (𝐵𝑖)))
Assertion
Ref Expression
eleesub ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
Distinct variable groups:   𝑖,𝑁   𝐴,𝑖   𝐵,𝑖
Allowed substitution hint:   𝐶(𝑖)

Proof of Theorem eleesub
StepHypRef Expression
1 eleesub.1 . 2 𝐶 = (𝑖 ∈ (1...𝑁) ↦ ((𝐴𝑖) − (𝐵𝑖)))
2 fveere 26250 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
3 fveere 26250 . . . . . 6 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
4 resubcl 10687 . . . . . 6 (((𝐴𝑖) ∈ ℝ ∧ (𝐵𝑖) ∈ ℝ) → ((𝐴𝑖) − (𝐵𝑖)) ∈ ℝ)
52, 3, 4syl2an 589 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁))) → ((𝐴𝑖) − (𝐵𝑖)) ∈ ℝ)
65anandirs 669 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) − (𝐵𝑖)) ∈ ℝ)
76ralrimiva 3148 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ∀𝑖 ∈ (1...𝑁)((𝐴𝑖) − (𝐵𝑖)) ∈ ℝ)
8 eleenn 26245 . . . . 5 (𝐴 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)
9 mptelee 26244 . . . . 5 (𝑁 ∈ ℕ → ((𝑖 ∈ (1...𝑁) ↦ ((𝐴𝑖) − (𝐵𝑖))) ∈ (𝔼‘𝑁) ↔ ∀𝑖 ∈ (1...𝑁)((𝐴𝑖) − (𝐵𝑖)) ∈ ℝ))
108, 9syl 17 . . . 4 (𝐴 ∈ (𝔼‘𝑁) → ((𝑖 ∈ (1...𝑁) ↦ ((𝐴𝑖) − (𝐵𝑖))) ∈ (𝔼‘𝑁) ↔ ∀𝑖 ∈ (1...𝑁)((𝐴𝑖) − (𝐵𝑖)) ∈ ℝ))
1110adantr 474 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((𝑖 ∈ (1...𝑁) ↦ ((𝐴𝑖) − (𝐵𝑖))) ∈ (𝔼‘𝑁) ↔ ∀𝑖 ∈ (1...𝑁)((𝐴𝑖) − (𝐵𝑖)) ∈ ℝ))
127, 11mpbird 249 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝑖 ∈ (1...𝑁) ↦ ((𝐴𝑖) − (𝐵𝑖))) ∈ (𝔼‘𝑁))
131, 12syl5eqel 2863 1 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wral 3090  cmpt 4965  cfv 6135  (class class class)co 6922  cr 10271  1c1 10273  cmin 10606  cn 11374  ...cfz 12643  𝔼cee 26237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-po 5274  df-so 5275  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-ltxr 10416  df-sub 10608  df-neg 10609  df-ee 26240
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator