MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleesub Structured version   Visualization version   GIF version

Theorem eleesub 26624
Description: Membership of a subtraction mapping in a Euclidean space. (Contributed by Scott Fenton, 17-Jul-2013.)
Hypothesis
Ref Expression
eleesub.1 𝐶 = (𝑖 ∈ (1...𝑁) ↦ ((𝐴𝑖) − (𝐵𝑖)))
Assertion
Ref Expression
eleesub ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
Distinct variable groups:   𝑖,𝑁   𝐴,𝑖   𝐵,𝑖
Allowed substitution hint:   𝐶(𝑖)

Proof of Theorem eleesub
StepHypRef Expression
1 eleesub.1 . 2 𝐶 = (𝑖 ∈ (1...𝑁) ↦ ((𝐴𝑖) − (𝐵𝑖)))
2 fveere 26614 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
3 fveere 26614 . . . . . 6 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
4 resubcl 10938 . . . . . 6 (((𝐴𝑖) ∈ ℝ ∧ (𝐵𝑖) ∈ ℝ) → ((𝐴𝑖) − (𝐵𝑖)) ∈ ℝ)
52, 3, 4syl2an 595 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁))) → ((𝐴𝑖) − (𝐵𝑖)) ∈ ℝ)
65anandirs 675 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) − (𝐵𝑖)) ∈ ℝ)
76ralrimiva 3179 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ∀𝑖 ∈ (1...𝑁)((𝐴𝑖) − (𝐵𝑖)) ∈ ℝ)
8 eleenn 26609 . . . . 5 (𝐴 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)
9 mptelee 26608 . . . . 5 (𝑁 ∈ ℕ → ((𝑖 ∈ (1...𝑁) ↦ ((𝐴𝑖) − (𝐵𝑖))) ∈ (𝔼‘𝑁) ↔ ∀𝑖 ∈ (1...𝑁)((𝐴𝑖) − (𝐵𝑖)) ∈ ℝ))
108, 9syl 17 . . . 4 (𝐴 ∈ (𝔼‘𝑁) → ((𝑖 ∈ (1...𝑁) ↦ ((𝐴𝑖) − (𝐵𝑖))) ∈ (𝔼‘𝑁) ↔ ∀𝑖 ∈ (1...𝑁)((𝐴𝑖) − (𝐵𝑖)) ∈ ℝ))
1110adantr 481 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((𝑖 ∈ (1...𝑁) ↦ ((𝐴𝑖) − (𝐵𝑖))) ∈ (𝔼‘𝑁) ↔ ∀𝑖 ∈ (1...𝑁)((𝐴𝑖) − (𝐵𝑖)) ∈ ℝ))
127, 11mpbird 258 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝑖 ∈ (1...𝑁) ↦ ((𝐴𝑖) − (𝐵𝑖))) ∈ (𝔼‘𝑁))
131, 12eqeltrid 2914 1 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  cmpt 5137  cfv 6348  (class class class)co 7145  cr 10524  1c1 10526  cmin 10858  cn 11626  ...cfz 12880  𝔼cee 26601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-ltxr 10668  df-sub 10860  df-neg 10861  df-ee 26604
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator