![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eleesub | Structured version Visualization version GIF version |
Description: Membership of a subtraction mapping in a Euclidean space. (Contributed by Scott Fenton, 17-Jul-2013.) |
Ref | Expression |
---|---|
eleesub.1 | ⊢ 𝐶 = (𝑖 ∈ (1...𝑁) ↦ ((𝐴‘𝑖) − (𝐵‘𝑖))) |
Ref | Expression |
---|---|
eleesub | ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleesub.1 | . 2 ⊢ 𝐶 = (𝑖 ∈ (1...𝑁) ↦ ((𝐴‘𝑖) − (𝐵‘𝑖))) | |
2 | fveere 26250 | . . . . . 6 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴‘𝑖) ∈ ℝ) | |
3 | fveere 26250 | . . . . . 6 ⊢ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵‘𝑖) ∈ ℝ) | |
4 | resubcl 10687 | . . . . . 6 ⊢ (((𝐴‘𝑖) ∈ ℝ ∧ (𝐵‘𝑖) ∈ ℝ) → ((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℝ) | |
5 | 2, 3, 4 | syl2an 589 | . . . . 5 ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁))) → ((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℝ) |
6 | 5 | anandirs 669 | . . . 4 ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℝ) |
7 | 6 | ralrimiva 3148 | . . 3 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ∀𝑖 ∈ (1...𝑁)((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℝ) |
8 | eleenn 26245 | . . . . 5 ⊢ (𝐴 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ) | |
9 | mptelee 26244 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((𝑖 ∈ (1...𝑁) ↦ ((𝐴‘𝑖) − (𝐵‘𝑖))) ∈ (𝔼‘𝑁) ↔ ∀𝑖 ∈ (1...𝑁)((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℝ)) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝐴 ∈ (𝔼‘𝑁) → ((𝑖 ∈ (1...𝑁) ↦ ((𝐴‘𝑖) − (𝐵‘𝑖))) ∈ (𝔼‘𝑁) ↔ ∀𝑖 ∈ (1...𝑁)((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℝ)) |
11 | 10 | adantr 474 | . . 3 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((𝑖 ∈ (1...𝑁) ↦ ((𝐴‘𝑖) − (𝐵‘𝑖))) ∈ (𝔼‘𝑁) ↔ ∀𝑖 ∈ (1...𝑁)((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℝ)) |
12 | 7, 11 | mpbird 249 | . 2 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝑖 ∈ (1...𝑁) ↦ ((𝐴‘𝑖) − (𝐵‘𝑖))) ∈ (𝔼‘𝑁)) |
13 | 1, 12 | syl5eqel 2863 | 1 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ↦ cmpt 4965 ‘cfv 6135 (class class class)co 6922 ℝcr 10271 1c1 10273 − cmin 10606 ℕcn 11374 ...cfz 12643 𝔼cee 26237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-po 5274 df-so 5275 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-ltxr 10416 df-sub 10608 df-neg 10609 df-ee 26240 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |