Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleesub Structured version   Visualization version   GIF version

Theorem eleesub 26683
 Description: Membership of a subtraction mapping in a Euclidean space. (Contributed by Scott Fenton, 17-Jul-2013.)
Hypothesis
Ref Expression
eleesub.1 𝐶 = (𝑖 ∈ (1...𝑁) ↦ ((𝐴𝑖) − (𝐵𝑖)))
Assertion
Ref Expression
eleesub ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
Distinct variable groups:   𝑖,𝑁   𝐴,𝑖   𝐵,𝑖
Allowed substitution hint:   𝐶(𝑖)

Proof of Theorem eleesub
StepHypRef Expression
1 eleesub.1 . 2 𝐶 = (𝑖 ∈ (1...𝑁) ↦ ((𝐴𝑖) − (𝐵𝑖)))
2 fveere 26673 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
3 fveere 26673 . . . . . 6 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
4 resubcl 10927 . . . . . 6 (((𝐴𝑖) ∈ ℝ ∧ (𝐵𝑖) ∈ ℝ) → ((𝐴𝑖) − (𝐵𝑖)) ∈ ℝ)
52, 3, 4syl2an 598 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁))) → ((𝐴𝑖) − (𝐵𝑖)) ∈ ℝ)
65anandirs 678 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) − (𝐵𝑖)) ∈ ℝ)
76ralrimiva 3170 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ∀𝑖 ∈ (1...𝑁)((𝐴𝑖) − (𝐵𝑖)) ∈ ℝ)
8 eleenn 26668 . . . . 5 (𝐴 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)
9 mptelee 26667 . . . . 5 (𝑁 ∈ ℕ → ((𝑖 ∈ (1...𝑁) ↦ ((𝐴𝑖) − (𝐵𝑖))) ∈ (𝔼‘𝑁) ↔ ∀𝑖 ∈ (1...𝑁)((𝐴𝑖) − (𝐵𝑖)) ∈ ℝ))
108, 9syl 17 . . . 4 (𝐴 ∈ (𝔼‘𝑁) → ((𝑖 ∈ (1...𝑁) ↦ ((𝐴𝑖) − (𝐵𝑖))) ∈ (𝔼‘𝑁) ↔ ∀𝑖 ∈ (1...𝑁)((𝐴𝑖) − (𝐵𝑖)) ∈ ℝ))
1110adantr 484 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((𝑖 ∈ (1...𝑁) ↦ ((𝐴𝑖) − (𝐵𝑖))) ∈ (𝔼‘𝑁) ↔ ∀𝑖 ∈ (1...𝑁)((𝐴𝑖) − (𝐵𝑖)) ∈ ℝ))
127, 11mpbird 260 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝑖 ∈ (1...𝑁) ↦ ((𝐴𝑖) − (𝐵𝑖))) ∈ (𝔼‘𝑁))
131, 12eqeltrid 2916 1 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∀wral 3126   ↦ cmpt 5119  ‘cfv 6328  (class class class)co 7130  ℝcr 10513  1c1 10515   − cmin 10847  ℕcn 11615  ...cfz 12875  𝔼cee 26660 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-er 8264  df-map 8383  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-ltxr 10657  df-sub 10849  df-neg 10850  df-ee 26663 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator