Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpclval Structured version   Visualization version   GIF version

Theorem mzpclval 38662
Description: Substitution lemma for mzPolyCld. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpclval (𝑉 ∈ V → (mzPolyCld‘𝑉) = {𝑝 ∈ 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑝))})
Distinct variable groups:   𝑉,𝑝,𝑓,𝑔   𝑖,𝑉,𝑝   𝑗,𝑉,𝑥,𝑝

Proof of Theorem mzpclval
Dummy variables 𝑣 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6978 . . . . 5 (𝑣 = 𝑉 → (ℤ ↑𝑚 𝑣) = (ℤ ↑𝑚 𝑉))
21oveq2d 6986 . . . 4 (𝑣 = 𝑉 → (ℤ ↑𝑚 (ℤ ↑𝑚 𝑣)) = (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)))
32pweqd 4421 . . 3 (𝑣 = 𝑉 → 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑣)) = 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)))
41xpeq1d 5429 . . . . . . . 8 (𝑣 = 𝑉 → ((ℤ ↑𝑚 𝑣) × {𝑎}) = ((ℤ ↑𝑚 𝑉) × {𝑎}))
54eleq1d 2844 . . . . . . 7 (𝑣 = 𝑉 → (((ℤ ↑𝑚 𝑣) × {𝑎}) ∈ 𝑝 ↔ ((ℤ ↑𝑚 𝑉) × {𝑎}) ∈ 𝑝))
65ralbidv 3141 . . . . . 6 (𝑣 = 𝑉 → (∀𝑎 ∈ ℤ ((ℤ ↑𝑚 𝑣) × {𝑎}) ∈ 𝑝 ↔ ∀𝑎 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑎}) ∈ 𝑝))
7 sneq 4445 . . . . . . . . 9 (𝑎 = 𝑖 → {𝑎} = {𝑖})
87xpeq2d 5430 . . . . . . . 8 (𝑎 = 𝑖 → ((ℤ ↑𝑚 𝑉) × {𝑎}) = ((ℤ ↑𝑚 𝑉) × {𝑖}))
98eleq1d 2844 . . . . . . 7 (𝑎 = 𝑖 → (((ℤ ↑𝑚 𝑉) × {𝑎}) ∈ 𝑝 ↔ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝))
109cbvralv 3377 . . . . . 6 (∀𝑎 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑎}) ∈ 𝑝 ↔ ∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝)
116, 10syl6bb 279 . . . . 5 (𝑣 = 𝑉 → (∀𝑎 ∈ ℤ ((ℤ ↑𝑚 𝑣) × {𝑎}) ∈ 𝑝 ↔ ∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝))
121mpteq1d 5010 . . . . . . . 8 (𝑣 = 𝑉 → (𝑐 ∈ (ℤ ↑𝑚 𝑣) ↦ (𝑐𝑏)) = (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)))
1312eleq1d 2844 . . . . . . 7 (𝑣 = 𝑉 → ((𝑐 ∈ (ℤ ↑𝑚 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)) ∈ 𝑝))
1413raleqbi1dv 3337 . . . . . 6 (𝑣 = 𝑉 → (∀𝑏𝑣 (𝑐 ∈ (ℤ ↑𝑚 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ ∀𝑏𝑉 (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)) ∈ 𝑝))
15 fveq2 6493 . . . . . . . . . 10 (𝑏 = 𝑗 → (𝑐𝑏) = (𝑐𝑗))
1615mpteq2dv 5017 . . . . . . . . 9 (𝑏 = 𝑗 → (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)) = (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑗)))
1716eleq1d 2844 . . . . . . . 8 (𝑏 = 𝑗 → ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑗)) ∈ 𝑝))
18 fveq1 6492 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝑐𝑗) = (𝑥𝑗))
1918cbvmptv 5022 . . . . . . . . 9 (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑗)) = (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗))
2019eleq1i 2850 . . . . . . . 8 ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑗)) ∈ 𝑝 ↔ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝)
2117, 20syl6bb 279 . . . . . . 7 (𝑏 = 𝑗 → ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝))
2221cbvralv 3377 . . . . . 6 (∀𝑏𝑉 (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝)
2314, 22syl6bb 279 . . . . 5 (𝑣 = 𝑉 → (∀𝑏𝑣 (𝑐 ∈ (ℤ ↑𝑚 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝))
2411, 23anbi12d 621 . . . 4 (𝑣 = 𝑉 → ((∀𝑎 ∈ ℤ ((ℤ ↑𝑚 𝑣) × {𝑎}) ∈ 𝑝 ∧ ∀𝑏𝑣 (𝑐 ∈ (ℤ ↑𝑚 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝) ↔ (∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝)))
2524anbi1d 620 . . 3 (𝑣 = 𝑉 → (((∀𝑎 ∈ ℤ ((ℤ ↑𝑚 𝑣) × {𝑎}) ∈ 𝑝 ∧ ∀𝑏𝑣 (𝑐 ∈ (ℤ ↑𝑚 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑝)) ↔ ((∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑝))))
263, 25rabeqbidv 3402 . 2 (𝑣 = 𝑉 → {𝑝 ∈ 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑣)) ∣ ((∀𝑎 ∈ ℤ ((ℤ ↑𝑚 𝑣) × {𝑎}) ∈ 𝑝 ∧ ∀𝑏𝑣 (𝑐 ∈ (ℤ ↑𝑚 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑝))} = {𝑝 ∈ 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑝))})
27 df-mzpcl 38660 . 2 mzPolyCld = (𝑣 ∈ V ↦ {𝑝 ∈ 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑣)) ∣ ((∀𝑎 ∈ ℤ ((ℤ ↑𝑚 𝑣) × {𝑎}) ∈ 𝑝 ∧ ∀𝑏𝑣 (𝑐 ∈ (ℤ ↑𝑚 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑝))})
28 ovex 7002 . . . 4 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∈ V
2928pwex 5128 . . 3 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∈ V
3029rabex 5085 . 2 {𝑝 ∈ 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑝))} ∈ V
3126, 27, 30fvmpt 6589 1 (𝑉 ∈ V → (mzPolyCld‘𝑉) = {𝑝 ∈ 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑝))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2048  wral 3082  {crab 3086  Vcvv 3409  𝒫 cpw 4416  {csn 4435  cmpt 5002   × cxp 5398  cfv 6182  (class class class)co 6970  𝑓 cof 7219  𝑚 cmap 8198   + caddc 10330   · cmul 10332  cz 11786  mzPolyCldcmzpcl 38658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3678  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5305  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-iota 6146  df-fun 6184  df-fv 6190  df-ov 6973  df-mzpcl 38660
This theorem is referenced by:  elmzpcl  38663
  Copyright terms: Public domain W3C validator