Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpclval Structured version   Visualization version   GIF version

Theorem mzpclval 42713
Description: Substitution lemma for mzPolyCld. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpclval (𝑉 ∈ V → (mzPolyCld‘𝑉) = {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝))})
Distinct variable groups:   𝑉,𝑝,𝑓,𝑔   𝑖,𝑉,𝑝   𝑗,𝑉,𝑥,𝑝

Proof of Theorem mzpclval
Dummy variables 𝑣 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7395 . . . . 5 (𝑣 = 𝑉 → (ℤ ↑m 𝑣) = (ℤ ↑m 𝑉))
21oveq2d 7403 . . . 4 (𝑣 = 𝑉 → (ℤ ↑m (ℤ ↑m 𝑣)) = (ℤ ↑m (ℤ ↑m 𝑉)))
32pweqd 4580 . . 3 (𝑣 = 𝑉 → 𝒫 (ℤ ↑m (ℤ ↑m 𝑣)) = 𝒫 (ℤ ↑m (ℤ ↑m 𝑉)))
41xpeq1d 5667 . . . . . . . 8 (𝑣 = 𝑉 → ((ℤ ↑m 𝑣) × {𝑎}) = ((ℤ ↑m 𝑉) × {𝑎}))
54eleq1d 2813 . . . . . . 7 (𝑣 = 𝑉 → (((ℤ ↑m 𝑣) × {𝑎}) ∈ 𝑝 ↔ ((ℤ ↑m 𝑉) × {𝑎}) ∈ 𝑝))
65ralbidv 3156 . . . . . 6 (𝑣 = 𝑉 → (∀𝑎 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑎}) ∈ 𝑝 ↔ ∀𝑎 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑎}) ∈ 𝑝))
7 sneq 4599 . . . . . . . . 9 (𝑎 = 𝑖 → {𝑎} = {𝑖})
87xpeq2d 5668 . . . . . . . 8 (𝑎 = 𝑖 → ((ℤ ↑m 𝑉) × {𝑎}) = ((ℤ ↑m 𝑉) × {𝑖}))
98eleq1d 2813 . . . . . . 7 (𝑎 = 𝑖 → (((ℤ ↑m 𝑉) × {𝑎}) ∈ 𝑝 ↔ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝))
109cbvralvw 3215 . . . . . 6 (∀𝑎 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑎}) ∈ 𝑝 ↔ ∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝)
116, 10bitrdi 287 . . . . 5 (𝑣 = 𝑉 → (∀𝑎 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑎}) ∈ 𝑝 ↔ ∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝))
121mpteq1d 5197 . . . . . . . 8 (𝑣 = 𝑉 → (𝑐 ∈ (ℤ ↑m 𝑣) ↦ (𝑐𝑏)) = (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)))
1312eleq1d 2813 . . . . . . 7 (𝑣 = 𝑉 → ((𝑐 ∈ (ℤ ↑m 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) ∈ 𝑝))
1413raleqbi1dv 3311 . . . . . 6 (𝑣 = 𝑉 → (∀𝑏𝑣 (𝑐 ∈ (ℤ ↑m 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ ∀𝑏𝑉 (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) ∈ 𝑝))
15 fveq2 6858 . . . . . . . . . 10 (𝑏 = 𝑗 → (𝑐𝑏) = (𝑐𝑗))
1615mpteq2dv 5201 . . . . . . . . 9 (𝑏 = 𝑗 → (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) = (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑗)))
1716eleq1d 2813 . . . . . . . 8 (𝑏 = 𝑗 → ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑗)) ∈ 𝑝))
18 fveq1 6857 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝑐𝑗) = (𝑥𝑗))
1918cbvmptv 5211 . . . . . . . . 9 (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑗)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗))
2019eleq1i 2819 . . . . . . . 8 ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑗)) ∈ 𝑝 ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝)
2117, 20bitrdi 287 . . . . . . 7 (𝑏 = 𝑗 → ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝))
2221cbvralvw 3215 . . . . . 6 (∀𝑏𝑉 (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝)
2314, 22bitrdi 287 . . . . 5 (𝑣 = 𝑉 → (∀𝑏𝑣 (𝑐 ∈ (ℤ ↑m 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝))
2411, 23anbi12d 632 . . . 4 (𝑣 = 𝑉 → ((∀𝑎 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑎}) ∈ 𝑝 ∧ ∀𝑏𝑣 (𝑐 ∈ (ℤ ↑m 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝) ↔ (∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝)))
2524anbi1d 631 . . 3 (𝑣 = 𝑉 → (((∀𝑎 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑎}) ∈ 𝑝 ∧ ∀𝑏𝑣 (𝑐 ∈ (ℤ ↑m 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝)) ↔ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝))))
263, 25rabeqbidv 3424 . 2 (𝑣 = 𝑉 → {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑣)) ∣ ((∀𝑎 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑎}) ∈ 𝑝 ∧ ∀𝑏𝑣 (𝑐 ∈ (ℤ ↑m 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝))} = {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝))})
27 df-mzpcl 42711 . 2 mzPolyCld = (𝑣 ∈ V ↦ {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑣)) ∣ ((∀𝑎 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑎}) ∈ 𝑝 ∧ ∀𝑏𝑣 (𝑐 ∈ (ℤ ↑m 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝))})
28 ovex 7420 . . . 4 (ℤ ↑m (ℤ ↑m 𝑉)) ∈ V
2928pwex 5335 . . 3 𝒫 (ℤ ↑m (ℤ ↑m 𝑉)) ∈ V
3029rabex 5294 . 2 {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝))} ∈ V
3126, 27, 30fvmpt 6968 1 (𝑉 ∈ V → (mzPolyCld‘𝑉) = {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  𝒫 cpw 4563  {csn 4589  cmpt 5188   × cxp 5636  cfv 6511  (class class class)co 7387  f cof 7651  m cmap 8799   + caddc 11071   · cmul 11073  cz 12529  mzPolyCldcmzpcl 42709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-mzpcl 42711
This theorem is referenced by:  elmzpcl  42714
  Copyright terms: Public domain W3C validator