Step | Hyp | Ref
| Expression |
1 | | elfvex 6789 |
. . . 4
⊢ (𝐴 ∈ (mzPoly‘𝑉) → 𝑉 ∈ V) |
2 | 1 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ (mzPoly‘𝑉)) → 𝑉 ∈ V) |
3 | | mzpval 40470 |
. . . . . . 7
⊢ (𝑉 ∈ V →
(mzPoly‘𝑉) = ∩ (mzPolyCld‘𝑉)) |
4 | 3 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑉 ∈ V) → (mzPoly‘𝑉) = ∩
(mzPolyCld‘𝑉)) |
5 | | ssrab2 4009 |
. . . . . . . . . 10
⊢ {𝑥 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ⊆ (ℤ ↑m
(ℤ ↑m 𝑉)) |
6 | 5 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑉 ∈ V) → {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ⊆ (ℤ
↑m (ℤ ↑m 𝑉))) |
7 | | ovex 7288 |
. . . . . . . . . . . . . . 15
⊢ (ℤ
↑m 𝑉)
∈ V |
8 | | zex 12258 |
. . . . . . . . . . . . . . 15
⊢ ℤ
∈ V |
9 | 7, 8 | constmap 40451 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∈ ℤ → ((ℤ
↑m 𝑉)
× {𝑓}) ∈
(ℤ ↑m (ℤ ↑m 𝑉))) |
10 | 9 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → ((ℤ
↑m 𝑉)
× {𝑓}) ∈
(ℤ ↑m (ℤ ↑m 𝑉))) |
11 | | mzpindd.co |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → 𝜒) |
12 | | mzpindd.1 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = ((ℤ ↑m
𝑉) × {𝑓}) → (𝜓 ↔ 𝜒)) |
13 | 12 | elrab 3617 |
. . . . . . . . . . . . 13
⊢
(((ℤ ↑m 𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ↔ (((ℤ
↑m 𝑉)
× {𝑓}) ∈
(ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜒)) |
14 | 10, 11, 13 | sylanbrc 582 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → ((ℤ
↑m 𝑉)
× {𝑓}) ∈ {𝑥 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∣ 𝜓}) |
15 | 14 | ralrimiva 3107 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑓 ∈ ℤ ((ℤ ↑m
𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓}) |
16 | 15 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑉 ∈ V) → ∀𝑓 ∈ ℤ ((ℤ ↑m
𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓}) |
17 | 8 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑉 ∈ V) ∧ 𝑓 ∈ 𝑉) ∧ 𝑔 ∈ (ℤ ↑m 𝑉)) → ℤ ∈
V) |
18 | | simpllr 772 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑉 ∈ V) ∧ 𝑓 ∈ 𝑉) ∧ 𝑔 ∈ (ℤ ↑m 𝑉)) → 𝑉 ∈ V) |
19 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑉 ∈ V) ∧ 𝑓 ∈ 𝑉) ∧ 𝑔 ∈ (ℤ ↑m 𝑉)) → 𝑔 ∈ (ℤ ↑m 𝑉)) |
20 | | elmapg 8586 |
. . . . . . . . . . . . . . . . 17
⊢ ((ℤ
∈ V ∧ 𝑉 ∈ V)
→ (𝑔 ∈ (ℤ
↑m 𝑉)
↔ 𝑔:𝑉⟶ℤ)) |
21 | 20 | biimpa 476 |
. . . . . . . . . . . . . . . 16
⊢
(((ℤ ∈ V ∧ 𝑉 ∈ V) ∧ 𝑔 ∈ (ℤ ↑m 𝑉)) → 𝑔:𝑉⟶ℤ) |
22 | 17, 18, 19, 21 | syl21anc 834 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑉 ∈ V) ∧ 𝑓 ∈ 𝑉) ∧ 𝑔 ∈ (ℤ ↑m 𝑉)) → 𝑔:𝑉⟶ℤ) |
23 | | simplr 765 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑉 ∈ V) ∧ 𝑓 ∈ 𝑉) ∧ 𝑔 ∈ (ℤ ↑m 𝑉)) → 𝑓 ∈ 𝑉) |
24 | 22, 23 | ffvelrnd 6944 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑉 ∈ V) ∧ 𝑓 ∈ 𝑉) ∧ 𝑔 ∈ (ℤ ↑m 𝑉)) → (𝑔‘𝑓) ∈ ℤ) |
25 | 24 | fmpttd 6971 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑉 ∈ V) ∧ 𝑓 ∈ 𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)):(ℤ ↑m 𝑉)⟶ℤ) |
26 | 8, 7 | elmap 8617 |
. . . . . . . . . . . . 13
⊢ ((𝑔 ∈ (ℤ
↑m 𝑉)
↦ (𝑔‘𝑓)) ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ↔ (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)):(ℤ ↑m 𝑉)⟶ℤ) |
27 | 25, 26 | sylibr 233 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑉 ∈ V) ∧ 𝑓 ∈ 𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ (ℤ ↑m
(ℤ ↑m 𝑉))) |
28 | | mzpindd.pr |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑉) → 𝜃) |
29 | 28 | adantlr 711 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑉 ∈ V) ∧ 𝑓 ∈ 𝑉) → 𝜃) |
30 | | mzpindd.2 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) → (𝜓 ↔ 𝜃)) |
31 | 30 | elrab 3617 |
. . . . . . . . . . . 12
⊢ ((𝑔 ∈ (ℤ
↑m 𝑉)
↦ (𝑔‘𝑓)) ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ↔ ((𝑔 ∈ (ℤ
↑m 𝑉)
↦ (𝑔‘𝑓)) ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∧ 𝜃)) |
32 | 27, 29, 31 | sylanbrc 582 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑉 ∈ V) ∧ 𝑓 ∈ 𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓}) |
33 | 32 | ralrimiva 3107 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑉 ∈ V) → ∀𝑓 ∈ 𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓}) |
34 | 16, 33 | jca 511 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑉 ∈ V) → (∀𝑓 ∈ ℤ ((ℤ
↑m 𝑉)
× {𝑓}) ∈ {𝑥 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∧ ∀𝑓 ∈ 𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓})) |
35 | | zaddcl 12290 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ) |
36 | 35 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓:(ℤ ↑m
𝑉)⟶ℤ ∧
𝑔:(ℤ
↑m 𝑉)⟶ℤ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 + 𝑏) ∈ ℤ) |
37 | | simpl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(ℤ ↑m
𝑉)⟶ℤ ∧
𝑔:(ℤ
↑m 𝑉)⟶ℤ) → 𝑓:(ℤ ↑m 𝑉)⟶ℤ) |
38 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(ℤ ↑m
𝑉)⟶ℤ ∧
𝑔:(ℤ
↑m 𝑉)⟶ℤ) → 𝑔:(ℤ ↑m 𝑉)⟶ℤ) |
39 | 7 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(ℤ ↑m
𝑉)⟶ℤ ∧
𝑔:(ℤ
↑m 𝑉)⟶ℤ) → (ℤ
↑m 𝑉)
∈ V) |
40 | | inidm 4149 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((ℤ
↑m 𝑉) ∩
(ℤ ↑m 𝑉)) = (ℤ ↑m 𝑉) |
41 | 36, 37, 38, 39, 39, 40 | off 7529 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(ℤ ↑m
𝑉)⟶ℤ ∧
𝑔:(ℤ
↑m 𝑉)⟶ℤ) → (𝑓 ∘f + 𝑔):(ℤ ↑m 𝑉)⟶ℤ) |
42 | 41 | ad2ant2r 743 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓:(ℤ ↑m
𝑉)⟶ℤ ∧
𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → (𝑓 ∘f + 𝑔):(ℤ ↑m 𝑉)⟶ℤ) |
43 | 42 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂))) → (𝑓 ∘f + 𝑔):(ℤ ↑m 𝑉)⟶ℤ) |
44 | | mzpindd.ad |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → 𝜁) |
45 | 44 | 3expb 1118 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂))) → 𝜁) |
46 | 43, 45 | jca 511 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂))) → ((𝑓 ∘f + 𝑔):(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜁)) |
47 | | zmulcl 12299 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 · 𝑏) ∈ ℤ) |
48 | 47 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓:(ℤ ↑m
𝑉)⟶ℤ ∧
𝑔:(ℤ
↑m 𝑉)⟶ℤ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 · 𝑏) ∈ ℤ) |
49 | 48, 37, 38, 39, 39, 40 | off 7529 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(ℤ ↑m
𝑉)⟶ℤ ∧
𝑔:(ℤ
↑m 𝑉)⟶ℤ) → (𝑓 ∘f · 𝑔):(ℤ ↑m
𝑉)⟶ℤ) |
50 | 49 | ad2ant2r 743 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓:(ℤ ↑m
𝑉)⟶ℤ ∧
𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → (𝑓 ∘f · 𝑔):(ℤ ↑m
𝑉)⟶ℤ) |
51 | 50 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂))) → (𝑓 ∘f · 𝑔):(ℤ ↑m
𝑉)⟶ℤ) |
52 | | mzpindd.mu |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → 𝜎) |
53 | 52 | 3expb 1118 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂))) → 𝜎) |
54 | 46, 51, 53 | jca32 515 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂))) → (((𝑓 ∘f + 𝑔):(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜁) ∧ ((𝑓 ∘f · 𝑔):(ℤ ↑m
𝑉)⟶ℤ ∧
𝜎))) |
55 | 54 | ex 412 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → (((𝑓 ∘f + 𝑔):(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜁) ∧ ((𝑓 ∘f · 𝑔):(ℤ ↑m
𝑉)⟶ℤ ∧
𝜎)))) |
56 | 8, 7 | elmap 8617 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ↔ 𝑓:(ℤ ↑m 𝑉)⟶ℤ) |
57 | 56 | anbi1i 623 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∧ 𝜏) ↔ (𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏)) |
58 | 8, 7 | elmap 8617 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ↔ 𝑔:(ℤ ↑m 𝑉)⟶ℤ) |
59 | 58 | anbi1i 623 |
. . . . . . . . . . . . . 14
⊢ ((𝑔 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∧ 𝜂) ↔ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) |
60 | 57, 59 | anbi12i 626 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∧ 𝜏) ∧ (𝑔 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∧ 𝜂)) ↔ ((𝑓:(ℤ ↑m
𝑉)⟶ℤ ∧
𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂))) |
61 | 8, 7 | elmap 8617 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∘f + 𝑔) ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ↔ (𝑓 ∘f + 𝑔):(ℤ ↑m 𝑉)⟶ℤ) |
62 | 61 | anbi1i 623 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∘f + 𝑔) ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∧ 𝜁) ↔ ((𝑓 ∘f + 𝑔):(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜁)) |
63 | 8, 7 | elmap 8617 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∘f ·
𝑔) ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ↔ (𝑓 ∘f · 𝑔):(ℤ ↑m
𝑉)⟶ℤ) |
64 | 63 | anbi1i 623 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∘f ·
𝑔) ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∧ 𝜎) ↔ ((𝑓 ∘f · 𝑔):(ℤ ↑m
𝑉)⟶ℤ ∧
𝜎)) |
65 | 62, 64 | anbi12i 626 |
. . . . . . . . . . . . 13
⊢ ((((𝑓 ∘f + 𝑔) ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∧ 𝜁) ∧ ((𝑓 ∘f · 𝑔) ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∧ 𝜎)) ↔ (((𝑓 ∘f + 𝑔):(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜁) ∧ ((𝑓 ∘f · 𝑔):(ℤ ↑m
𝑉)⟶ℤ ∧
𝜎))) |
66 | 55, 60, 65 | 3imtr4g 295 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝑓 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∧ 𝜏) ∧ (𝑔 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∧ 𝜂)) → (((𝑓 ∘f + 𝑔) ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∧ 𝜁) ∧ ((𝑓 ∘f ·
𝑔) ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∧ 𝜎)))) |
67 | | mzpindd.3 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑓 → (𝜓 ↔ 𝜏)) |
68 | 67 | elrab 3617 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ↔ (𝑓 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∧ 𝜏)) |
69 | | mzpindd.4 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑔 → (𝜓 ↔ 𝜂)) |
70 | 69 | elrab 3617 |
. . . . . . . . . . . . 13
⊢ (𝑔 ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ↔ (𝑔 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∧ 𝜂)) |
71 | 68, 70 | anbi12i 626 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ∧ 𝑔 ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓}) ↔ ((𝑓 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∧ 𝜏) ∧ (𝑔 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∧ 𝜂))) |
72 | | mzpindd.5 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑓 ∘f + 𝑔) → (𝜓 ↔ 𝜁)) |
73 | 72 | elrab 3617 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∘f + 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ↔ ((𝑓 ∘f + 𝑔) ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∧ 𝜁)) |
74 | | mzpindd.6 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑓 ∘f · 𝑔) → (𝜓 ↔ 𝜎)) |
75 | 74 | elrab 3617 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∘f ·
𝑔) ∈ {𝑥 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ↔ ((𝑓 ∘f · 𝑔) ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∧ 𝜎)) |
76 | 73, 75 | anbi12i 626 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∘f + 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ∧ (𝑓 ∘f ·
𝑔) ∈ {𝑥 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∣ 𝜓}) ↔ (((𝑓 ∘f + 𝑔) ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∧ 𝜁) ∧ ((𝑓 ∘f ·
𝑔) ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∧ 𝜎))) |
77 | 66, 71, 76 | 3imtr4g 295 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑓 ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ∧ 𝑔 ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓}) → ((𝑓 ∘f + 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ∧ (𝑓 ∘f ·
𝑔) ∈ {𝑥 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∣ 𝜓}))) |
78 | 77 | ralrimivv 3113 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑓 ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓}∀𝑔 ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ((𝑓 ∘f + 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ∧ (𝑓 ∘f ·
𝑔) ∈ {𝑥 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∣ 𝜓})) |
79 | 78 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑉 ∈ V) → ∀𝑓 ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓}∀𝑔 ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ((𝑓 ∘f + 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ∧ (𝑓 ∘f ·
𝑔) ∈ {𝑥 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∣ 𝜓})) |
80 | 6, 34, 79 | jca32 515 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑉 ∈ V) → ({𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ⊆ (ℤ
↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m
𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ∧
∀𝑓 ∈ 𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓}) ∧
∀𝑓 ∈ {𝑥 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∣ 𝜓}∀𝑔 ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ((𝑓 ∘f + 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ∧ (𝑓 ∘f ·
𝑔) ∈ {𝑥 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∣ 𝜓})))) |
81 | | elmzpcl 40464 |
. . . . . . . . 9
⊢ (𝑉 ∈ V → ({𝑥 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∈ (mzPolyCld‘𝑉) ↔ ({𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ⊆ (ℤ
↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m
𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ∧
∀𝑓 ∈ 𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓}) ∧
∀𝑓 ∈ {𝑥 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∣ 𝜓}∀𝑔 ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ((𝑓 ∘f + 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ∧ (𝑓 ∘f ·
𝑔) ∈ {𝑥 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∣ 𝜓}))))) |
82 | 81 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑉 ∈ V) → ({𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ∈
(mzPolyCld‘𝑉) ↔
({𝑥 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ⊆ (ℤ ↑m
(ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m
𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ∧
∀𝑓 ∈ 𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓}) ∧
∀𝑓 ∈ {𝑥 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∣ 𝜓}∀𝑔 ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ((𝑓 ∘f + 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ∧ (𝑓 ∘f ·
𝑔) ∈ {𝑥 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∣ 𝜓}))))) |
83 | 80, 82 | mpbird 256 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑉 ∈ V) → {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ∈
(mzPolyCld‘𝑉)) |
84 | | intss1 4891 |
. . . . . . 7
⊢ ({𝑥 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∈ (mzPolyCld‘𝑉) → ∩
(mzPolyCld‘𝑉) ⊆
{𝑥 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∣ 𝜓}) |
85 | 83, 84 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑉 ∈ V) → ∩ (mzPolyCld‘𝑉) ⊆ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓}) |
86 | 4, 85 | eqsstrd 3955 |
. . . . 5
⊢ ((𝜑 ∧ 𝑉 ∈ V) → (mzPoly‘𝑉) ⊆ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓}) |
87 | 86 | sselda 3917 |
. . . 4
⊢ (((𝜑 ∧ 𝑉 ∈ V) ∧ 𝐴 ∈ (mzPoly‘𝑉)) → 𝐴 ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓}) |
88 | 87 | an32s 648 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ∈ (mzPoly‘𝑉)) ∧ 𝑉 ∈ V) → 𝐴 ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓}) |
89 | 2, 88 | mpdan 683 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ (mzPoly‘𝑉)) → 𝐴 ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓}) |
90 | | mzpindd.7 |
. . . 4
⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜌)) |
91 | 90 | elrab 3617 |
. . 3
⊢ (𝐴 ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} ↔ (𝐴 ∈ (ℤ
↑m (ℤ ↑m 𝑉)) ∧ 𝜌)) |
92 | 91 | simprbi 496 |
. 2
⊢ (𝐴 ∈ {𝑥 ∈ (ℤ ↑m (ℤ
↑m 𝑉))
∣ 𝜓} → 𝜌) |
93 | 89, 92 | syl 17 |
1
⊢ ((𝜑 ∧ 𝐴 ∈ (mzPoly‘𝑉)) → 𝜌) |