Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpindd Structured version   Visualization version   GIF version

Theorem mzpindd 40881
Description: "Structural" induction to prove properties of all polynomial functions. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Hypotheses
Ref Expression
mzpindd.co ((𝜑𝑓 ∈ ℤ) → 𝜒)
mzpindd.pr ((𝜑𝑓𝑉) → 𝜃)
mzpindd.ad ((𝜑 ∧ (𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → 𝜁)
mzpindd.mu ((𝜑 ∧ (𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → 𝜎)
mzpindd.1 (𝑥 = ((ℤ ↑m 𝑉) × {𝑓}) → (𝜓𝜒))
mzpindd.2 (𝑥 = (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) → (𝜓𝜃))
mzpindd.3 (𝑥 = 𝑓 → (𝜓𝜏))
mzpindd.4 (𝑥 = 𝑔 → (𝜓𝜂))
mzpindd.5 (𝑥 = (𝑓f + 𝑔) → (𝜓𝜁))
mzpindd.6 (𝑥 = (𝑓f · 𝑔) → (𝜓𝜎))
mzpindd.7 (𝑥 = 𝐴 → (𝜓𝜌))
Assertion
Ref Expression
mzpindd ((𝜑𝐴 ∈ (mzPoly‘𝑉)) → 𝜌)
Distinct variable groups:   𝜑,𝑥,𝑓,𝑔   𝜓,𝑓,𝑔   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜂,𝑥   𝜁,𝑥   𝜎,𝑥   𝜌,𝑥   𝑥,𝑉,𝑓,𝑔   𝑥,𝐴
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑓,𝑔)   𝜃(𝑓,𝑔)   𝜏(𝑓,𝑔)   𝜂(𝑓,𝑔)   𝜁(𝑓,𝑔)   𝜎(𝑓,𝑔)   𝜌(𝑓,𝑔)   𝐴(𝑓,𝑔)

Proof of Theorem mzpindd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6864 . . . 4 (𝐴 ∈ (mzPoly‘𝑉) → 𝑉 ∈ V)
21adantl 482 . . 3 ((𝜑𝐴 ∈ (mzPoly‘𝑉)) → 𝑉 ∈ V)
3 mzpval 40867 . . . . . . 7 (𝑉 ∈ V → (mzPoly‘𝑉) = (mzPolyCld‘𝑉))
43adantl 482 . . . . . 6 ((𝜑𝑉 ∈ V) → (mzPoly‘𝑉) = (mzPolyCld‘𝑉))
5 ssrab2 4025 . . . . . . . . . 10 {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ⊆ (ℤ ↑m (ℤ ↑m 𝑉))
65a1i 11 . . . . . . . . 9 ((𝜑𝑉 ∈ V) → {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ⊆ (ℤ ↑m (ℤ ↑m 𝑉)))
7 ovex 7371 . . . . . . . . . . . . . . 15 (ℤ ↑m 𝑉) ∈ V
8 zex 12430 . . . . . . . . . . . . . . 15 ℤ ∈ V
97, 8constmap 40848 . . . . . . . . . . . . . 14 (𝑓 ∈ ℤ → ((ℤ ↑m 𝑉) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑉)))
109adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑉)))
11 mzpindd.co . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ ℤ) → 𝜒)
12 mzpindd.1 . . . . . . . . . . . . . 14 (𝑥 = ((ℤ ↑m 𝑉) × {𝑓}) → (𝜓𝜒))
1312elrab 3634 . . . . . . . . . . . . 13 (((ℤ ↑m 𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ↔ (((ℤ ↑m 𝑉) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜒))
1410, 11, 13sylanbrc 583 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})
1514ralrimiva 3139 . . . . . . . . . . 11 (𝜑 → ∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})
1615adantr 481 . . . . . . . . . 10 ((𝜑𝑉 ∈ V) → ∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})
178a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) ∧ 𝑔 ∈ (ℤ ↑m 𝑉)) → ℤ ∈ V)
18 simpllr 773 . . . . . . . . . . . . . . . 16 ((((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) ∧ 𝑔 ∈ (ℤ ↑m 𝑉)) → 𝑉 ∈ V)
19 simpr 485 . . . . . . . . . . . . . . . 16 ((((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) ∧ 𝑔 ∈ (ℤ ↑m 𝑉)) → 𝑔 ∈ (ℤ ↑m 𝑉))
20 elmapg 8700 . . . . . . . . . . . . . . . . 17 ((ℤ ∈ V ∧ 𝑉 ∈ V) → (𝑔 ∈ (ℤ ↑m 𝑉) ↔ 𝑔:𝑉⟶ℤ))
2120biimpa 477 . . . . . . . . . . . . . . . 16 (((ℤ ∈ V ∧ 𝑉 ∈ V) ∧ 𝑔 ∈ (ℤ ↑m 𝑉)) → 𝑔:𝑉⟶ℤ)
2217, 18, 19, 21syl21anc 835 . . . . . . . . . . . . . . 15 ((((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) ∧ 𝑔 ∈ (ℤ ↑m 𝑉)) → 𝑔:𝑉⟶ℤ)
23 simplr 766 . . . . . . . . . . . . . . 15 ((((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) ∧ 𝑔 ∈ (ℤ ↑m 𝑉)) → 𝑓𝑉)
2422, 23ffvelcdmd 7019 . . . . . . . . . . . . . 14 ((((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) ∧ 𝑔 ∈ (ℤ ↑m 𝑉)) → (𝑔𝑓) ∈ ℤ)
2524fmpttd 7046 . . . . . . . . . . . . 13 (((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)):(ℤ ↑m 𝑉)⟶ℤ)
268, 7elmap 8731 . . . . . . . . . . . . 13 ((𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ↔ (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)):(ℤ ↑m 𝑉)⟶ℤ)
2725, 26sylibr 233 . . . . . . . . . . . 12 (((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑉)))
28 mzpindd.pr . . . . . . . . . . . . 13 ((𝜑𝑓𝑉) → 𝜃)
2928adantlr 712 . . . . . . . . . . . 12 (((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) → 𝜃)
30 mzpindd.2 . . . . . . . . . . . . 13 (𝑥 = (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) → (𝜓𝜃))
3130elrab 3634 . . . . . . . . . . . 12 ((𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ↔ ((𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜃))
3227, 29, 31sylanbrc 583 . . . . . . . . . . 11 (((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})
3332ralrimiva 3139 . . . . . . . . . 10 ((𝜑𝑉 ∈ V) → ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})
3416, 33jca 512 . . . . . . . . 9 ((𝜑𝑉 ∈ V) → (∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}))
35 zaddcl 12462 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
3635adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑉)⟶ℤ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 + 𝑏) ∈ ℤ)
37 simpl 483 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑉)⟶ℤ) → 𝑓:(ℤ ↑m 𝑉)⟶ℤ)
38 simpr 485 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑉)⟶ℤ) → 𝑔:(ℤ ↑m 𝑉)⟶ℤ)
397a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑉)⟶ℤ) → (ℤ ↑m 𝑉) ∈ V)
40 inidm 4166 . . . . . . . . . . . . . . . . . . 19 ((ℤ ↑m 𝑉) ∩ (ℤ ↑m 𝑉)) = (ℤ ↑m 𝑉)
4136, 37, 38, 39, 39, 40off 7614 . . . . . . . . . . . . . . . . . 18 ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑉)⟶ℤ) → (𝑓f + 𝑔):(ℤ ↑m 𝑉)⟶ℤ)
4241ad2ant2r 744 . . . . . . . . . . . . . . . . 17 (((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → (𝑓f + 𝑔):(ℤ ↑m 𝑉)⟶ℤ)
4342adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂))) → (𝑓f + 𝑔):(ℤ ↑m 𝑉)⟶ℤ)
44 mzpindd.ad . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → 𝜁)
45443expb 1119 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂))) → 𝜁)
4643, 45jca 512 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂))) → ((𝑓f + 𝑔):(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜁))
47 zmulcl 12471 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 · 𝑏) ∈ ℤ)
4847adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑉)⟶ℤ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 · 𝑏) ∈ ℤ)
4948, 37, 38, 39, 39, 40off 7614 . . . . . . . . . . . . . . . . 17 ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑉)⟶ℤ) → (𝑓f · 𝑔):(ℤ ↑m 𝑉)⟶ℤ)
5049ad2ant2r 744 . . . . . . . . . . . . . . . 16 (((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → (𝑓f · 𝑔):(ℤ ↑m 𝑉)⟶ℤ)
5150adantl 482 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂))) → (𝑓f · 𝑔):(ℤ ↑m 𝑉)⟶ℤ)
52 mzpindd.mu . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → 𝜎)
53523expb 1119 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂))) → 𝜎)
5446, 51, 53jca32 516 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂))) → (((𝑓f + 𝑔):(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜁) ∧ ((𝑓f · 𝑔):(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜎)))
5554ex 413 . . . . . . . . . . . . 13 (𝜑 → (((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → (((𝑓f + 𝑔):(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜁) ∧ ((𝑓f · 𝑔):(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜎))))
568, 7elmap 8731 . . . . . . . . . . . . . . 15 (𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ↔ 𝑓:(ℤ ↑m 𝑉)⟶ℤ)
5756anbi1i 624 . . . . . . . . . . . . . 14 ((𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜏) ↔ (𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏))
588, 7elmap 8731 . . . . . . . . . . . . . . 15 (𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ↔ 𝑔:(ℤ ↑m 𝑉)⟶ℤ)
5958anbi1i 624 . . . . . . . . . . . . . 14 ((𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜂) ↔ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂))
6057, 59anbi12i 627 . . . . . . . . . . . . 13 (((𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜏) ∧ (𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜂)) ↔ ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)))
618, 7elmap 8731 . . . . . . . . . . . . . . 15 ((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ↔ (𝑓f + 𝑔):(ℤ ↑m 𝑉)⟶ℤ)
6261anbi1i 624 . . . . . . . . . . . . . 14 (((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜁) ↔ ((𝑓f + 𝑔):(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜁))
638, 7elmap 8731 . . . . . . . . . . . . . . 15 ((𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ↔ (𝑓f · 𝑔):(ℤ ↑m 𝑉)⟶ℤ)
6463anbi1i 624 . . . . . . . . . . . . . 14 (((𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜎) ↔ ((𝑓f · 𝑔):(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜎))
6562, 64anbi12i 627 . . . . . . . . . . . . 13 ((((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜁) ∧ ((𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜎)) ↔ (((𝑓f + 𝑔):(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜁) ∧ ((𝑓f · 𝑔):(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜎)))
6655, 60, 653imtr4g 295 . . . . . . . . . . . 12 (𝜑 → (((𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜏) ∧ (𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜂)) → (((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜁) ∧ ((𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜎))))
67 mzpindd.3 . . . . . . . . . . . . . 14 (𝑥 = 𝑓 → (𝜓𝜏))
6867elrab 3634 . . . . . . . . . . . . 13 (𝑓 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ↔ (𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜏))
69 mzpindd.4 . . . . . . . . . . . . . 14 (𝑥 = 𝑔 → (𝜓𝜂))
7069elrab 3634 . . . . . . . . . . . . 13 (𝑔 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ↔ (𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜂))
7168, 70anbi12i 627 . . . . . . . . . . . 12 ((𝑓 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∧ 𝑔 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}) ↔ ((𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜏) ∧ (𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜂)))
72 mzpindd.5 . . . . . . . . . . . . . 14 (𝑥 = (𝑓f + 𝑔) → (𝜓𝜁))
7372elrab 3634 . . . . . . . . . . . . 13 ((𝑓f + 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ↔ ((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜁))
74 mzpindd.6 . . . . . . . . . . . . . 14 (𝑥 = (𝑓f · 𝑔) → (𝜓𝜎))
7574elrab 3634 . . . . . . . . . . . . 13 ((𝑓f · 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ↔ ((𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜎))
7673, 75anbi12i 627 . . . . . . . . . . . 12 (((𝑓f + 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∧ (𝑓f · 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}) ↔ (((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜁) ∧ ((𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜎)))
7766, 71, 763imtr4g 295 . . . . . . . . . . 11 (𝜑 → ((𝑓 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∧ 𝑔 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}) → ((𝑓f + 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∧ (𝑓f · 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})))
7877ralrimivv 3191 . . . . . . . . . 10 (𝜑 → ∀𝑓 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}∀𝑔 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ((𝑓f + 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∧ (𝑓f · 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}))
7978adantr 481 . . . . . . . . 9 ((𝜑𝑉 ∈ V) → ∀𝑓 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}∀𝑔 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ((𝑓f + 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∧ (𝑓f · 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}))
806, 34, 79jca32 516 . . . . . . . 8 ((𝜑𝑉 ∈ V) → ({𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}) ∧ ∀𝑓 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}∀𝑔 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ((𝑓f + 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∧ (𝑓f · 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}))))
81 elmzpcl 40861 . . . . . . . . 9 (𝑉 ∈ V → ({𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∈ (mzPolyCld‘𝑉) ↔ ({𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}) ∧ ∀𝑓 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}∀𝑔 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ((𝑓f + 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∧ (𝑓f · 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})))))
8281adantl 482 . . . . . . . 8 ((𝜑𝑉 ∈ V) → ({𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∈ (mzPolyCld‘𝑉) ↔ ({𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}) ∧ ∀𝑓 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}∀𝑔 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ((𝑓f + 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∧ (𝑓f · 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})))))
8380, 82mpbird 256 . . . . . . 7 ((𝜑𝑉 ∈ V) → {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∈ (mzPolyCld‘𝑉))
84 intss1 4912 . . . . . . 7 ({𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∈ (mzPolyCld‘𝑉) → (mzPolyCld‘𝑉) ⊆ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})
8583, 84syl 17 . . . . . 6 ((𝜑𝑉 ∈ V) → (mzPolyCld‘𝑉) ⊆ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})
864, 85eqsstrd 3970 . . . . 5 ((𝜑𝑉 ∈ V) → (mzPoly‘𝑉) ⊆ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})
8786sselda 3932 . . . 4 (((𝜑𝑉 ∈ V) ∧ 𝐴 ∈ (mzPoly‘𝑉)) → 𝐴 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})
8887an32s 649 . . 3 (((𝜑𝐴 ∈ (mzPoly‘𝑉)) ∧ 𝑉 ∈ V) → 𝐴 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})
892, 88mpdan 684 . 2 ((𝜑𝐴 ∈ (mzPoly‘𝑉)) → 𝐴 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})
90 mzpindd.7 . . . 4 (𝑥 = 𝐴 → (𝜓𝜌))
9190elrab 3634 . . 3 (𝐴 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ↔ (𝐴 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜌))
9291simprbi 497 . 2 (𝐴 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} → 𝜌)
9389, 92syl 17 1 ((𝜑𝐴 ∈ (mzPoly‘𝑉)) → 𝜌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3061  {crab 3403  Vcvv 3441  wss 3898  {csn 4574   cint 4895  cmpt 5176   × cxp 5619  wf 6476  cfv 6480  (class class class)co 7338  f cof 7594  m cmap 8687   + caddc 10976   · cmul 10978  cz 12421  mzPolyCldcmzpcl 40856  mzPolycmzp 40857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5230  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651  ax-cnex 11029  ax-resscn 11030  ax-1cn 11031  ax-icn 11032  ax-addcl 11033  ax-addrcl 11034  ax-mulcl 11035  ax-mulrcl 11036  ax-mulcom 11037  ax-addass 11038  ax-mulass 11039  ax-distr 11040  ax-i2m1 11041  ax-1ne0 11042  ax-1rid 11043  ax-rnegex 11044  ax-rrecex 11045  ax-cnre 11046  ax-pre-lttri 11047  ax-pre-lttrn 11048  ax-pre-ltadd 11049  ax-pre-mulgt0 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-int 4896  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-tr 5211  df-id 5519  df-eprel 5525  df-po 5533  df-so 5534  df-fr 5576  df-we 5578  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6239  df-ord 6306  df-on 6307  df-lim 6308  df-suc 6309  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-riota 7294  df-ov 7341  df-oprab 7342  df-mpo 7343  df-of 7596  df-om 7782  df-2nd 7901  df-frecs 8168  df-wrecs 8199  df-recs 8273  df-rdg 8312  df-er 8570  df-map 8689  df-en 8806  df-dom 8807  df-sdom 8808  df-pnf 11113  df-mnf 11114  df-xr 11115  df-ltxr 11116  df-le 11117  df-sub 11309  df-neg 11310  df-nn 12076  df-n0 12336  df-z 12422  df-mzpcl 40858  df-mzp 40859
This theorem is referenced by:  mzpmfp  40882  mzpsubst  40883  mzpcompact2lem  40886  mzpcong  41108
  Copyright terms: Public domain W3C validator