Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpindd Structured version   Visualization version   GIF version

Theorem mzpindd 39680
 Description: "Structural" induction to prove properties of all polynomial functions. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Hypotheses
Ref Expression
mzpindd.co ((𝜑𝑓 ∈ ℤ) → 𝜒)
mzpindd.pr ((𝜑𝑓𝑉) → 𝜃)
mzpindd.ad ((𝜑 ∧ (𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → 𝜁)
mzpindd.mu ((𝜑 ∧ (𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → 𝜎)
mzpindd.1 (𝑥 = ((ℤ ↑m 𝑉) × {𝑓}) → (𝜓𝜒))
mzpindd.2 (𝑥 = (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) → (𝜓𝜃))
mzpindd.3 (𝑥 = 𝑓 → (𝜓𝜏))
mzpindd.4 (𝑥 = 𝑔 → (𝜓𝜂))
mzpindd.5 (𝑥 = (𝑓f + 𝑔) → (𝜓𝜁))
mzpindd.6 (𝑥 = (𝑓f · 𝑔) → (𝜓𝜎))
mzpindd.7 (𝑥 = 𝐴 → (𝜓𝜌))
Assertion
Ref Expression
mzpindd ((𝜑𝐴 ∈ (mzPoly‘𝑉)) → 𝜌)
Distinct variable groups:   𝜑,𝑥,𝑓,𝑔   𝜓,𝑓,𝑔   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜂,𝑥   𝜁,𝑥   𝜎,𝑥   𝜌,𝑥   𝑥,𝑉,𝑓,𝑔   𝑥,𝐴
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑓,𝑔)   𝜃(𝑓,𝑔)   𝜏(𝑓,𝑔)   𝜂(𝑓,𝑔)   𝜁(𝑓,𝑔)   𝜎(𝑓,𝑔)   𝜌(𝑓,𝑔)   𝐴(𝑓,𝑔)

Proof of Theorem mzpindd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6682 . . . 4 (𝐴 ∈ (mzPoly‘𝑉) → 𝑉 ∈ V)
21adantl 485 . . 3 ((𝜑𝐴 ∈ (mzPoly‘𝑉)) → 𝑉 ∈ V)
3 mzpval 39666 . . . . . . 7 (𝑉 ∈ V → (mzPoly‘𝑉) = (mzPolyCld‘𝑉))
43adantl 485 . . . . . 6 ((𝜑𝑉 ∈ V) → (mzPoly‘𝑉) = (mzPolyCld‘𝑉))
5 ssrab2 4010 . . . . . . . . . 10 {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ⊆ (ℤ ↑m (ℤ ↑m 𝑉))
65a1i 11 . . . . . . . . 9 ((𝜑𝑉 ∈ V) → {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ⊆ (ℤ ↑m (ℤ ↑m 𝑉)))
7 ovex 7172 . . . . . . . . . . . . . . 15 (ℤ ↑m 𝑉) ∈ V
8 zex 11982 . . . . . . . . . . . . . . 15 ℤ ∈ V
97, 8constmap 39647 . . . . . . . . . . . . . 14 (𝑓 ∈ ℤ → ((ℤ ↑m 𝑉) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑉)))
109adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑉)))
11 mzpindd.co . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ ℤ) → 𝜒)
12 mzpindd.1 . . . . . . . . . . . . . 14 (𝑥 = ((ℤ ↑m 𝑉) × {𝑓}) → (𝜓𝜒))
1312elrab 3631 . . . . . . . . . . . . 13 (((ℤ ↑m 𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ↔ (((ℤ ↑m 𝑉) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜒))
1410, 11, 13sylanbrc 586 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})
1514ralrimiva 3152 . . . . . . . . . . 11 (𝜑 → ∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})
1615adantr 484 . . . . . . . . . 10 ((𝜑𝑉 ∈ V) → ∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})
178a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) ∧ 𝑔 ∈ (ℤ ↑m 𝑉)) → ℤ ∈ V)
18 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) ∧ 𝑔 ∈ (ℤ ↑m 𝑉)) → 𝑉 ∈ V)
19 simpr 488 . . . . . . . . . . . . . . . 16 ((((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) ∧ 𝑔 ∈ (ℤ ↑m 𝑉)) → 𝑔 ∈ (ℤ ↑m 𝑉))
20 elmapg 8406 . . . . . . . . . . . . . . . . 17 ((ℤ ∈ V ∧ 𝑉 ∈ V) → (𝑔 ∈ (ℤ ↑m 𝑉) ↔ 𝑔:𝑉⟶ℤ))
2120biimpa 480 . . . . . . . . . . . . . . . 16 (((ℤ ∈ V ∧ 𝑉 ∈ V) ∧ 𝑔 ∈ (ℤ ↑m 𝑉)) → 𝑔:𝑉⟶ℤ)
2217, 18, 19, 21syl21anc 836 . . . . . . . . . . . . . . 15 ((((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) ∧ 𝑔 ∈ (ℤ ↑m 𝑉)) → 𝑔:𝑉⟶ℤ)
23 simplr 768 . . . . . . . . . . . . . . 15 ((((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) ∧ 𝑔 ∈ (ℤ ↑m 𝑉)) → 𝑓𝑉)
2422, 23ffvelrnd 6833 . . . . . . . . . . . . . 14 ((((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) ∧ 𝑔 ∈ (ℤ ↑m 𝑉)) → (𝑔𝑓) ∈ ℤ)
2524fmpttd 6860 . . . . . . . . . . . . 13 (((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)):(ℤ ↑m 𝑉)⟶ℤ)
268, 7elmap 8422 . . . . . . . . . . . . 13 ((𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ↔ (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)):(ℤ ↑m 𝑉)⟶ℤ)
2725, 26sylibr 237 . . . . . . . . . . . 12 (((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑉)))
28 mzpindd.pr . . . . . . . . . . . . 13 ((𝜑𝑓𝑉) → 𝜃)
2928adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) → 𝜃)
30 mzpindd.2 . . . . . . . . . . . . 13 (𝑥 = (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) → (𝜓𝜃))
3130elrab 3631 . . . . . . . . . . . 12 ((𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ↔ ((𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜃))
3227, 29, 31sylanbrc 586 . . . . . . . . . . 11 (((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})
3332ralrimiva 3152 . . . . . . . . . 10 ((𝜑𝑉 ∈ V) → ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})
3416, 33jca 515 . . . . . . . . 9 ((𝜑𝑉 ∈ V) → (∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}))
35 zaddcl 12014 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
3635adantl 485 . . . . . . . . . . . . . . . . . . 19 (((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑉)⟶ℤ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 + 𝑏) ∈ ℤ)
37 simpl 486 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑉)⟶ℤ) → 𝑓:(ℤ ↑m 𝑉)⟶ℤ)
38 simpr 488 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑉)⟶ℤ) → 𝑔:(ℤ ↑m 𝑉)⟶ℤ)
397a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑉)⟶ℤ) → (ℤ ↑m 𝑉) ∈ V)
40 inidm 4148 . . . . . . . . . . . . . . . . . . 19 ((ℤ ↑m 𝑉) ∩ (ℤ ↑m 𝑉)) = (ℤ ↑m 𝑉)
4136, 37, 38, 39, 39, 40off 7408 . . . . . . . . . . . . . . . . . 18 ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑉)⟶ℤ) → (𝑓f + 𝑔):(ℤ ↑m 𝑉)⟶ℤ)
4241ad2ant2r 746 . . . . . . . . . . . . . . . . 17 (((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → (𝑓f + 𝑔):(ℤ ↑m 𝑉)⟶ℤ)
4342adantl 485 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂))) → (𝑓f + 𝑔):(ℤ ↑m 𝑉)⟶ℤ)
44 mzpindd.ad . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → 𝜁)
45443expb 1117 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂))) → 𝜁)
4643, 45jca 515 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂))) → ((𝑓f + 𝑔):(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜁))
47 zmulcl 12023 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 · 𝑏) ∈ ℤ)
4847adantl 485 . . . . . . . . . . . . . . . . . 18 (((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑉)⟶ℤ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 · 𝑏) ∈ ℤ)
4948, 37, 38, 39, 39, 40off 7408 . . . . . . . . . . . . . . . . 17 ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑉)⟶ℤ) → (𝑓f · 𝑔):(ℤ ↑m 𝑉)⟶ℤ)
5049ad2ant2r 746 . . . . . . . . . . . . . . . 16 (((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → (𝑓f · 𝑔):(ℤ ↑m 𝑉)⟶ℤ)
5150adantl 485 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂))) → (𝑓f · 𝑔):(ℤ ↑m 𝑉)⟶ℤ)
52 mzpindd.mu . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → 𝜎)
53523expb 1117 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂))) → 𝜎)
5446, 51, 53jca32 519 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂))) → (((𝑓f + 𝑔):(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜁) ∧ ((𝑓f · 𝑔):(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜎)))
5554ex 416 . . . . . . . . . . . . 13 (𝜑 → (((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → (((𝑓f + 𝑔):(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜁) ∧ ((𝑓f · 𝑔):(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜎))))
568, 7elmap 8422 . . . . . . . . . . . . . . 15 (𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ↔ 𝑓:(ℤ ↑m 𝑉)⟶ℤ)
5756anbi1i 626 . . . . . . . . . . . . . 14 ((𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜏) ↔ (𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏))
588, 7elmap 8422 . . . . . . . . . . . . . . 15 (𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ↔ 𝑔:(ℤ ↑m 𝑉)⟶ℤ)
5958anbi1i 626 . . . . . . . . . . . . . 14 ((𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜂) ↔ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂))
6057, 59anbi12i 629 . . . . . . . . . . . . 13 (((𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜏) ∧ (𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜂)) ↔ ((𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)))
618, 7elmap 8422 . . . . . . . . . . . . . . 15 ((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ↔ (𝑓f + 𝑔):(ℤ ↑m 𝑉)⟶ℤ)
6261anbi1i 626 . . . . . . . . . . . . . 14 (((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜁) ↔ ((𝑓f + 𝑔):(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜁))
638, 7elmap 8422 . . . . . . . . . . . . . . 15 ((𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ↔ (𝑓f · 𝑔):(ℤ ↑m 𝑉)⟶ℤ)
6463anbi1i 626 . . . . . . . . . . . . . 14 (((𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜎) ↔ ((𝑓f · 𝑔):(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜎))
6562, 64anbi12i 629 . . . . . . . . . . . . 13 ((((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜁) ∧ ((𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜎)) ↔ (((𝑓f + 𝑔):(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜁) ∧ ((𝑓f · 𝑔):(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜎)))
6655, 60, 653imtr4g 299 . . . . . . . . . . . 12 (𝜑 → (((𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜏) ∧ (𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜂)) → (((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜁) ∧ ((𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜎))))
67 mzpindd.3 . . . . . . . . . . . . . 14 (𝑥 = 𝑓 → (𝜓𝜏))
6867elrab 3631 . . . . . . . . . . . . 13 (𝑓 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ↔ (𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜏))
69 mzpindd.4 . . . . . . . . . . . . . 14 (𝑥 = 𝑔 → (𝜓𝜂))
7069elrab 3631 . . . . . . . . . . . . 13 (𝑔 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ↔ (𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜂))
7168, 70anbi12i 629 . . . . . . . . . . . 12 ((𝑓 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∧ 𝑔 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}) ↔ ((𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜏) ∧ (𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜂)))
72 mzpindd.5 . . . . . . . . . . . . . 14 (𝑥 = (𝑓f + 𝑔) → (𝜓𝜁))
7372elrab 3631 . . . . . . . . . . . . 13 ((𝑓f + 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ↔ ((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜁))
74 mzpindd.6 . . . . . . . . . . . . . 14 (𝑥 = (𝑓f · 𝑔) → (𝜓𝜎))
7574elrab 3631 . . . . . . . . . . . . 13 ((𝑓f · 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ↔ ((𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜎))
7673, 75anbi12i 629 . . . . . . . . . . . 12 (((𝑓f + 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∧ (𝑓f · 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}) ↔ (((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜁) ∧ ((𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜎)))
7766, 71, 763imtr4g 299 . . . . . . . . . . 11 (𝜑 → ((𝑓 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∧ 𝑔 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}) → ((𝑓f + 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∧ (𝑓f · 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})))
7877ralrimivv 3158 . . . . . . . . . 10 (𝜑 → ∀𝑓 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}∀𝑔 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ((𝑓f + 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∧ (𝑓f · 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}))
7978adantr 484 . . . . . . . . 9 ((𝜑𝑉 ∈ V) → ∀𝑓 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}∀𝑔 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ((𝑓f + 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∧ (𝑓f · 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}))
806, 34, 79jca32 519 . . . . . . . 8 ((𝜑𝑉 ∈ V) → ({𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}) ∧ ∀𝑓 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}∀𝑔 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ((𝑓f + 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∧ (𝑓f · 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}))))
81 elmzpcl 39660 . . . . . . . . 9 (𝑉 ∈ V → ({𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∈ (mzPolyCld‘𝑉) ↔ ({𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}) ∧ ∀𝑓 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}∀𝑔 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ((𝑓f + 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∧ (𝑓f · 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})))))
8281adantl 485 . . . . . . . 8 ((𝜑𝑉 ∈ V) → ({𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∈ (mzPolyCld‘𝑉) ↔ ({𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}) ∧ ∀𝑓 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓}∀𝑔 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ((𝑓f + 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∧ (𝑓f · 𝑔) ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})))))
8380, 82mpbird 260 . . . . . . 7 ((𝜑𝑉 ∈ V) → {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∈ (mzPolyCld‘𝑉))
84 intss1 4856 . . . . . . 7 ({𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ∈ (mzPolyCld‘𝑉) → (mzPolyCld‘𝑉) ⊆ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})
8583, 84syl 17 . . . . . 6 ((𝜑𝑉 ∈ V) → (mzPolyCld‘𝑉) ⊆ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})
864, 85eqsstrd 3956 . . . . 5 ((𝜑𝑉 ∈ V) → (mzPoly‘𝑉) ⊆ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})
8786sselda 3918 . . . 4 (((𝜑𝑉 ∈ V) ∧ 𝐴 ∈ (mzPoly‘𝑉)) → 𝐴 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})
8887an32s 651 . . 3 (((𝜑𝐴 ∈ (mzPoly‘𝑉)) ∧ 𝑉 ∈ V) → 𝐴 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})
892, 88mpdan 686 . 2 ((𝜑𝐴 ∈ (mzPoly‘𝑉)) → 𝐴 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓})
90 mzpindd.7 . . . 4 (𝑥 = 𝐴 → (𝜓𝜌))
9190elrab 3631 . . 3 (𝐴 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} ↔ (𝐴 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ 𝜌))
9291simprbi 500 . 2 (𝐴 ∈ {𝑥 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ∣ 𝜓} → 𝜌)
9389, 92syl 17 1 ((𝜑𝐴 ∈ (mzPoly‘𝑉)) → 𝜌)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112  ∀wral 3109  {crab 3113  Vcvv 3444   ⊆ wss 3884  {csn 4528  ∩ cint 4841   ↦ cmpt 5113   × cxp 5521  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139   ∘f cof 7391   ↑m cmap 8393   + caddc 10533   · cmul 10535  ℤcz 11973  mzPolyCldcmzpcl 39655  mzPolycmzp 39656 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-mzpcl 39657  df-mzp 39658 This theorem is referenced by:  mzpmfp  39681  mzpsubst  39682  mzpcompact2lem  39685  mzpcong  39906
 Copyright terms: Public domain W3C validator