Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpclall Structured version   Visualization version   GIF version

Theorem mzpclall 42697
Description: The set of all functions with the signature of a polynomial is a polynomially closed set. This is a lemma to show that the intersection in df-mzp 42694 is well-defined. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpclall (𝑉 ∈ V → (ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉))

Proof of Theorem mzpclall
Dummy variables 𝑣 𝑓 𝑔 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7411 . . . 4 (𝑣 = 𝑉 → (ℤ ↑m 𝑣) = (ℤ ↑m 𝑉))
21oveq2d 7419 . . 3 (𝑣 = 𝑉 → (ℤ ↑m (ℤ ↑m 𝑣)) = (ℤ ↑m (ℤ ↑m 𝑉)))
3 fveq2 6875 . . 3 (𝑣 = 𝑉 → (mzPolyCld‘𝑣) = (mzPolyCld‘𝑉))
42, 3eleq12d 2828 . 2 (𝑣 = 𝑉 → ((ℤ ↑m (ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣) ↔ (ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉)))
5 ssid 3981 . . 3 (ℤ ↑m (ℤ ↑m 𝑣)) ⊆ (ℤ ↑m (ℤ ↑m 𝑣))
6 ovex 7436 . . . . . . 7 (ℤ ↑m 𝑣) ∈ V
7 zex 12595 . . . . . . 7 ℤ ∈ V
86, 7constmap 42683 . . . . . 6 (𝑓 ∈ ℤ → ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣)))
98rgen 3053 . . . . 5 𝑓 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣))
10 vex 3463 . . . . . . . . . . 11 𝑣 ∈ V
117, 10elmap 8883 . . . . . . . . . 10 (𝑔 ∈ (ℤ ↑m 𝑣) ↔ 𝑔:𝑣⟶ℤ)
12 ffvelcdm 7070 . . . . . . . . . 10 ((𝑔:𝑣⟶ℤ ∧ 𝑓𝑣) → (𝑔𝑓) ∈ ℤ)
1311, 12sylanb 581 . . . . . . . . 9 ((𝑔 ∈ (ℤ ↑m 𝑣) ∧ 𝑓𝑣) → (𝑔𝑓) ∈ ℤ)
1413ancoms 458 . . . . . . . 8 ((𝑓𝑣𝑔 ∈ (ℤ ↑m 𝑣)) → (𝑔𝑓) ∈ ℤ)
1514fmpttd 7104 . . . . . . 7 (𝑓𝑣 → (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)):(ℤ ↑m 𝑣)⟶ℤ)
167, 6elmap 8883 . . . . . . 7 ((𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ↔ (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)):(ℤ ↑m 𝑣)⟶ℤ)
1715, 16sylibr 234 . . . . . 6 (𝑓𝑣 → (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣)))
1817rgen 3053 . . . . 5 𝑓𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣))
199, 18pm3.2i 470 . . . 4 (∀𝑓 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ∀𝑓𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣)))
20 zaddcl 12630 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
2120adantl 481 . . . . . . . 8 (((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 + 𝑏) ∈ ℤ)
22 simpl 482 . . . . . . . 8 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → 𝑓:(ℤ ↑m 𝑣)⟶ℤ)
23 simpr 484 . . . . . . . 8 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → 𝑔:(ℤ ↑m 𝑣)⟶ℤ)
24 ovexd 7438 . . . . . . . 8 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → (ℤ ↑m 𝑣) ∈ V)
25 inidm 4202 . . . . . . . 8 ((ℤ ↑m 𝑣) ∩ (ℤ ↑m 𝑣)) = (ℤ ↑m 𝑣)
2621, 22, 23, 24, 24, 25off 7687 . . . . . . 7 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → (𝑓f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ)
27 zmulcl 12639 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 · 𝑏) ∈ ℤ)
2827adantl 481 . . . . . . . 8 (((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 · 𝑏) ∈ ℤ)
2928, 22, 23, 24, 24, 25off 7687 . . . . . . 7 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → (𝑓f · 𝑔):(ℤ ↑m 𝑣)⟶ℤ)
3026, 29jca 511 . . . . . 6 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → ((𝑓f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ ∧ (𝑓f · 𝑔):(ℤ ↑m 𝑣)⟶ℤ))
317, 6elmap 8883 . . . . . . 7 (𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ↔ 𝑓:(ℤ ↑m 𝑣)⟶ℤ)
327, 6elmap 8883 . . . . . . 7 (𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ↔ 𝑔:(ℤ ↑m 𝑣)⟶ℤ)
3331, 32anbi12i 628 . . . . . 6 ((𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ 𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))) ↔ (𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ))
347, 6elmap 8883 . . . . . . 7 ((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ↔ (𝑓f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ)
357, 6elmap 8883 . . . . . . 7 ((𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ↔ (𝑓f · 𝑔):(ℤ ↑m 𝑣)⟶ℤ)
3634, 35anbi12i 628 . . . . . 6 (((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣))) ↔ ((𝑓f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ ∧ (𝑓f · 𝑔):(ℤ ↑m 𝑣)⟶ℤ))
3730, 33, 363imtr4i 292 . . . . 5 ((𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ 𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))) → ((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣))))
3837rgen2 3184 . . . 4 𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)))
3919, 38pm3.2i 470 . . 3 ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ∀𝑓𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣))) ∧ ∀𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣))))
40 elmzpcl 42696 . . . 4 (𝑣 ∈ V → ((ℤ ↑m (ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣) ↔ ((ℤ ↑m (ℤ ↑m 𝑣)) ⊆ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ∀𝑓𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣))) ∧ ∀𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)))))))
4110, 40ax-mp 5 . . 3 ((ℤ ↑m (ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣) ↔ ((ℤ ↑m (ℤ ↑m 𝑣)) ⊆ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ∀𝑓𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣))) ∧ ∀𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣))))))
425, 39, 41mpbir2an 711 . 2 (ℤ ↑m (ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣)
434, 42vtoclg 3533 1 (𝑉 ∈ V → (ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  wss 3926  {csn 4601  cmpt 5201   × cxp 5652  wf 6526  cfv 6530  (class class class)co 7403  f cof 7667  m cmap 8838   + caddc 11130   · cmul 11132  cz 12586  mzPolyCldcmzpcl 42691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-n0 12500  df-z 12587  df-mzpcl 42693
This theorem is referenced by:  mzpcln0  42698  mzpincl  42704  mzpf  42706
  Copyright terms: Public domain W3C validator