Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpclall Structured version   Visualization version   GIF version

Theorem mzpclall 40586
Description: The set of all functions with the signature of a polynomial is a polynomially closed set. This is a lemma to show that the intersection in df-mzp 40583 is well-defined. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpclall (𝑉 ∈ V → (ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉))

Proof of Theorem mzpclall
Dummy variables 𝑣 𝑓 𝑔 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7315 . . . 4 (𝑣 = 𝑉 → (ℤ ↑m 𝑣) = (ℤ ↑m 𝑉))
21oveq2d 7323 . . 3 (𝑣 = 𝑉 → (ℤ ↑m (ℤ ↑m 𝑣)) = (ℤ ↑m (ℤ ↑m 𝑉)))
3 fveq2 6804 . . 3 (𝑣 = 𝑉 → (mzPolyCld‘𝑣) = (mzPolyCld‘𝑉))
42, 3eleq12d 2831 . 2 (𝑣 = 𝑉 → ((ℤ ↑m (ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣) ↔ (ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉)))
5 ssid 3948 . . 3 (ℤ ↑m (ℤ ↑m 𝑣)) ⊆ (ℤ ↑m (ℤ ↑m 𝑣))
6 ovex 7340 . . . . . . 7 (ℤ ↑m 𝑣) ∈ V
7 zex 12374 . . . . . . 7 ℤ ∈ V
86, 7constmap 40572 . . . . . 6 (𝑓 ∈ ℤ → ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣)))
98rgen 3064 . . . . 5 𝑓 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣))
10 vex 3441 . . . . . . . . . . 11 𝑣 ∈ V
117, 10elmap 8690 . . . . . . . . . 10 (𝑔 ∈ (ℤ ↑m 𝑣) ↔ 𝑔:𝑣⟶ℤ)
12 ffvelcdm 6991 . . . . . . . . . 10 ((𝑔:𝑣⟶ℤ ∧ 𝑓𝑣) → (𝑔𝑓) ∈ ℤ)
1311, 12sylanb 582 . . . . . . . . 9 ((𝑔 ∈ (ℤ ↑m 𝑣) ∧ 𝑓𝑣) → (𝑔𝑓) ∈ ℤ)
1413ancoms 460 . . . . . . . 8 ((𝑓𝑣𝑔 ∈ (ℤ ↑m 𝑣)) → (𝑔𝑓) ∈ ℤ)
1514fmpttd 7021 . . . . . . 7 (𝑓𝑣 → (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)):(ℤ ↑m 𝑣)⟶ℤ)
167, 6elmap 8690 . . . . . . 7 ((𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ↔ (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)):(ℤ ↑m 𝑣)⟶ℤ)
1715, 16sylibr 233 . . . . . 6 (𝑓𝑣 → (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣)))
1817rgen 3064 . . . . 5 𝑓𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣))
199, 18pm3.2i 472 . . . 4 (∀𝑓 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ∀𝑓𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣)))
20 zaddcl 12406 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
2120adantl 483 . . . . . . . 8 (((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 + 𝑏) ∈ ℤ)
22 simpl 484 . . . . . . . 8 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → 𝑓:(ℤ ↑m 𝑣)⟶ℤ)
23 simpr 486 . . . . . . . 8 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → 𝑔:(ℤ ↑m 𝑣)⟶ℤ)
24 ovexd 7342 . . . . . . . 8 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → (ℤ ↑m 𝑣) ∈ V)
25 inidm 4158 . . . . . . . 8 ((ℤ ↑m 𝑣) ∩ (ℤ ↑m 𝑣)) = (ℤ ↑m 𝑣)
2621, 22, 23, 24, 24, 25off 7583 . . . . . . 7 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → (𝑓f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ)
27 zmulcl 12415 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 · 𝑏) ∈ ℤ)
2827adantl 483 . . . . . . . 8 (((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 · 𝑏) ∈ ℤ)
2928, 22, 23, 24, 24, 25off 7583 . . . . . . 7 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → (𝑓f · 𝑔):(ℤ ↑m 𝑣)⟶ℤ)
3026, 29jca 513 . . . . . 6 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → ((𝑓f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ ∧ (𝑓f · 𝑔):(ℤ ↑m 𝑣)⟶ℤ))
317, 6elmap 8690 . . . . . . 7 (𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ↔ 𝑓:(ℤ ↑m 𝑣)⟶ℤ)
327, 6elmap 8690 . . . . . . 7 (𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ↔ 𝑔:(ℤ ↑m 𝑣)⟶ℤ)
3331, 32anbi12i 628 . . . . . 6 ((𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ 𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))) ↔ (𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ))
347, 6elmap 8690 . . . . . . 7 ((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ↔ (𝑓f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ)
357, 6elmap 8690 . . . . . . 7 ((𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ↔ (𝑓f · 𝑔):(ℤ ↑m 𝑣)⟶ℤ)
3634, 35anbi12i 628 . . . . . 6 (((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣))) ↔ ((𝑓f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ ∧ (𝑓f · 𝑔):(ℤ ↑m 𝑣)⟶ℤ))
3730, 33, 363imtr4i 292 . . . . 5 ((𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ 𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))) → ((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣))))
3837rgen2 3191 . . . 4 𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)))
3919, 38pm3.2i 472 . . 3 ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ∀𝑓𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣))) ∧ ∀𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣))))
40 elmzpcl 40585 . . . 4 (𝑣 ∈ V → ((ℤ ↑m (ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣) ↔ ((ℤ ↑m (ℤ ↑m 𝑣)) ⊆ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ∀𝑓𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣))) ∧ ∀𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)))))))
4110, 40ax-mp 5 . . 3 ((ℤ ↑m (ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣) ↔ ((ℤ ↑m (ℤ ↑m 𝑣)) ⊆ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ∀𝑓𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣))) ∧ ∀𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣))))))
425, 39, 41mpbir2an 709 . 2 (ℤ ↑m (ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣)
434, 42vtoclg 3510 1 (𝑉 ∈ V → (ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104  wral 3062  Vcvv 3437  wss 3892  {csn 4565  cmpt 5164   × cxp 5598  wf 6454  cfv 6458  (class class class)co 7307  f cof 7563  m cmap 8646   + caddc 10920   · cmul 10922  cz 12365  mzPolyCldcmzpcl 40580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-n0 12280  df-z 12366  df-mzpcl 40582
This theorem is referenced by:  mzpcln0  40587  mzpincl  40593  mzpf  40595
  Copyright terms: Public domain W3C validator