Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpclall Structured version   Visualization version   GIF version

Theorem mzpclall 42289
Description: The set of all functions with the signature of a polynomial is a polynomially closed set. This is a lemma to show that the intersection in df-mzp 42286 is well-defined. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpclall (𝑉 ∈ V → (ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉))

Proof of Theorem mzpclall
Dummy variables 𝑣 𝑓 𝑔 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7427 . . . 4 (𝑣 = 𝑉 → (ℤ ↑m 𝑣) = (ℤ ↑m 𝑉))
21oveq2d 7435 . . 3 (𝑣 = 𝑉 → (ℤ ↑m (ℤ ↑m 𝑣)) = (ℤ ↑m (ℤ ↑m 𝑉)))
3 fveq2 6896 . . 3 (𝑣 = 𝑉 → (mzPolyCld‘𝑣) = (mzPolyCld‘𝑉))
42, 3eleq12d 2819 . 2 (𝑣 = 𝑉 → ((ℤ ↑m (ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣) ↔ (ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉)))
5 ssid 3999 . . 3 (ℤ ↑m (ℤ ↑m 𝑣)) ⊆ (ℤ ↑m (ℤ ↑m 𝑣))
6 ovex 7452 . . . . . . 7 (ℤ ↑m 𝑣) ∈ V
7 zex 12600 . . . . . . 7 ℤ ∈ V
86, 7constmap 42275 . . . . . 6 (𝑓 ∈ ℤ → ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣)))
98rgen 3052 . . . . 5 𝑓 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣))
10 vex 3465 . . . . . . . . . . 11 𝑣 ∈ V
117, 10elmap 8890 . . . . . . . . . 10 (𝑔 ∈ (ℤ ↑m 𝑣) ↔ 𝑔:𝑣⟶ℤ)
12 ffvelcdm 7090 . . . . . . . . . 10 ((𝑔:𝑣⟶ℤ ∧ 𝑓𝑣) → (𝑔𝑓) ∈ ℤ)
1311, 12sylanb 579 . . . . . . . . 9 ((𝑔 ∈ (ℤ ↑m 𝑣) ∧ 𝑓𝑣) → (𝑔𝑓) ∈ ℤ)
1413ancoms 457 . . . . . . . 8 ((𝑓𝑣𝑔 ∈ (ℤ ↑m 𝑣)) → (𝑔𝑓) ∈ ℤ)
1514fmpttd 7124 . . . . . . 7 (𝑓𝑣 → (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)):(ℤ ↑m 𝑣)⟶ℤ)
167, 6elmap 8890 . . . . . . 7 ((𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ↔ (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)):(ℤ ↑m 𝑣)⟶ℤ)
1715, 16sylibr 233 . . . . . 6 (𝑓𝑣 → (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣)))
1817rgen 3052 . . . . 5 𝑓𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣))
199, 18pm3.2i 469 . . . 4 (∀𝑓 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ∀𝑓𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣)))
20 zaddcl 12635 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
2120adantl 480 . . . . . . . 8 (((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 + 𝑏) ∈ ℤ)
22 simpl 481 . . . . . . . 8 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → 𝑓:(ℤ ↑m 𝑣)⟶ℤ)
23 simpr 483 . . . . . . . 8 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → 𝑔:(ℤ ↑m 𝑣)⟶ℤ)
24 ovexd 7454 . . . . . . . 8 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → (ℤ ↑m 𝑣) ∈ V)
25 inidm 4217 . . . . . . . 8 ((ℤ ↑m 𝑣) ∩ (ℤ ↑m 𝑣)) = (ℤ ↑m 𝑣)
2621, 22, 23, 24, 24, 25off 7703 . . . . . . 7 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → (𝑓f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ)
27 zmulcl 12644 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 · 𝑏) ∈ ℤ)
2827adantl 480 . . . . . . . 8 (((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 · 𝑏) ∈ ℤ)
2928, 22, 23, 24, 24, 25off 7703 . . . . . . 7 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → (𝑓f · 𝑔):(ℤ ↑m 𝑣)⟶ℤ)
3026, 29jca 510 . . . . . 6 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → ((𝑓f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ ∧ (𝑓f · 𝑔):(ℤ ↑m 𝑣)⟶ℤ))
317, 6elmap 8890 . . . . . . 7 (𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ↔ 𝑓:(ℤ ↑m 𝑣)⟶ℤ)
327, 6elmap 8890 . . . . . . 7 (𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ↔ 𝑔:(ℤ ↑m 𝑣)⟶ℤ)
3331, 32anbi12i 626 . . . . . 6 ((𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ 𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))) ↔ (𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ))
347, 6elmap 8890 . . . . . . 7 ((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ↔ (𝑓f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ)
357, 6elmap 8890 . . . . . . 7 ((𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ↔ (𝑓f · 𝑔):(ℤ ↑m 𝑣)⟶ℤ)
3634, 35anbi12i 626 . . . . . 6 (((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣))) ↔ ((𝑓f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ ∧ (𝑓f · 𝑔):(ℤ ↑m 𝑣)⟶ℤ))
3730, 33, 363imtr4i 291 . . . . 5 ((𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ 𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))) → ((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣))))
3837rgen2 3187 . . . 4 𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)))
3919, 38pm3.2i 469 . . 3 ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ∀𝑓𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣))) ∧ ∀𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣))))
40 elmzpcl 42288 . . . 4 (𝑣 ∈ V → ((ℤ ↑m (ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣) ↔ ((ℤ ↑m (ℤ ↑m 𝑣)) ⊆ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ∀𝑓𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣))) ∧ ∀𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)))))))
4110, 40ax-mp 5 . . 3 ((ℤ ↑m (ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣) ↔ ((ℤ ↑m (ℤ ↑m 𝑣)) ⊆ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ∀𝑓𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣))) ∧ ∀𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣))))))
425, 39, 41mpbir2an 709 . 2 (ℤ ↑m (ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣)
434, 42vtoclg 3532 1 (𝑉 ∈ V → (ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3050  Vcvv 3461  wss 3944  {csn 4630  cmpt 5232   × cxp 5676  wf 6545  cfv 6549  (class class class)co 7419  f cof 7683  m cmap 8845   + caddc 11143   · cmul 11145  cz 12591  mzPolyCldcmzpcl 42283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-n0 12506  df-z 12592  df-mzpcl 42285
This theorem is referenced by:  mzpcln0  42290  mzpincl  42296  mzpf  42298
  Copyright terms: Public domain W3C validator