Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpclall Structured version   Visualization version   GIF version

Theorem mzpclall 40529
Description: The set of all functions with the signature of a polynomial is a polynomially closed set. This is a lemma to show that the intersection in df-mzp 40526 is well-defined. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpclall (𝑉 ∈ V → (ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉))

Proof of Theorem mzpclall
Dummy variables 𝑣 𝑓 𝑔 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7276 . . . 4 (𝑣 = 𝑉 → (ℤ ↑m 𝑣) = (ℤ ↑m 𝑉))
21oveq2d 7284 . . 3 (𝑣 = 𝑉 → (ℤ ↑m (ℤ ↑m 𝑣)) = (ℤ ↑m (ℤ ↑m 𝑉)))
3 fveq2 6768 . . 3 (𝑣 = 𝑉 → (mzPolyCld‘𝑣) = (mzPolyCld‘𝑉))
42, 3eleq12d 2834 . 2 (𝑣 = 𝑉 → ((ℤ ↑m (ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣) ↔ (ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉)))
5 ssid 3947 . . 3 (ℤ ↑m (ℤ ↑m 𝑣)) ⊆ (ℤ ↑m (ℤ ↑m 𝑣))
6 ovex 7301 . . . . . . 7 (ℤ ↑m 𝑣) ∈ V
7 zex 12311 . . . . . . 7 ℤ ∈ V
86, 7constmap 40515 . . . . . 6 (𝑓 ∈ ℤ → ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣)))
98rgen 3075 . . . . 5 𝑓 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣))
10 vex 3434 . . . . . . . . . . 11 𝑣 ∈ V
117, 10elmap 8633 . . . . . . . . . 10 (𝑔 ∈ (ℤ ↑m 𝑣) ↔ 𝑔:𝑣⟶ℤ)
12 ffvelrn 6953 . . . . . . . . . 10 ((𝑔:𝑣⟶ℤ ∧ 𝑓𝑣) → (𝑔𝑓) ∈ ℤ)
1311, 12sylanb 580 . . . . . . . . 9 ((𝑔 ∈ (ℤ ↑m 𝑣) ∧ 𝑓𝑣) → (𝑔𝑓) ∈ ℤ)
1413ancoms 458 . . . . . . . 8 ((𝑓𝑣𝑔 ∈ (ℤ ↑m 𝑣)) → (𝑔𝑓) ∈ ℤ)
1514fmpttd 6983 . . . . . . 7 (𝑓𝑣 → (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)):(ℤ ↑m 𝑣)⟶ℤ)
167, 6elmap 8633 . . . . . . 7 ((𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ↔ (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)):(ℤ ↑m 𝑣)⟶ℤ)
1715, 16sylibr 233 . . . . . 6 (𝑓𝑣 → (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣)))
1817rgen 3075 . . . . 5 𝑓𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣))
199, 18pm3.2i 470 . . . 4 (∀𝑓 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ∀𝑓𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣)))
20 zaddcl 12343 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
2120adantl 481 . . . . . . . 8 (((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 + 𝑏) ∈ ℤ)
22 simpl 482 . . . . . . . 8 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → 𝑓:(ℤ ↑m 𝑣)⟶ℤ)
23 simpr 484 . . . . . . . 8 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → 𝑔:(ℤ ↑m 𝑣)⟶ℤ)
24 ovexd 7303 . . . . . . . 8 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → (ℤ ↑m 𝑣) ∈ V)
25 inidm 4157 . . . . . . . 8 ((ℤ ↑m 𝑣) ∩ (ℤ ↑m 𝑣)) = (ℤ ↑m 𝑣)
2621, 22, 23, 24, 24, 25off 7542 . . . . . . 7 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → (𝑓f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ)
27 zmulcl 12352 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 · 𝑏) ∈ ℤ)
2827adantl 481 . . . . . . . 8 (((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 · 𝑏) ∈ ℤ)
2928, 22, 23, 24, 24, 25off 7542 . . . . . . 7 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → (𝑓f · 𝑔):(ℤ ↑m 𝑣)⟶ℤ)
3026, 29jca 511 . . . . . 6 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → ((𝑓f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ ∧ (𝑓f · 𝑔):(ℤ ↑m 𝑣)⟶ℤ))
317, 6elmap 8633 . . . . . . 7 (𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ↔ 𝑓:(ℤ ↑m 𝑣)⟶ℤ)
327, 6elmap 8633 . . . . . . 7 (𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ↔ 𝑔:(ℤ ↑m 𝑣)⟶ℤ)
3331, 32anbi12i 626 . . . . . 6 ((𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ 𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))) ↔ (𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ))
347, 6elmap 8633 . . . . . . 7 ((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ↔ (𝑓f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ)
357, 6elmap 8633 . . . . . . 7 ((𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ↔ (𝑓f · 𝑔):(ℤ ↑m 𝑣)⟶ℤ)
3634, 35anbi12i 626 . . . . . 6 (((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣))) ↔ ((𝑓f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ ∧ (𝑓f · 𝑔):(ℤ ↑m 𝑣)⟶ℤ))
3730, 33, 363imtr4i 291 . . . . 5 ((𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ 𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))) → ((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣))))
3837rgen2 3128 . . . 4 𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)))
3919, 38pm3.2i 470 . . 3 ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ∀𝑓𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣))) ∧ ∀𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣))))
40 elmzpcl 40528 . . . 4 (𝑣 ∈ V → ((ℤ ↑m (ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣) ↔ ((ℤ ↑m (ℤ ↑m 𝑣)) ⊆ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ∀𝑓𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣))) ∧ ∀𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)))))))
4110, 40ax-mp 5 . . 3 ((ℤ ↑m (ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣) ↔ ((ℤ ↑m (ℤ ↑m 𝑣)) ⊆ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ∀𝑓𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣))) ∧ ∀𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣))))))
425, 39, 41mpbir2an 707 . 2 (ℤ ↑m (ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣)
434, 42vtoclg 3503 1 (𝑉 ∈ V → (ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  wral 3065  Vcvv 3430  wss 3891  {csn 4566  cmpt 5161   × cxp 5586  wf 6426  cfv 6430  (class class class)co 7268  f cof 7522  m cmap 8589   + caddc 10858   · cmul 10860  cz 12302  mzPolyCldcmzpcl 40523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-n0 12217  df-z 12303  df-mzpcl 40525
This theorem is referenced by:  mzpcln0  40530  mzpincl  40536  mzpf  40538
  Copyright terms: Public domain W3C validator