Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpclall Structured version   Visualization version   GIF version

Theorem mzpclall 42717
Description: The set of all functions with the signature of a polynomial is a polynomially closed set. This is a lemma to show that the intersection in df-mzp 42714 is well-defined. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpclall (𝑉 ∈ V → (ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉))

Proof of Theorem mzpclall
Dummy variables 𝑣 𝑓 𝑔 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7418 . . . 4 (𝑣 = 𝑉 → (ℤ ↑m 𝑣) = (ℤ ↑m 𝑉))
21oveq2d 7426 . . 3 (𝑣 = 𝑉 → (ℤ ↑m (ℤ ↑m 𝑣)) = (ℤ ↑m (ℤ ↑m 𝑉)))
3 fveq2 6881 . . 3 (𝑣 = 𝑉 → (mzPolyCld‘𝑣) = (mzPolyCld‘𝑉))
42, 3eleq12d 2829 . 2 (𝑣 = 𝑉 → ((ℤ ↑m (ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣) ↔ (ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉)))
5 ssid 3986 . . 3 (ℤ ↑m (ℤ ↑m 𝑣)) ⊆ (ℤ ↑m (ℤ ↑m 𝑣))
6 ovex 7443 . . . . . . 7 (ℤ ↑m 𝑣) ∈ V
7 zex 12602 . . . . . . 7 ℤ ∈ V
86, 7constmap 42703 . . . . . 6 (𝑓 ∈ ℤ → ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣)))
98rgen 3054 . . . . 5 𝑓 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣))
10 vex 3468 . . . . . . . . . . 11 𝑣 ∈ V
117, 10elmap 8890 . . . . . . . . . 10 (𝑔 ∈ (ℤ ↑m 𝑣) ↔ 𝑔:𝑣⟶ℤ)
12 ffvelcdm 7076 . . . . . . . . . 10 ((𝑔:𝑣⟶ℤ ∧ 𝑓𝑣) → (𝑔𝑓) ∈ ℤ)
1311, 12sylanb 581 . . . . . . . . 9 ((𝑔 ∈ (ℤ ↑m 𝑣) ∧ 𝑓𝑣) → (𝑔𝑓) ∈ ℤ)
1413ancoms 458 . . . . . . . 8 ((𝑓𝑣𝑔 ∈ (ℤ ↑m 𝑣)) → (𝑔𝑓) ∈ ℤ)
1514fmpttd 7110 . . . . . . 7 (𝑓𝑣 → (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)):(ℤ ↑m 𝑣)⟶ℤ)
167, 6elmap 8890 . . . . . . 7 ((𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ↔ (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)):(ℤ ↑m 𝑣)⟶ℤ)
1715, 16sylibr 234 . . . . . 6 (𝑓𝑣 → (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣)))
1817rgen 3054 . . . . 5 𝑓𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣))
199, 18pm3.2i 470 . . . 4 (∀𝑓 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ∀𝑓𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣)))
20 zaddcl 12637 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
2120adantl 481 . . . . . . . 8 (((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 + 𝑏) ∈ ℤ)
22 simpl 482 . . . . . . . 8 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → 𝑓:(ℤ ↑m 𝑣)⟶ℤ)
23 simpr 484 . . . . . . . 8 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → 𝑔:(ℤ ↑m 𝑣)⟶ℤ)
24 ovexd 7445 . . . . . . . 8 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → (ℤ ↑m 𝑣) ∈ V)
25 inidm 4207 . . . . . . . 8 ((ℤ ↑m 𝑣) ∩ (ℤ ↑m 𝑣)) = (ℤ ↑m 𝑣)
2621, 22, 23, 24, 24, 25off 7694 . . . . . . 7 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → (𝑓f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ)
27 zmulcl 12646 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 · 𝑏) ∈ ℤ)
2827adantl 481 . . . . . . . 8 (((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 · 𝑏) ∈ ℤ)
2928, 22, 23, 24, 24, 25off 7694 . . . . . . 7 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → (𝑓f · 𝑔):(ℤ ↑m 𝑣)⟶ℤ)
3026, 29jca 511 . . . . . 6 ((𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) → ((𝑓f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ ∧ (𝑓f · 𝑔):(ℤ ↑m 𝑣)⟶ℤ))
317, 6elmap 8890 . . . . . . 7 (𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ↔ 𝑓:(ℤ ↑m 𝑣)⟶ℤ)
327, 6elmap 8890 . . . . . . 7 (𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ↔ 𝑔:(ℤ ↑m 𝑣)⟶ℤ)
3331, 32anbi12i 628 . . . . . 6 ((𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ 𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))) ↔ (𝑓:(ℤ ↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ))
347, 6elmap 8890 . . . . . . 7 ((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ↔ (𝑓f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ)
357, 6elmap 8890 . . . . . . 7 ((𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ↔ (𝑓f · 𝑔):(ℤ ↑m 𝑣)⟶ℤ)
3634, 35anbi12i 628 . . . . . 6 (((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣))) ↔ ((𝑓f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ ∧ (𝑓f · 𝑔):(ℤ ↑m 𝑣)⟶ℤ))
3730, 33, 363imtr4i 292 . . . . 5 ((𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ 𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))) → ((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣))))
3837rgen2 3185 . . . 4 𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)))
3919, 38pm3.2i 470 . . 3 ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ∀𝑓𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣))) ∧ ∀𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣))))
40 elmzpcl 42716 . . . 4 (𝑣 ∈ V → ((ℤ ↑m (ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣) ↔ ((ℤ ↑m (ℤ ↑m 𝑣)) ⊆ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ∀𝑓𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣))) ∧ ∀𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)))))))
4110, 40ax-mp 5 . . 3 ((ℤ ↑m (ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣) ↔ ((ℤ ↑m (ℤ ↑m 𝑣)) ⊆ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ ∀𝑓𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔𝑓)) ∈ (ℤ ↑m (ℤ ↑m 𝑣))) ∧ ∀𝑓 ∈ (ℤ ↑m (ℤ ↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ ↑m 𝑣))((𝑓f + 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓f · 𝑔) ∈ (ℤ ↑m (ℤ ↑m 𝑣))))))
425, 39, 41mpbir2an 711 . 2 (ℤ ↑m (ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣)
434, 42vtoclg 3538 1 (𝑉 ∈ V → (ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  Vcvv 3464  wss 3931  {csn 4606  cmpt 5206   × cxp 5657  wf 6532  cfv 6536  (class class class)co 7410  f cof 7674  m cmap 8845   + caddc 11137   · cmul 11139  cz 12593  mzPolyCldcmzpcl 42711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-mzpcl 42713
This theorem is referenced by:  mzpcln0  42718  mzpincl  42724  mzpf  42726
  Copyright terms: Public domain W3C validator