Step | Hyp | Ref
| Expression |
1 | | oveq2 7315 |
. . . 4
⊢ (𝑣 = 𝑉 → (ℤ ↑m 𝑣) = (ℤ ↑m
𝑉)) |
2 | 1 | oveq2d 7323 |
. . 3
⊢ (𝑣 = 𝑉 → (ℤ ↑m (ℤ
↑m 𝑣)) =
(ℤ ↑m (ℤ ↑m 𝑉))) |
3 | | fveq2 6804 |
. . 3
⊢ (𝑣 = 𝑉 → (mzPolyCld‘𝑣) = (mzPolyCld‘𝑉)) |
4 | 2, 3 | eleq12d 2831 |
. 2
⊢ (𝑣 = 𝑉 → ((ℤ ↑m
(ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣) ↔ (ℤ ↑m (ℤ
↑m 𝑉))
∈ (mzPolyCld‘𝑉))) |
5 | | ssid 3948 |
. . 3
⊢ (ℤ
↑m (ℤ ↑m 𝑣)) ⊆ (ℤ ↑m
(ℤ ↑m 𝑣)) |
6 | | ovex 7340 |
. . . . . . 7
⊢ (ℤ
↑m 𝑣)
∈ V |
7 | | zex 12374 |
. . . . . . 7
⊢ ℤ
∈ V |
8 | 6, 7 | constmap 40572 |
. . . . . 6
⊢ (𝑓 ∈ ℤ → ((ℤ
↑m 𝑣)
× {𝑓}) ∈
(ℤ ↑m (ℤ ↑m 𝑣))) |
9 | 8 | rgen 3064 |
. . . . 5
⊢
∀𝑓 ∈
ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m
(ℤ ↑m 𝑣)) |
10 | | vex 3441 |
. . . . . . . . . . 11
⊢ 𝑣 ∈ V |
11 | 7, 10 | elmap 8690 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (ℤ
↑m 𝑣)
↔ 𝑔:𝑣⟶ℤ) |
12 | | ffvelcdm 6991 |
. . . . . . . . . 10
⊢ ((𝑔:𝑣⟶ℤ ∧ 𝑓 ∈ 𝑣) → (𝑔‘𝑓) ∈ ℤ) |
13 | 11, 12 | sylanb 582 |
. . . . . . . . 9
⊢ ((𝑔 ∈ (ℤ
↑m 𝑣) ∧
𝑓 ∈ 𝑣) → (𝑔‘𝑓) ∈ ℤ) |
14 | 13 | ancoms 460 |
. . . . . . . 8
⊢ ((𝑓 ∈ 𝑣 ∧ 𝑔 ∈ (ℤ ↑m 𝑣)) → (𝑔‘𝑓) ∈ ℤ) |
15 | 14 | fmpttd 7021 |
. . . . . . 7
⊢ (𝑓 ∈ 𝑣 → (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔‘𝑓)):(ℤ ↑m 𝑣)⟶ℤ) |
16 | 7, 6 | elmap 8690 |
. . . . . . 7
⊢ ((𝑔 ∈ (ℤ
↑m 𝑣)
↦ (𝑔‘𝑓)) ∈ (ℤ
↑m (ℤ ↑m 𝑣)) ↔ (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔‘𝑓)):(ℤ ↑m 𝑣)⟶ℤ) |
17 | 15, 16 | sylibr 233 |
. . . . . 6
⊢ (𝑓 ∈ 𝑣 → (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔‘𝑓)) ∈ (ℤ ↑m
(ℤ ↑m 𝑣))) |
18 | 17 | rgen 3064 |
. . . . 5
⊢
∀𝑓 ∈
𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔‘𝑓)) ∈ (ℤ ↑m
(ℤ ↑m 𝑣)) |
19 | 9, 18 | pm3.2i 472 |
. . . 4
⊢
(∀𝑓 ∈
ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m
(ℤ ↑m 𝑣)) ∧ ∀𝑓 ∈ 𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔‘𝑓)) ∈ (ℤ ↑m
(ℤ ↑m 𝑣))) |
20 | | zaddcl 12406 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ) |
21 | 20 | adantl 483 |
. . . . . . . 8
⊢ (((𝑓:(ℤ ↑m
𝑣)⟶ℤ ∧
𝑔:(ℤ
↑m 𝑣)⟶ℤ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 + 𝑏) ∈ ℤ) |
22 | | simpl 484 |
. . . . . . . 8
⊢ ((𝑓:(ℤ ↑m
𝑣)⟶ℤ ∧
𝑔:(ℤ
↑m 𝑣)⟶ℤ) → 𝑓:(ℤ ↑m 𝑣)⟶ℤ) |
23 | | simpr 486 |
. . . . . . . 8
⊢ ((𝑓:(ℤ ↑m
𝑣)⟶ℤ ∧
𝑔:(ℤ
↑m 𝑣)⟶ℤ) → 𝑔:(ℤ ↑m 𝑣)⟶ℤ) |
24 | | ovexd 7342 |
. . . . . . . 8
⊢ ((𝑓:(ℤ ↑m
𝑣)⟶ℤ ∧
𝑔:(ℤ
↑m 𝑣)⟶ℤ) → (ℤ
↑m 𝑣)
∈ V) |
25 | | inidm 4158 |
. . . . . . . 8
⊢ ((ℤ
↑m 𝑣) ∩
(ℤ ↑m 𝑣)) = (ℤ ↑m 𝑣) |
26 | 21, 22, 23, 24, 24, 25 | off 7583 |
. . . . . . 7
⊢ ((𝑓:(ℤ ↑m
𝑣)⟶ℤ ∧
𝑔:(ℤ
↑m 𝑣)⟶ℤ) → (𝑓 ∘f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ) |
27 | | zmulcl 12415 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 · 𝑏) ∈ ℤ) |
28 | 27 | adantl 483 |
. . . . . . . 8
⊢ (((𝑓:(ℤ ↑m
𝑣)⟶ℤ ∧
𝑔:(ℤ
↑m 𝑣)⟶ℤ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 · 𝑏) ∈ ℤ) |
29 | 28, 22, 23, 24, 24, 25 | off 7583 |
. . . . . . 7
⊢ ((𝑓:(ℤ ↑m
𝑣)⟶ℤ ∧
𝑔:(ℤ
↑m 𝑣)⟶ℤ) → (𝑓 ∘f · 𝑔):(ℤ ↑m
𝑣)⟶ℤ) |
30 | 26, 29 | jca 513 |
. . . . . 6
⊢ ((𝑓:(ℤ ↑m
𝑣)⟶ℤ ∧
𝑔:(ℤ
↑m 𝑣)⟶ℤ) → ((𝑓 ∘f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ ∧ (𝑓 ∘f ·
𝑔):(ℤ
↑m 𝑣)⟶ℤ)) |
31 | 7, 6 | elmap 8690 |
. . . . . . 7
⊢ (𝑓 ∈ (ℤ
↑m (ℤ ↑m 𝑣)) ↔ 𝑓:(ℤ ↑m 𝑣)⟶ℤ) |
32 | 7, 6 | elmap 8690 |
. . . . . . 7
⊢ (𝑔 ∈ (ℤ
↑m (ℤ ↑m 𝑣)) ↔ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) |
33 | 31, 32 | anbi12i 628 |
. . . . . 6
⊢ ((𝑓 ∈ (ℤ
↑m (ℤ ↑m 𝑣)) ∧ 𝑔 ∈ (ℤ ↑m (ℤ
↑m 𝑣)))
↔ (𝑓:(ℤ
↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ)) |
34 | 7, 6 | elmap 8690 |
. . . . . . 7
⊢ ((𝑓 ∘f + 𝑔) ∈ (ℤ
↑m (ℤ ↑m 𝑣)) ↔ (𝑓 ∘f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ) |
35 | 7, 6 | elmap 8690 |
. . . . . . 7
⊢ ((𝑓 ∘f ·
𝑔) ∈ (ℤ
↑m (ℤ ↑m 𝑣)) ↔ (𝑓 ∘f · 𝑔):(ℤ ↑m
𝑣)⟶ℤ) |
36 | 34, 35 | anbi12i 628 |
. . . . . 6
⊢ (((𝑓 ∘f + 𝑔) ∈ (ℤ
↑m (ℤ ↑m 𝑣)) ∧ (𝑓 ∘f · 𝑔) ∈ (ℤ
↑m (ℤ ↑m 𝑣))) ↔ ((𝑓 ∘f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ ∧ (𝑓 ∘f ·
𝑔):(ℤ
↑m 𝑣)⟶ℤ)) |
37 | 30, 33, 36 | 3imtr4i 292 |
. . . . 5
⊢ ((𝑓 ∈ (ℤ
↑m (ℤ ↑m 𝑣)) ∧ 𝑔 ∈ (ℤ ↑m (ℤ
↑m 𝑣)))
→ ((𝑓
∘f + 𝑔)
∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓 ∘f · 𝑔) ∈ (ℤ
↑m (ℤ ↑m 𝑣)))) |
38 | 37 | rgen2 3191 |
. . . 4
⊢
∀𝑓 ∈
(ℤ ↑m (ℤ ↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ
↑m 𝑣))((𝑓 ∘f + 𝑔) ∈ (ℤ ↑m (ℤ
↑m 𝑣))
∧ (𝑓
∘f · 𝑔) ∈ (ℤ ↑m (ℤ
↑m 𝑣))) |
39 | 19, 38 | pm3.2i 472 |
. . 3
⊢
((∀𝑓 ∈
ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m
(ℤ ↑m 𝑣)) ∧ ∀𝑓 ∈ 𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔‘𝑓)) ∈ (ℤ ↑m
(ℤ ↑m 𝑣))) ∧ ∀𝑓 ∈ (ℤ ↑m (ℤ
↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ
↑m 𝑣))((𝑓 ∘f + 𝑔) ∈ (ℤ ↑m (ℤ
↑m 𝑣))
∧ (𝑓
∘f · 𝑔) ∈ (ℤ ↑m (ℤ
↑m 𝑣)))) |
40 | | elmzpcl 40585 |
. . . 4
⊢ (𝑣 ∈ V → ((ℤ
↑m (ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣) ↔ ((ℤ ↑m
(ℤ ↑m 𝑣)) ⊆ (ℤ ↑m
(ℤ ↑m 𝑣)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m
𝑣) × {𝑓}) ∈ (ℤ
↑m (ℤ ↑m 𝑣)) ∧ ∀𝑓 ∈ 𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔‘𝑓)) ∈ (ℤ ↑m
(ℤ ↑m 𝑣))) ∧ ∀𝑓 ∈ (ℤ ↑m (ℤ
↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ
↑m 𝑣))((𝑓 ∘f + 𝑔) ∈ (ℤ ↑m (ℤ
↑m 𝑣))
∧ (𝑓
∘f · 𝑔) ∈ (ℤ ↑m (ℤ
↑m 𝑣))))))) |
41 | 10, 40 | ax-mp 5 |
. . 3
⊢ ((ℤ
↑m (ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣) ↔ ((ℤ ↑m
(ℤ ↑m 𝑣)) ⊆ (ℤ ↑m
(ℤ ↑m 𝑣)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m
𝑣) × {𝑓}) ∈ (ℤ
↑m (ℤ ↑m 𝑣)) ∧ ∀𝑓 ∈ 𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔‘𝑓)) ∈ (ℤ ↑m
(ℤ ↑m 𝑣))) ∧ ∀𝑓 ∈ (ℤ ↑m (ℤ
↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ
↑m 𝑣))((𝑓 ∘f + 𝑔) ∈ (ℤ ↑m (ℤ
↑m 𝑣))
∧ (𝑓
∘f · 𝑔) ∈ (ℤ ↑m (ℤ
↑m 𝑣)))))) |
42 | 5, 39, 41 | mpbir2an 709 |
. 2
⊢ (ℤ
↑m (ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣) |
43 | 4, 42 | vtoclg 3510 |
1
⊢ (𝑉 ∈ V → (ℤ
↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉)) |