| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | oveq2 7440 | . . . 4
⊢ (𝑣 = 𝑉 → (ℤ ↑m 𝑣) = (ℤ ↑m
𝑉)) | 
| 2 | 1 | oveq2d 7448 | . . 3
⊢ (𝑣 = 𝑉 → (ℤ ↑m (ℤ
↑m 𝑣)) =
(ℤ ↑m (ℤ ↑m 𝑉))) | 
| 3 |  | fveq2 6905 | . . 3
⊢ (𝑣 = 𝑉 → (mzPolyCld‘𝑣) = (mzPolyCld‘𝑉)) | 
| 4 | 2, 3 | eleq12d 2834 | . 2
⊢ (𝑣 = 𝑉 → ((ℤ ↑m
(ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣) ↔ (ℤ ↑m (ℤ
↑m 𝑉))
∈ (mzPolyCld‘𝑉))) | 
| 5 |  | ssid 4005 | . . 3
⊢ (ℤ
↑m (ℤ ↑m 𝑣)) ⊆ (ℤ ↑m
(ℤ ↑m 𝑣)) | 
| 6 |  | ovex 7465 | . . . . . . 7
⊢ (ℤ
↑m 𝑣)
∈ V | 
| 7 |  | zex 12624 | . . . . . . 7
⊢ ℤ
∈ V | 
| 8 | 6, 7 | constmap 42729 | . . . . . 6
⊢ (𝑓 ∈ ℤ → ((ℤ
↑m 𝑣)
× {𝑓}) ∈
(ℤ ↑m (ℤ ↑m 𝑣))) | 
| 9 | 8 | rgen 3062 | . . . . 5
⊢
∀𝑓 ∈
ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m
(ℤ ↑m 𝑣)) | 
| 10 |  | vex 3483 | . . . . . . . . . . 11
⊢ 𝑣 ∈ V | 
| 11 | 7, 10 | elmap 8912 | . . . . . . . . . 10
⊢ (𝑔 ∈ (ℤ
↑m 𝑣)
↔ 𝑔:𝑣⟶ℤ) | 
| 12 |  | ffvelcdm 7100 | . . . . . . . . . 10
⊢ ((𝑔:𝑣⟶ℤ ∧ 𝑓 ∈ 𝑣) → (𝑔‘𝑓) ∈ ℤ) | 
| 13 | 11, 12 | sylanb 581 | . . . . . . . . 9
⊢ ((𝑔 ∈ (ℤ
↑m 𝑣) ∧
𝑓 ∈ 𝑣) → (𝑔‘𝑓) ∈ ℤ) | 
| 14 | 13 | ancoms 458 | . . . . . . . 8
⊢ ((𝑓 ∈ 𝑣 ∧ 𝑔 ∈ (ℤ ↑m 𝑣)) → (𝑔‘𝑓) ∈ ℤ) | 
| 15 | 14 | fmpttd 7134 | . . . . . . 7
⊢ (𝑓 ∈ 𝑣 → (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔‘𝑓)):(ℤ ↑m 𝑣)⟶ℤ) | 
| 16 | 7, 6 | elmap 8912 | . . . . . . 7
⊢ ((𝑔 ∈ (ℤ
↑m 𝑣)
↦ (𝑔‘𝑓)) ∈ (ℤ
↑m (ℤ ↑m 𝑣)) ↔ (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔‘𝑓)):(ℤ ↑m 𝑣)⟶ℤ) | 
| 17 | 15, 16 | sylibr 234 | . . . . . 6
⊢ (𝑓 ∈ 𝑣 → (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔‘𝑓)) ∈ (ℤ ↑m
(ℤ ↑m 𝑣))) | 
| 18 | 17 | rgen 3062 | . . . . 5
⊢
∀𝑓 ∈
𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔‘𝑓)) ∈ (ℤ ↑m
(ℤ ↑m 𝑣)) | 
| 19 | 9, 18 | pm3.2i 470 | . . . 4
⊢
(∀𝑓 ∈
ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m
(ℤ ↑m 𝑣)) ∧ ∀𝑓 ∈ 𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔‘𝑓)) ∈ (ℤ ↑m
(ℤ ↑m 𝑣))) | 
| 20 |  | zaddcl 12659 | . . . . . . . . 9
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ) | 
| 21 | 20 | adantl 481 | . . . . . . . 8
⊢ (((𝑓:(ℤ ↑m
𝑣)⟶ℤ ∧
𝑔:(ℤ
↑m 𝑣)⟶ℤ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 + 𝑏) ∈ ℤ) | 
| 22 |  | simpl 482 | . . . . . . . 8
⊢ ((𝑓:(ℤ ↑m
𝑣)⟶ℤ ∧
𝑔:(ℤ
↑m 𝑣)⟶ℤ) → 𝑓:(ℤ ↑m 𝑣)⟶ℤ) | 
| 23 |  | simpr 484 | . . . . . . . 8
⊢ ((𝑓:(ℤ ↑m
𝑣)⟶ℤ ∧
𝑔:(ℤ
↑m 𝑣)⟶ℤ) → 𝑔:(ℤ ↑m 𝑣)⟶ℤ) | 
| 24 |  | ovexd 7467 | . . . . . . . 8
⊢ ((𝑓:(ℤ ↑m
𝑣)⟶ℤ ∧
𝑔:(ℤ
↑m 𝑣)⟶ℤ) → (ℤ
↑m 𝑣)
∈ V) | 
| 25 |  | inidm 4226 | . . . . . . . 8
⊢ ((ℤ
↑m 𝑣) ∩
(ℤ ↑m 𝑣)) = (ℤ ↑m 𝑣) | 
| 26 | 21, 22, 23, 24, 24, 25 | off 7716 | . . . . . . 7
⊢ ((𝑓:(ℤ ↑m
𝑣)⟶ℤ ∧
𝑔:(ℤ
↑m 𝑣)⟶ℤ) → (𝑓 ∘f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ) | 
| 27 |  | zmulcl 12668 | . . . . . . . . 9
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 · 𝑏) ∈ ℤ) | 
| 28 | 27 | adantl 481 | . . . . . . . 8
⊢ (((𝑓:(ℤ ↑m
𝑣)⟶ℤ ∧
𝑔:(ℤ
↑m 𝑣)⟶ℤ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 · 𝑏) ∈ ℤ) | 
| 29 | 28, 22, 23, 24, 24, 25 | off 7716 | . . . . . . 7
⊢ ((𝑓:(ℤ ↑m
𝑣)⟶ℤ ∧
𝑔:(ℤ
↑m 𝑣)⟶ℤ) → (𝑓 ∘f · 𝑔):(ℤ ↑m
𝑣)⟶ℤ) | 
| 30 | 26, 29 | jca 511 | . . . . . 6
⊢ ((𝑓:(ℤ ↑m
𝑣)⟶ℤ ∧
𝑔:(ℤ
↑m 𝑣)⟶ℤ) → ((𝑓 ∘f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ ∧ (𝑓 ∘f ·
𝑔):(ℤ
↑m 𝑣)⟶ℤ)) | 
| 31 | 7, 6 | elmap 8912 | . . . . . . 7
⊢ (𝑓 ∈ (ℤ
↑m (ℤ ↑m 𝑣)) ↔ 𝑓:(ℤ ↑m 𝑣)⟶ℤ) | 
| 32 | 7, 6 | elmap 8912 | . . . . . . 7
⊢ (𝑔 ∈ (ℤ
↑m (ℤ ↑m 𝑣)) ↔ 𝑔:(ℤ ↑m 𝑣)⟶ℤ) | 
| 33 | 31, 32 | anbi12i 628 | . . . . . 6
⊢ ((𝑓 ∈ (ℤ
↑m (ℤ ↑m 𝑣)) ∧ 𝑔 ∈ (ℤ ↑m (ℤ
↑m 𝑣)))
↔ (𝑓:(ℤ
↑m 𝑣)⟶ℤ ∧ 𝑔:(ℤ ↑m 𝑣)⟶ℤ)) | 
| 34 | 7, 6 | elmap 8912 | . . . . . . 7
⊢ ((𝑓 ∘f + 𝑔) ∈ (ℤ
↑m (ℤ ↑m 𝑣)) ↔ (𝑓 ∘f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ) | 
| 35 | 7, 6 | elmap 8912 | . . . . . . 7
⊢ ((𝑓 ∘f ·
𝑔) ∈ (ℤ
↑m (ℤ ↑m 𝑣)) ↔ (𝑓 ∘f · 𝑔):(ℤ ↑m
𝑣)⟶ℤ) | 
| 36 | 34, 35 | anbi12i 628 | . . . . . 6
⊢ (((𝑓 ∘f + 𝑔) ∈ (ℤ
↑m (ℤ ↑m 𝑣)) ∧ (𝑓 ∘f · 𝑔) ∈ (ℤ
↑m (ℤ ↑m 𝑣))) ↔ ((𝑓 ∘f + 𝑔):(ℤ ↑m 𝑣)⟶ℤ ∧ (𝑓 ∘f ·
𝑔):(ℤ
↑m 𝑣)⟶ℤ)) | 
| 37 | 30, 33, 36 | 3imtr4i 292 | . . . . 5
⊢ ((𝑓 ∈ (ℤ
↑m (ℤ ↑m 𝑣)) ∧ 𝑔 ∈ (ℤ ↑m (ℤ
↑m 𝑣)))
→ ((𝑓
∘f + 𝑔)
∈ (ℤ ↑m (ℤ ↑m 𝑣)) ∧ (𝑓 ∘f · 𝑔) ∈ (ℤ
↑m (ℤ ↑m 𝑣)))) | 
| 38 | 37 | rgen2 3198 | . . . 4
⊢
∀𝑓 ∈
(ℤ ↑m (ℤ ↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ
↑m 𝑣))((𝑓 ∘f + 𝑔) ∈ (ℤ ↑m (ℤ
↑m 𝑣))
∧ (𝑓
∘f · 𝑔) ∈ (ℤ ↑m (ℤ
↑m 𝑣))) | 
| 39 | 19, 38 | pm3.2i 470 | . . 3
⊢
((∀𝑓 ∈
ℤ ((ℤ ↑m 𝑣) × {𝑓}) ∈ (ℤ ↑m
(ℤ ↑m 𝑣)) ∧ ∀𝑓 ∈ 𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔‘𝑓)) ∈ (ℤ ↑m
(ℤ ↑m 𝑣))) ∧ ∀𝑓 ∈ (ℤ ↑m (ℤ
↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ
↑m 𝑣))((𝑓 ∘f + 𝑔) ∈ (ℤ ↑m (ℤ
↑m 𝑣))
∧ (𝑓
∘f · 𝑔) ∈ (ℤ ↑m (ℤ
↑m 𝑣)))) | 
| 40 |  | elmzpcl 42742 | . . . 4
⊢ (𝑣 ∈ V → ((ℤ
↑m (ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣) ↔ ((ℤ ↑m
(ℤ ↑m 𝑣)) ⊆ (ℤ ↑m
(ℤ ↑m 𝑣)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m
𝑣) × {𝑓}) ∈ (ℤ
↑m (ℤ ↑m 𝑣)) ∧ ∀𝑓 ∈ 𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔‘𝑓)) ∈ (ℤ ↑m
(ℤ ↑m 𝑣))) ∧ ∀𝑓 ∈ (ℤ ↑m (ℤ
↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ
↑m 𝑣))((𝑓 ∘f + 𝑔) ∈ (ℤ ↑m (ℤ
↑m 𝑣))
∧ (𝑓
∘f · 𝑔) ∈ (ℤ ↑m (ℤ
↑m 𝑣))))))) | 
| 41 | 10, 40 | ax-mp 5 | . . 3
⊢ ((ℤ
↑m (ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣) ↔ ((ℤ ↑m
(ℤ ↑m 𝑣)) ⊆ (ℤ ↑m
(ℤ ↑m 𝑣)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m
𝑣) × {𝑓}) ∈ (ℤ
↑m (ℤ ↑m 𝑣)) ∧ ∀𝑓 ∈ 𝑣 (𝑔 ∈ (ℤ ↑m 𝑣) ↦ (𝑔‘𝑓)) ∈ (ℤ ↑m
(ℤ ↑m 𝑣))) ∧ ∀𝑓 ∈ (ℤ ↑m (ℤ
↑m 𝑣))∀𝑔 ∈ (ℤ ↑m (ℤ
↑m 𝑣))((𝑓 ∘f + 𝑔) ∈ (ℤ ↑m (ℤ
↑m 𝑣))
∧ (𝑓
∘f · 𝑔) ∈ (ℤ ↑m (ℤ
↑m 𝑣)))))) | 
| 42 | 5, 39, 41 | mpbir2an 711 | . 2
⊢ (ℤ
↑m (ℤ ↑m 𝑣)) ∈ (mzPolyCld‘𝑣) | 
| 43 | 4, 42 | vtoclg 3553 | 1
⊢ (𝑉 ∈ V → (ℤ
↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉)) |