![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onssnum | Structured version Visualization version GIF version |
Description: All subsets of the ordinals are numerable. (Contributed by Mario Carneiro, 12-Feb-2013.) |
Ref | Expression |
---|---|
onssnum | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ On) → 𝐴 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7759 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
2 | ssorduni 7798 | . . . 4 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | |
3 | elong 6394 | . . . . 5 ⊢ (∪ 𝐴 ∈ V → (∪ 𝐴 ∈ On ↔ Ord ∪ 𝐴)) | |
4 | 3 | biimpar 477 | . . . 4 ⊢ ((∪ 𝐴 ∈ V ∧ Ord ∪ 𝐴) → ∪ 𝐴 ∈ On) |
5 | 1, 2, 4 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ On) → ∪ 𝐴 ∈ On) |
6 | onsuc 7831 | . . 3 ⊢ (∪ 𝐴 ∈ On → suc ∪ 𝐴 ∈ On) | |
7 | onenon 9987 | . . 3 ⊢ (suc ∪ 𝐴 ∈ On → suc ∪ 𝐴 ∈ dom card) | |
8 | 5, 6, 7 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ On) → suc ∪ 𝐴 ∈ dom card) |
9 | onsucuni 7848 | . . 3 ⊢ (𝐴 ⊆ On → 𝐴 ⊆ suc ∪ 𝐴) | |
10 | 9 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ On) → 𝐴 ⊆ suc ∪ 𝐴) |
11 | ssnum 10077 | . 2 ⊢ ((suc ∪ 𝐴 ∈ dom card ∧ 𝐴 ⊆ suc ∪ 𝐴) → 𝐴 ∈ dom card) | |
12 | 8, 10, 11 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ On) → 𝐴 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 ∪ cuni 4912 dom cdm 5689 Ord word 6385 Oncon0 6386 suc csuc 6388 cardccrd 9973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-er 8744 df-en 8985 df-dom 8986 df-card 9977 |
This theorem is referenced by: dfac12lem3 10184 cfeq0 10294 cfsuc 10295 cff1 10296 cfflb 10297 cflim2 10301 cfss 10303 cfslb 10304 |
Copyright terms: Public domain | W3C validator |