MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onssnum Structured version   Visualization version   GIF version

Theorem onssnum 9727
Description: All subsets of the ordinals are numerable. (Contributed by Mario Carneiro, 12-Feb-2013.)
Assertion
Ref Expression
onssnum ((𝐴𝑉𝐴 ⊆ On) → 𝐴 ∈ dom card)

Proof of Theorem onssnum
StepHypRef Expression
1 uniexg 7571 . . . 4 (𝐴𝑉 𝐴 ∈ V)
2 ssorduni 7606 . . . 4 (𝐴 ⊆ On → Ord 𝐴)
3 elong 6259 . . . . 5 ( 𝐴 ∈ V → ( 𝐴 ∈ On ↔ Ord 𝐴))
43biimpar 477 . . . 4 (( 𝐴 ∈ V ∧ Ord 𝐴) → 𝐴 ∈ On)
51, 2, 4syl2an 595 . . 3 ((𝐴𝑉𝐴 ⊆ On) → 𝐴 ∈ On)
6 suceloni 7635 . . 3 ( 𝐴 ∈ On → suc 𝐴 ∈ On)
7 onenon 9638 . . 3 (suc 𝐴 ∈ On → suc 𝐴 ∈ dom card)
85, 6, 73syl 18 . 2 ((𝐴𝑉𝐴 ⊆ On) → suc 𝐴 ∈ dom card)
9 onsucuni 7650 . . 3 (𝐴 ⊆ On → 𝐴 ⊆ suc 𝐴)
109adantl 481 . 2 ((𝐴𝑉𝐴 ⊆ On) → 𝐴 ⊆ suc 𝐴)
11 ssnum 9726 . 2 ((suc 𝐴 ∈ dom card ∧ 𝐴 ⊆ suc 𝐴) → 𝐴 ∈ dom card)
128, 10, 11syl2anc 583 1 ((𝐴𝑉𝐴 ⊆ On) → 𝐴 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3422  wss 3883   cuni 4836  dom cdm 5580  Ord word 6250  Oncon0 6251  suc csuc 6253  cardccrd 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-er 8456  df-en 8692  df-dom 8693  df-card 9628
This theorem is referenced by:  dfac12lem3  9832  cfeq0  9943  cfsuc  9944  cff1  9945  cfflb  9946  cflim2  9950  cfss  9952  cfslb  9953
  Copyright terms: Public domain W3C validator