MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onssnum Structured version   Visualization version   GIF version

Theorem onssnum 9993
Description: All subsets of the ordinals are numerable. (Contributed by Mario Carneiro, 12-Feb-2013.)
Assertion
Ref Expression
onssnum ((𝐴𝑉𝐴 ⊆ On) → 𝐴 ∈ dom card)

Proof of Theorem onssnum
StepHypRef Expression
1 uniexg 7716 . . . 4 (𝐴𝑉 𝐴 ∈ V)
2 ssorduni 7755 . . . 4 (𝐴 ⊆ On → Ord 𝐴)
3 elong 6340 . . . . 5 ( 𝐴 ∈ V → ( 𝐴 ∈ On ↔ Ord 𝐴))
43biimpar 477 . . . 4 (( 𝐴 ∈ V ∧ Ord 𝐴) → 𝐴 ∈ On)
51, 2, 4syl2an 596 . . 3 ((𝐴𝑉𝐴 ⊆ On) → 𝐴 ∈ On)
6 onsuc 7787 . . 3 ( 𝐴 ∈ On → suc 𝐴 ∈ On)
7 onenon 9902 . . 3 (suc 𝐴 ∈ On → suc 𝐴 ∈ dom card)
85, 6, 73syl 18 . 2 ((𝐴𝑉𝐴 ⊆ On) → suc 𝐴 ∈ dom card)
9 onsucuni 7803 . . 3 (𝐴 ⊆ On → 𝐴 ⊆ suc 𝐴)
109adantl 481 . 2 ((𝐴𝑉𝐴 ⊆ On) → 𝐴 ⊆ suc 𝐴)
11 ssnum 9992 . 2 ((suc 𝐴 ∈ dom card ∧ 𝐴 ⊆ suc 𝐴) → 𝐴 ∈ dom card)
128, 10, 11syl2anc 584 1 ((𝐴𝑉𝐴 ⊆ On) → 𝐴 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3447  wss 3914   cuni 4871  dom cdm 5638  Ord word 6331  Oncon0 6332  suc csuc 6334  cardccrd 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-er 8671  df-en 8919  df-dom 8920  df-card 9892
This theorem is referenced by:  dfac12lem3  10099  cfeq0  10209  cfsuc  10210  cff1  10211  cfflb  10212  cflim2  10216  cfss  10218  cfslb  10219
  Copyright terms: Public domain W3C validator