MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oion Structured version   Visualization version   GIF version

Theorem oion 9561
Description: The order type of the well-order 𝑅 on 𝐴 is an ordinal. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 23-May-2015.)
Hypothesis
Ref Expression
oicl.1 𝐹 = OrdIso(𝑅, 𝐴)
Assertion
Ref Expression
oion (𝐴𝑉 → dom 𝐹 ∈ On)

Proof of Theorem oion
StepHypRef Expression
1 oicl.1 . . 3 𝐹 = OrdIso(𝑅, 𝐴)
21oicl 9554 . 2 Ord dom 𝐹
31oiexg 9560 . . 3 (𝐴𝑉𝐹 ∈ V)
4 dmexg 7909 . . 3 (𝐹 ∈ V → dom 𝐹 ∈ V)
5 elong 6379 . . 3 (dom 𝐹 ∈ V → (dom 𝐹 ∈ On ↔ Ord dom 𝐹))
63, 4, 53syl 18 . 2 (𝐴𝑉 → (dom 𝐹 ∈ On ↔ Ord dom 𝐹))
72, 6mpbiri 257 1 (𝐴𝑉 → dom 𝐹 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  Vcvv 3461  dom cdm 5678  Ord word 6370  Oncon0 6371  OrdIsocoi 9534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-oi 9535
This theorem is referenced by:  hartogslem1  9567  wofib  9570  cantnfcl  9692  cantnflt2  9698  cantnflem1  9714  wemapwe  9722  cnfcom2  9727  cnfcom3lem  9728  cnfcom3  9729  finnisoeu  10138  dfac12lem2  10169  cofsmo  10294  pwfseqlem5  10688  fz1isolem  14458
  Copyright terms: Public domain W3C validator