| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oion | Structured version Visualization version GIF version | ||
| Description: The order type of the well-order 𝑅 on 𝐴 is an ordinal. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 23-May-2015.) |
| Ref | Expression |
|---|---|
| oicl.1 | ⊢ 𝐹 = OrdIso(𝑅, 𝐴) |
| Ref | Expression |
|---|---|
| oion | ⊢ (𝐴 ∈ 𝑉 → dom 𝐹 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oicl.1 | . . 3 ⊢ 𝐹 = OrdIso(𝑅, 𝐴) | |
| 2 | 1 | oicl 9458 | . 2 ⊢ Ord dom 𝐹 |
| 3 | 1 | oiexg 9464 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐹 ∈ V) |
| 4 | dmexg 7857 | . . 3 ⊢ (𝐹 ∈ V → dom 𝐹 ∈ V) | |
| 5 | elong 6328 | . . 3 ⊢ (dom 𝐹 ∈ V → (dom 𝐹 ∈ On ↔ Ord dom 𝐹)) | |
| 6 | 3, 4, 5 | 3syl 18 | . 2 ⊢ (𝐴 ∈ 𝑉 → (dom 𝐹 ∈ On ↔ Ord dom 𝐹)) |
| 7 | 2, 6 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → dom 𝐹 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3444 dom cdm 5631 Ord word 6319 Oncon0 6320 OrdIsocoi 9438 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-oi 9439 |
| This theorem is referenced by: hartogslem1 9471 wofib 9474 cantnfcl 9596 cantnflt2 9602 cantnflem1 9618 wemapwe 9626 cnfcom2 9631 cnfcom3lem 9632 cnfcom3 9633 finnisoeu 10042 dfac12lem2 10074 cofsmo 10198 pwfseqlem5 10592 fz1isolem 14402 |
| Copyright terms: Public domain | W3C validator |